
Apache HTTP Server Documentation Version 2.4

Apache Software Foundation

July 12, 2015

ii

About The PDF Documentation

Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NO-
TICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this
file to You under the Apache License, Version 2.0 (the ”License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

This version of the Apache HTTP Server Documentation is converted from XML source files to LATEX using XSLT
with the help of Apache Ant, Apache XML Xalan, and Apache XML Xerces.

Since the HTML version of the documentation is more commonly checked during development, the PDF ver-
sion may contain some errors and inconsistencies, especially in formatting. If you have difficulty reading a
part of this file, please consult the HTML version of the documentation on the Apache HTTP Server website at
http://httpd.apache.org/docs/2.4/

The Apache HTTP Server Documentation is maintained by the Apache HTTP Server Documentation Project. More
information is available at http://httpd.apache.org/docs-project/

http://www.apache.org/licenses/LICENSE-2.0
http://httpd.apache.org/docs/2.4/
http://httpd.apache.org/docs-project/

Contents

1 Release Notes 1

1.1 Upgrading to 2.4 from 2.2 . 2

1.2 Overview of new features in Apache HTTP Server 2.4 . 7

1.3 Overview of new features in Apache HTTP Server 2.2 . 11

1.4 Overview of new features in Apache HTTP Server 2.0 . 14

1.5 The Apache License, Version 2.0 . 16

2 Using the Apache HTTP Server 19

2.1 Compiling and Installing . 20

2.2 Starting Apache . 25

2.3 Stopping and Restarting Apache HTTP Server . 27

2.4 Configuration Files . 30

2.5 Configuration Sections . 33

2.6 Caching Guide . 40

2.7 Server-Wide Configuration . 51

2.8 Log Files . 53

2.9 Mapping URLs to Filesystem Locations . 61

2.10 Dynamic Shared Object (DSO) Support . 65

2.11 Content Negotiation . 68

2.12 Custom Error Responses . 75

2.13 Binding to Addresses and Ports . 78

2.14 Multi-Processing Modules (MPMs) . 80

2.15 Environment Variables in Apache . 82

2.16 Expressions in Apache HTTP Server . 89

2.17 Apache’s Handler Use . 98

2.18 Filters . 100

2.19 Shared Object Cache in Apache HTTP Server . 104

2.20 suEXEC Support . 105

2.21 Issues Regarding DNS and Apache HTTP Server . 111

iii

iv CONTENTS

3 Apache Virtual Host documentation 113

3.1 Apache Virtual Host documentation . 114

3.2 Name-based Virtual Host Support . 115

3.3 Apache IP-based Virtual Host Support . 118

3.4 Dynamically Configured Mass Virtual Hosting . 120

3.5 VirtualHost Examples . 124

3.6 An In-Depth Discussion of Virtual Host Matching . 131

3.7 File Descriptor Limits . 134

4 URL Rewriting Guide 135

4.1 Apache mod rewrite . 136

4.2 Apache mod rewrite Introduction . 137

4.3 Redirecting and Remapping with mod rewrite . 142

4.4 Using mod rewrite to control access . 149

4.5 Dynamic mass virtual hosts with mod rewrite . 152

4.6 Using mod rewrite for Proxying . 155

4.7 Using RewriteMap . 156

4.8 Advanced Techniques with mod rewrite . 162

4.9 When not to use mod rewrite . 165

4.10 RewriteRule Flags . 168

4.11 Apache mod rewrite Technical Details . 177

5 Apache SSL/TLS Encryption 181

5.1 Apache SSL/TLS Encryption . 182

5.2 SSL/TLS Strong Encryption: An Introduction . 183

5.3 SSL/TLS Strong Encryption: Compatibility . 192

5.4 SSL/TLS Strong Encryption: How-To . 196

5.5 SSL/TLS Strong Encryption: FAQ . 202

6 Guides, Tutorials, and HowTos 215

6.1 How-To / Tutorials . 216

6.2 Authentication and Authorization . 217

6.3 Access Control . 224

6.4 Apache Tutorial: Dynamic Content with CGI . 226

6.5 Apache httpd Tutorial: Introduction to Server Side Includes . 233

6.6 Apache HTTP Server Tutorial: .htaccess files . 239

6.7 Per-user web directories . 245

CONTENTS v

7 Platform-specific Notes 249

7.1 Platform Specific Notes . 250

7.2 Using Apache HTTP Server on Microsoft Windows . 251

7.3 Compiling Apache for Microsoft Windows . 259

7.4 Using Apache With RPM Based Systems (Redhat / CentOS / Fedora) 265

7.5 Using Apache With Novell NetWare . 268

7.6 Running a High-Performance Web Server on HPUX . 276

7.7 The Apache EBCDIC Port . 277

8 Apache HTTP Server and Supporting Programs 281

8.1 Server and Supporting Programs . 282

8.2 httpd - Apache Hypertext Transfer Protocol Server . 283

8.3 ab - Apache HTTP server benchmarking tool . 285

8.4 apachectl - Apache HTTP Server Control Interface . 289

8.5 apxs - APache eXtenSion tool . 291

8.6 configure - Configure the source tree . 295

8.7 dbmmanage - Manage user authentication files in DBM format 303

8.8 fcgistarter - Start a FastCGI program . 305

8.9 htcacheclean - Clean up the disk cache . 306

8.10 htdbm - Manipulate DBM password databases . 308

8.11 htdigest - manage user files for digest authentication . 311

8.12 htpasswd - Manage user files for basic authentication . 312

8.13 httxt2dbm - Generate dbm files for use with RewriteMap . 315

8.14 logresolve - Resolve IP-addresses to hostnames in Apache log files 316

8.15 log server status - Log periodic status summaries . 317

8.16 rotatelogs - Piped logging program to rotate Apache logs . 318

8.17 split-logfile - Split up multi-vhost logfiles . 321

8.18 suexec - Switch user before executing external programs . 322

8.19 Other Programs . 323

9 Apache Miscellaneous Documentation 325

9.1 Apache Miscellaneous Documentation . 326

9.2 Apache Performance Tuning . 327

9.3 Security Tips . 338

9.4 Relevant Standards . 343

9.5 Password Formats . 345

vi CONTENTS

10 Apache modules 349

10.1 Terms Used to Describe Modules . 350

10.2 Terms Used to Describe Directives . 351

10.3 Apache Module core . 354

10.4 Apache Module mod access compat . 410

10.5 Apache Module mod actions . 415

10.6 Apache Module mod alias . 417

10.7 Apache Module mod allowmethods . 423

10.8 Apache Module mod asis . 424

10.9 Apache Module mod auth basic . 426

10.10 Apache Module mod auth digest . 430

10.11 Apache Module mod auth form . 434

10.12 Apache Module mod authn anon . 445

10.13 Apache Module mod authn core . 448

10.14 Apache Module mod authn dbd . 452

10.15 Apache Module mod authn dbm . 455

10.16 Apache Module mod authn file . 457

10.17 Apache Module mod authn socache . 459

10.18 Apache Module mod authnz fcgi . 462

10.19 Apache Module mod authnz ldap . 469

10.20 Apache Module mod authz core . 487

10.21 Apache Module mod authz dbd . 495

10.22 Apache Module mod authz dbm . 499

10.23 Apache Module mod authz groupfile . 502

10.24 Apache Module mod authz host . 504

10.25 Apache Module mod authz owner . 507

10.26 Apache Module mod authz user . 509

10.27 Apache Module mod autoindex . 510

10.28 Apache Module mod buffer . 522

10.29 Apache Module mod cache . 523

10.30 Apache Module mod cache disk . 538

10.31 Apache Module mod cache socache . 542

10.32 Apache Module mod cern meta . 546

10.33 Apache Module mod cgi . 548

10.34 Apache Module mod cgid . 551

10.35 Apache Module mod charset lite . 553

10.36 Apache Module mod data . 556

CONTENTS vii

10.37 Apache Module mod dav . 557

10.38 Apache Module mod dav fs . 560

10.39 Apache Module mod dav lock . 561

10.40 Apache Module mod dbd . 562

10.41 Apache Module mod deflate . 567

10.42 Apache Module mod dialup . 573

10.43 Apache Module mod dir . 574

10.44 Apache Module mod dumpio . 579

10.45 Apache Module mod echo . 581

10.46 Apache Module mod env . 582

10.47 Apache Module mod example hooks . 584

10.48 Apache Module mod expires . 586

10.49 Apache Module mod ext filter . 589

10.50 Apache Module mod file cache . 593

10.51 Apache Module mod filter . 596

10.52 Apache Module mod headers . 604

10.53 Apache Module mod heartbeat . 610

10.54 Apache Module mod heartmonitor . 611

10.55 Apache Module mod ident . 613

10.56 Apache Module mod imagemap . 615

10.57 Apache Module mod include . 619

10.58 Apache Module mod info . 632

10.59 Apache Module mod isapi . 635

10.60 Apache Module mod lbmethod bybusyness . 639

10.61 Apache Module mod lbmethod byrequests . 640

10.62 Apache Module mod lbmethod bytraffic . 642

10.63 Apache Module mod lbmethod heartbeat . 643

10.64 Apache Module mod ldap . 644

10.65 Apache Module mod log config . 656

10.66 Apache Module mod log debug . 662

10.67 Apache Module mod log forensic . 664

10.68 Apache Module mod logio . 666

10.69 Apache Module mod lua . 668

10.70 Apache Module mod macro . 695

10.71 Apache Module mod mime . 699

10.72 Apache Module mod mime magic . 712

10.73 Apache Module mod negotiation . 716

viii CONTENTS

10.74 Apache Module mod nw ssl . 720

10.75 Apache Module mod privileges . 721

10.76 Apache Module mod proxy . 727

10.77 Apache Module mod proxy ajp . 753

10.78 Apache Module mod proxy balancer . 762

10.79 Apache Module mod proxy connect . 766

10.80 Apache Module mod proxy express . 767

10.81 Apache Module mod proxy fcgi . 770

10.82 Apache Module mod proxy fdpass . 773

10.83 Apache Module mod proxy ftp . 774

10.84 Apache Module mod proxy html . 777

10.85 Apache Module mod proxy http . 783

10.86 Apache Module mod proxy scgi . 785

10.87 Apache Module mod proxy wstunnel . 788

10.88 Apache Module mod ratelimit . 789

10.89 Apache Module mod reflector . 790

10.90 Apache Module mod remoteip . 791

10.91 Apache Module mod reqtimeout . 795

10.92 Apache Module mod request . 797

10.93 Apache Module mod rewrite . 798

10.94 Apache Module mod sed . 812

10.95 Apache Module mod session . 814

10.96 Apache Module mod session cookie . 821

10.97 Apache Module mod session crypto . 824

10.98 Apache Module mod session dbd . 828

10.99 Apache Module mod setenvif . 833

10.100 Apache Module mod slotmem plain . 837

10.101 Apache Module mod slotmem shm . 838

10.102 Apache Module mod so . 839

10.103 Apache Module mod socache dbm . 841

10.104 Apache Module mod socache dc . 842

10.105 Apache Module mod socache memcache . 843

10.106 Apache Module mod socache shmcb . 844

10.107 Apache Module mod speling . 845

10.108 Apache Module mod ssl . 847

10.109 Apache Module mod status . 885

10.110 Apache Module mod substitute . 887

CONTENTS ix

10.111 Apache Module mod suexec . 889

10.112 Apache Module mod unique id . 890

10.113 Apache Module mod unixd . 892

10.114 Apache Module mod userdir . 895

10.115 Apache Module mod usertrack . 897

10.116 Apache Module mod version . 900

10.117 Apache Module mod vhost alias . 902

10.118 Apache Module mod watchdog . 906

10.119 Apache Module mod xml2enc . 907

10.120 Apache Module mpm common . 910

10.121 Apache Module event . 920

10.122 Apache Module mpm netware . 923

10.123 Apache Module mpmt os2 . 925

10.124 Apache Module prefork . 926

10.125 Apache Module mpm winnt . 929

10.126 Apache Module worker . 931

11 Developer Documentation 933

11.1 Developer Documentation for the Apache HTTP Server 2.4 . 934

11.2 Apache 1.3 API notes . 935

11.3 API Changes in Apache HTTP Server 2.4 since 2.2 . 951

11.4 Developing modules for the Apache HTTP Server 2.4 . 958

11.5 Documenting code in Apache 2.4 . 986

11.6 Hook Functions in the Apache HTTP Server 2.x . 987

11.7 Converting Modules from Apache 1.3 to Apache 2.0 . 990

11.8 Request Processing in the Apache HTTP Server 2.x . 994

11.9 How filters work in Apache 2.0 . 997

11.10 Guide to writing output filters . 1000

11.11 Apache HTTP Server 2.x Thread Safety Issues . 1007

12 Glossary and Index 1011

12.1 Glossary . 1012

12.2 Module Index . 1017

12.3 Directive Quick Reference . 1022

x CONTENTS

Chapter 1

Release Notes

1

2 CHAPTER 1. RELEASE NOTES

1.1 Upgrading to 2.4 from 2.2

In order to assist folks upgrading, we maintain a document describing information critical to existing Apache HTTP
Server users. These are intended to be brief notes, and you should be able to find more information in either the New
Features (p. 7) document, or in the src/CHANGES file. Application and module developers can find a summary of
API changes in the API updates (p. 951) overview.

This document describes changes in server behavior that might require you to change your configuration or how you
use the server in order to continue using 2.4 as you are currently using 2.2. To take advantage of new features in 2.4,
see the New Features document.

This document describes only the changes from 2.2 to 2.4. If you are upgrading from version 2.0, you should also
consult the 2.0 to 2.2 upgrading document.1

See also

• Overview of new features in Apache HTTP Server 2.4 (p. 7)

Compile-Time Configuration Changes

The compilation process is very similar to the one used in version 2.2. Your old configure command line (as found
in build/config.nice in the installed server directory) can be used in most cases. There are some changes in
the default settings. Some details of changes:

• These modules have been removed: mod authn default, mod authz default, mod mem cache. If you were using
mod mem cache in 2.2, look at MOD CACHE DISK in 2.4.

• All load balancing implementations have been moved to individual, self-contained mod proxy submodules, e.g.
MOD LBMETHOD BYBUSYNESS. You might need to build and load any of these that your configuration uses.

• Platform support has been removed for BeOS, TPF, and even older platforms such as A/UX, Next, and Tandem.
These were believed to be broken anyway.

• configure: dynamic modules (DSO) are built by default

• configure: By default, only a basic set of modules is loaded. The other LOADMODULE directives are commented
out in the configuration file.

• configure: the "most" module set gets built by default

• configure: the "reallyall" module set adds developer modules to the "all" set

Run-Time Configuration Changes

There have been significant changes in authorization configuration, and other minor configuration changes, that could
require changes to your 2.2 configuration files before using them for 2.4.

Authorization

Any configuration file that uses authorization will likely need changes.

You should review the Authentication, Authorization and Access Control Howto (p. 217) , especially the section
Beyond just authorization (p. 217) which explains the new mechanisms for controlling the order in which the autho-
rization directives are applied.

1http://httpd.apache.org/docs/2.2/upgrading.html

http://httpd.apache.org/docs/2.2/upgrading.html

1.1. UPGRADING TO 2.4 FROM 2.2 3

Directives that control how authorization modules respond when they don’t match the authenticated user have been
removed: This includes AuthzLDAPAuthoritative, AuthzDBDAuthoritative, AuthzDBMAuthoritative, AuthzGroup-
FileAuthoritative, AuthzUserAuthoritative, and AuthzOwnerAuthoritative. These directives have been replaced by the
more expressive REQUIREANY, REQUIRENONE, and REQUIREALL.

If you use MOD AUTHZ DBM, you must port your configuration to use Require dbm-group ... in place of
Require group

Access control

In 2.2, access control based on client hostname, IP address, and other characteristics of client requests was done using
the directives ORDER, ALLOW, DENY, and SATISFY.

In 2.4, such access control is done in the same way as other authorization checks, using the new module
MOD AUTHZ HOST. The old access control idioms should be replaced by the new authentication mechanisms, al-
though for compatibility with old configurations, the new module MOD ACCESS COMPAT is provided.

Here are some examples of old and new ways to do the same access control.

In this example, all requests are denied.

2.2 configuration:

Order deny,allow
Deny from all

2.4 configuration:

Require all denied

In this example, all requests are allowed.

2.2 configuration:

Order allow,deny
Allow from all

2.4 configuration:

Require all granted

In the following example, all hosts in the example.org domain are allowed access; all other hosts are denied access.

2.2 configuration:

Order Deny,Allow
Deny from all
Allow from example.org

2.4 configuration:

Require host example.org

4 CHAPTER 1. RELEASE NOTES

Other configuration changes

Some other small adjustments may be necessary for particular configurations as discussed below.

• MAXREQUESTSPERCHILD has been renamed to MAXCONNECTIONSPERCHILD, describes more accurately
what it does. The old name is still supported.

• MAXCLIENTS has been renamed to MAXREQUESTWORKERS, which describes more accurately what it does.
For async MPMs, like EVENT, the maximum number of clients is not equivalent than the number of worker
threads. The old name is still supported.

• The DEFAULTTYPE directive no longer has any effect, other than to emit a warning if it’s used with any value
other than none. You need to use other configuration settings to replace it in 2.4.

• ALLOWOVERRIDE now defaults to None.

• ENABLESENDFILE now defaults to Off.

• FILEETAG now defaults to "MTime Size" (without INode).

• MOD DAV FS: The format of the DAVLOCKDB file has changed for systems with inodes. The old
DAVLOCKDB file must be deleted on upgrade.

• KEEPALIVE only accepts values of On or Off. Previously, any value other than "Off" or "0" was treated as
"On".

• Directives AcceptMutex, LockFile, RewriteLock, SSLMutex, SSLStaplingMutex, and WatchdogMutexPath
have been replaced with a single MUTEX directive. You will need to evaluate any use of these removed di-
rectives in your 2.2 configuration to determine if they can just be deleted or will need to be replaced using
MUTEX.

• MOD CACHE: CACHEIGNOREURLSESSIONIDENTIFIERS now does an exact match against the query string
instead of a partial match. If your configuration was using partial strings, e.g. using sessionid to match
/someapplication/image.gif;jsessionid=123456789, then you will need to change to the full
string jsessionid.

• MOD CACHE: The second parameter to CACHEENABLE only matches forward proxy content if it begins with
the correct protocol. In 2.2 and earlier, a parameter of ’/’ matched all content.

• MOD LDAP: LDAPTRUSTEDCLIENTCERT is now consistently a per-directory setting only. If you use this
directive, review your configuration to make sure it is present in all the necessary directory contexts.

• MOD FILTER: FILTERPROVIDER syntax has changed and now uses a boolean expression to determine if a filter
is applied.

• MOD INCLUDE:

– The #if expr element now uses the new expression parser (p. 89) . The old syntax can be restored with
the new directive SSILEGACYEXPRPARSER.

– An SSI* config directive in directory scope no longer causes all other per-directory SSI* directives to be
reset to their default values.

• MOD CHARSET LITE: The DebugLevel option has been removed in favour of per-module LOGLEVEL con-
figuration.

• MOD EXT FILTER: The DebugLevel option has been removed in favour of per-module LOGLEVEL configu-
ration.

• MOD PROXY SCGI: The default setting for PATH INFO has changed from httpd 2.2, and some web applications
will no longer operate properly with the new PATH INFO setting. The previous setting can be restored by
configuring the proxy-scgi-pathinfo variable.

• MOD SSL: CRL based revocation checking now needs to be explicitly configured through SSLCAREVOCA-
TIONCHECK.

1.1. UPGRADING TO 2.4 FROM 2.2 5

• MOD SUBSTITUTE: The maximum line length is now limited to 1MB.

• MOD REQTIMEOUT: If the module is loaded, it will now set some default timeouts.

• MOD DUMPIO: DUMPIOLOGLEVEL is no longer supported. Data is always logged at LOGLEVEL trace7.

• On Unix platforms, piped logging commands configured using either ERRORLOG or CUSTOMLOG were in-
voked using /bin/sh -c in 2.2 and earlier. In 2.4 and later, piped logging commands are executed directly.
To restore the old behaviour, see the piped logging documentation (p. 53) .

Misc Changes

• MOD AUTOINDEX: will now extract titles and display descriptions for .xhtml files, which were previously
ignored.

• MOD SSL: The default format of the * DN variables has changed. The old format can still be used with the
new LegacyDNStringFormat argument to SSLOPTIONS. The SSLv2 protocol is no longer supported.
SSLPROXYCHECKPEERCN and SSLPROXYCHECKPEEREXPIRE now default to On, causing proxy requests
to HTTPS hosts with bad or outdated certificates to fail with a 502 status code (Bad gateway)

• htpasswd now uses MD5 hash by default on all platforms.

• The NAMEVIRTUALHOST directive no longer has any effect, other than to emit a warning. Any address/port
combination appearing in multiple virtual hosts is implicitly treated as a name-based virtual host.

• MOD DEFLATE will now skip compression if it knows that the size overhead added by the compression is larger
than the data to be compressed.

• Multi-language error documents from 2.2.x may not work unless they are adjusted to the new syntax of
MOD INCLUDE’s #if expr= element or the directive SSILEGACYEXPRPARSER is enabled for the directory
containing the error documents.

• The functionality provided by mod authn alias in previous versions (i.e., the AUTHNPROVIDERALIAS
directive) has been moved into MOD AUTHN CORE.

• The RewriteLog and RewriteLogLevel directives have been removed. This functionality is now provided by
configuring the appropriate level of logging for the MOD REWRITE module using the LOGLEVEL directive. See
also the mod rewrite logging (p. 798) section.

Third Party Modules

All modules must be recompiled for 2.4 before being loaded.

Many third-party modules designed for version 2.2 will otherwise work unchanged with the Apache HTTP Server
version 2.4. Some will require changes; see the API update (p. 951) overview.

Common problems when upgrading

• Startup errors:

– Invalid command ’User’, perhaps misspelled or defined by a module not
included in the server configuration - load module MOD UNIXD

– Invalid command ’Require’, perhaps misspelled or defined by a module
not included in the server configuration, or Invalid command ’Order’,
perhaps misspelled or defined by a module not included in the server
configuration - load module MOD ACCESS COMPAT, or update configuration to 2.4 authorization
directives.

6 CHAPTER 1. RELEASE NOTES

– Ignoring deprecated use of DefaultType in line NN of
/path/to/httpd.conf - remove DEFAULTTYPE and replace with other configuration
settings.

– Invalid command ’AddOutputFilterByType’, perhaps misspelled or defined
by a module not included in the server configuration - ADDOUTPUTFILTER-
BYTYPE has moved from the core to mod filter, which must be loaded.

• Errors serving requests:

– configuration error: couldn’t check user: /path - load module
MOD AUTHN CORE.

– .htaccess files aren’t being processed - Check for an appropriate ALLOWOVERRIDE directive; the
default changed to None in 2.4.

1.2. OVERVIEW OF NEW FEATURES IN APACHE HTTP SERVER 2.4 7

1.2 Overview of new features in Apache HTTP Server 2.4

This document describes some of the major changes between the 2.2 and 2.4 versions of the Apache HTTP Server.
For new features since version 2.0, see the 2.2 new features (p. 11) document.

Core Enhancements

Run-time Loadable MPMs Multiple MPMs can now be built as loadable modules (p. 80) at compile time. The MPM
of choice can be configured at run time via LOADMODULE directive.

Event MPM The Event MPM (p. 920) is no longer experimental but is now fully supported.

Asynchronous support Better support for asynchronous read/write for supporting MPMs and platforms.

Per-module and per-directory LogLevel configuration The LOGLEVEL can now be configured per module and per
directory. New levels trace1 to trace8 have been added above the debug log level.

Per-request configuration sections <IF>, <ELSEIF>, and <ELSE> sections can be used to set the configuration
based on per-request criteria.

General-purpose expression parser A new expression parser allows to specify complex conditions (p. 89) using a
common syntax in directives like SETENVIFEXPR, REWRITECOND, HEADER, <IF>, and others.

KeepAliveTimeout in milliseconds It is now possible to specify KEEPALIVETIMEOUT in milliseconds.

NameVirtualHost directive No longer needed and is now deprecated.

Override Configuration The new ALLOWOVERRIDELIST directive allows more fine grained control which direc-
tives are allowed in .htaccess files.

Config file variables It is now possible to DEFINE variables in the configuration, allowing a clearer representation if
the same value is used at many places in the configuration.

Reduced memory usage Despite many new features, 2.4.x tends to use less memory than 2.2.x.

New Modules

MOD PROXY FCGI FastCGI Protocol backend for MOD PROXY

MOD PROXY SCGI SCGI Protocol backend for MOD PROXY

MOD PROXY EXPRESS Provides dynamically configured mass reverse proxies for MOD PROXY

MOD REMOTEIP Replaces the apparent client remote IP address and hostname for the request with the IP address
list presented by a proxies or a load balancer via the request headers.

MOD HEARTMONITOR, MOD LBMETHOD HEARTBEAT Allow MOD PROXY BALANCER to base loadbalancing
decisions on the number of active connections on the backend servers.

MOD PROXY HTML Formerly a third-party module, this supports fixing of HTML links in a reverse proxy situation,
where the backend generates URLs that are not valid for the proxy’s clients.

MOD SED An advanced replacement of MOD SUBSTITUTE, allows to edit the response body with the full power of
sed.

MOD AUTH FORM Enables form-based authentication.

MOD SESSION Enables the use of session state for clients, using cookie or database storage.

8 CHAPTER 1. RELEASE NOTES

MOD ALLOWMETHODS New module to restrict certain HTTP methods without interfering with authentication or
authorization.

MOD LUA Embeds the Lua2 language into httpd, for configuration and small business logic functions. (Experimental)

MOD LOG DEBUG Allows the addition of customizable debug logging at different phases of the request processing.

MOD BUFFER Provides for buffering the input and output filter stacks

MOD DATA Convert response body into an RFC2397 data URL

MOD RATELIMIT Provides Bandwidth Rate Limiting for Clients

MOD REQUEST Provides Filters to handle and make available HTTP request bodies

MOD REFLECTOR Provides Reflection of a request body as a response via the output filter stack.

MOD SLOTMEM SHM Provides a Slot-based shared memory provider (ala the scoreboard).

MOD XML2ENC Formerly a third-party module, this supports internationalisation in libxml2-based (markup-aware)
filter modules.

MOD MACRO (available since 2.4.5) Provide macros within configuration files.

MOD PROXY WSTUNNEL (available since 2.4.5) Support web-socket tunnels.

MOD AUTHNZ FCGI (available since 2.4.10) Enable FastCGI authorizer applications to authenticate and/or autho-
rize clients.

Module Enhancements

MOD SSL MOD SSL can now be configured to use an OCSP server to check the validation status of a client certificate.
The default responder is configurable, along with the decision on whether to prefer the responder designated in
the client certificate itself.

MOD SSL now also supports OCSP stapling, where the server pro-actively obtains an OCSP verification of its
certificate and transmits that to the client during the handshake.

MOD SSL can now be configured to share SSL Session data between servers through memcached

EC keys are now supported in addition to RSA and DSA.

Support for TLS-SRP (available in 2.4.4 and later).

MOD PROXY The PROXYPASS directive is now most optimally configured within a LOCATION or LOCATIONMATCH
block, and offers a significant performance advantage over the traditional two-parameter syntax when present
in large numbers. The source address used for proxy requests is now configurable. Support for Unix domain
sockets to the backend (available in 2.4.7 and later).

MOD PROXY BALANCER More runtime configuration changes for BalancerMembers via balancer-manager

Additional BalancerMembers can be added at runtime via balancer-manager

Runtime configuration of a subset of Balancer parameters

BalancerMembers can be set to ’Drain’ so that they only respond to existing sticky sessions, allowing them to
be taken gracefully offline.

Balancer settings can be persistent after restarts.

2http://www.lua.org/

http://www.lua.org/

1.2. OVERVIEW OF NEW FEATURES IN APACHE HTTP SERVER 2.4 9

MOD CACHE The MOD CACHE CACHE filter can be optionally inserted at a given point in the filter chain to provide
fine control over caching.

MOD CACHE can now cache HEAD requests.

Where possible, MOD CACHE directives can now be set per directory, instead of per server.

The base URL of cached URLs can be customised, so that a cluster of caches can share the same endpoint URL
prefix.

MOD CACHE is now capable of serving stale cached data when a backend is unavailable (error 5xx).

MOD CACHE can now insert HIT/MISS/REVALIDATE into an X-Cache header.

MOD INCLUDE Support for the ’onerror’ attribute within an ’include’ element, allowing an error document to be
served on error instead of the default error string.

MOD CGI, MOD INCLUDE, MOD ISAPI, ... Translation of headers to environment variables is more strict than before
to mitigate some possible cross-site-scripting attacks via header injection. Headers containing invalid characters
(including underscores) are now silently dropped. Environment Variables in Apache (p. 82) has some pointers
on how to work around broken legacy clients which require such headers. (This affects all modules which use
these environment variables.)

MOD AUTHZ CORE Authorization Logic Containers Advanced authorization logic may now be specified using the
REQUIRE directive and the related container directives, such as <REQUIREALL>.

MOD REWRITE MOD REWRITE adds the [QSD] (Query String Discard) and [END] flags for REWRITERULE to
simplify common rewriting scenarios. Adds the possibility to use complex boolean expressions in REWRITE-
COND. Allows the use of SQL queries as REWRITEMAP functions.

MOD LDAP, MOD AUTHNZ LDAP MOD AUTHNZ LDAP adds support for nested groups. MOD LDAP adds LDAP-
CONNECTIONPOOLTTL, LDAPTIMEOUT, and other improvements in the handling of timeouts. This is espe-
cially useful for setups where a stateful firewall drops idle connections to the LDAP server. MOD LDAP adds
LDAPLIBRARYDEBUG to log debug information provided by the used LDAP toolkit.

MOD INFO MOD INFO can now dump the pre-parsed configuration to stdout during server startup.

MOD AUTH BASIC New generic mechanism to fake basic authentication (available in 2.4.5 and later).

Program Enhancements

fcgistarter New FastCGI deamon starter utility

htcacheclean Current cached URLs can now be listed, with optional metadata included. Allow explicit deletion
of individual cached URLs from the cache. File sizes can now be rounded up to the given block size, making the
size limits map more closely to the real size on disk. Cache size can now be limited by the number of inodes,
instead of or in addition to being limited by the size of the files on disk.

rotatelogs May now create a link to the current log file. May now invoke a custom post-rotate script.

htpasswd, htdbm Support for the bcrypt algorithm (available in 2.4.4 and later).

Documentation

mod rewrite The MOD REWRITE documentation has been rearranged and almost completely rewritten, with a focus
on examples and common usage, as well as on showing you when other solutions are more appropriate. The
Rewrite Guide (p. 136) is now a top-level section with much more detail and better organization.

mod ssl The MOD SSL documentation has been greatly enhanced, with more examples at the getting started level, in
addition to the previous focus on technical details.

10 CHAPTER 1. RELEASE NOTES

Caching Guide The Caching Guide (p. 40) has been rewritten to properly distinguish between the RFC2616
HTTP/1.1 caching features provided by MOD CACHE, and the generic key/value caching provided by the
socache (p. 104) interface, as well as to cover specialised caching provided by mechanisms such as
MOD FILE CACHE.

Module Developer Changes

Check Configuration Hook Added A new hook, check config, has been added which runs between the
pre config and open logs hooks. It also runs before the test config hook when the -t option is
passed to httpd. The check config hook allows modules to review interdependent configuration direc-
tive values and adjust them while messages can still be logged to the console. The user can thus be alerted to
misconfiguration problems before the core open logs hook function redirects console output to the error log.

Expression Parser Added We now have a general-purpose expression parser, whose API is exposed in ap expr.h.
This is adapted from the expression parser previously implemented in MOD SSL.

Authorization Logic Containers Authorization modules now register as a provider, via ap register auth provider(),
to support advanced authorization logic, such as <REQUIREALL>.

Small-Object Caching Interface The ap socache.h header exposes a provider-based interface for caching small data
objects, based on the previous implementation of the MOD SSL session cache. Providers using a shared-memory
cyclic buffer, disk-based dbm files, and a memcache distributed cache are currently supported.

Cache Status Hook Added The MOD CACHE module now includes a new cache status hook, which is called
when the caching decision becomes known. A default implementation is provided which adds an optional
X-Cache and X-Cache-Detail header to the response.

The developer documentation contains a detailed list of API changes (p. 951) .

1.3. OVERVIEW OF NEW FEATURES IN APACHE HTTP SERVER 2.2 11

1.3 Overview of new features in Apache HTTP Server 2.2

This document describes some of the major changes between the 2.0 and 2.2 versions of the Apache HTTP Server.
For new features since version 1.3, see the 2.0 new features (p. 14) document.

Core Enhancements

Authn/Authz The bundled authentication and authorization modules have been refactored. The new
mod authn alias(already removed from 2.3/2.4) module can greatly simplify certain authentication configu-
rations. See module name changes, and the developer changes for more information about how these changes
affects users and module writers.

Caching MOD CACHE, MOD CACHE DISK, and mod mem cache(already removed from 2.3/2.4) have undergone a
lot of changes, and are now considered production-quality. htcacheclean has been introduced to clean up
MOD CACHE DISK setups.

Configuration The default configuration layout has been simplified and modularised. Configuration snippets which
can be used to enable commonly-used features are now bundled with Apache, and can be easily added to the
main server config.

Graceful stop The PREFORK, WORKER and EVENT MPMs now allow httpd to be shutdown gracefully via the
graceful-stop (p. 27) signal. The GRACEFULSHUTDOWNTIMEOUT directive has been added to specify
an optional timeout, after which httpd will terminate regardless of the status of any requests being served.

Proxying The new MOD PROXY BALANCER module provides load balancing services for MOD PROXY. The
new MOD PROXY AJP module adds support for the Apache JServ Protocol version 1.3 used by
Apache Tomcat3.

Regular Expression Library Updated Version 5.0 of the Perl Compatible Regular Expression Library4 (PCRE) is
now included. httpd can be configured to use a system installation of PCRE by passing the --with-pcre
flag to configure.

Smart Filtering MOD FILTER introduces dynamic configuration to the output filter chain. It enables filters to be
conditionally inserted, based on any Request or Response header or environment variable, and dispenses with
the more problematic dependencies and ordering problems in the 2.0 architecture.

Large File Support httpd is now built with support for files larger than 2GB on modern 32-bit Unix systems.
Support for handling >2GB request bodies has also been added.

Event MPM The EVENT MPM uses a separate thread to handle Keep Alive requests and accepting connections. Keep
Alive requests have traditionally required httpd to dedicate a worker to handle it. This dedicated worker could
not be used again until the Keep Alive timeout was reached.

SQL Database Support MOD DBD, together with the apr dbd framework, brings direct SQL support to modules
that need it. Supports connection pooling in threaded MPMs.

Module Enhancements

Authn/Authz Modules in the aaa directory have been renamed and offer better support for digest authentication.
For example, mod auth is now split into MOD AUTH BASIC and MOD AUTHN FILE; mod auth dbm is
now called MOD AUTHN DBM; mod access has been renamed MOD AUTHZ HOST. There is also a new
mod authn alias(already removed from 2.3/2.4) module for simplifying certain authentication configurations.

3http://tomcat.apache.org/
4http://www.pcre.org/

http://tomcat.apache.org/
http://www.pcre.org/

12 CHAPTER 1. RELEASE NOTES

MOD AUTHNZ LDAP This module is a port of the 2.0 mod auth ldap module to the 2.2 Authn/Authz frame-
work. New features include using LDAP attribute values and complicated search filters in the REQUIRE direc-
tive.

MOD AUTHZ OWNER A new module that authorizes access to files based on the owner of the file on the file system

MOD VERSION A new module that allows configuration blocks to be enabled based on the version number of the
running server.

MOD INFO Added a new ?config argument which will show the configuration directives as parsed by Apache,
including their file name and line number. The module also shows the order of all request hooks and additional
build information, similar to httpd -V.

MOD SSL Added a support for RFC 28175, which allows connections to upgrade from clear text to TLS encryption.

MOD IMAGEMAP mod imap has been renamed to MOD IMAGEMAP to avoid user confusion.

Program Enhancements

httpd A new command line option -M has been added that lists all modules that are loaded based on the current
configuration. Unlike the -l option, this list includes DSOs loaded via MOD SO.

httxt2dbm A new program used to generate dbm files from text input, for use in REWRITEMAP with the dbm map
type.

Module Developer Changes

APR 1.0 API Apache 2.2 uses the APR 1.0 API. All deprecated functions and symbols have been removed from APR
and APR-Util. For details, see the APR Website6.

Authn/Authz The bundled authentication and authorization modules have been renamed along the following lines:

• mod auth * -> Modules that implement an HTTP authentication mechanism
• mod authn * -> Modules that provide a backend authentication provider
• mod authz * -> Modules that implement authorization (or access)
• mod authnz * -> Module that implements both authentication & authorization

There is a new authentication backend provider scheme which greatly eases the construction of new authentica-
tion backends.

Connection Error Logging A new function, ap log cerror has been added to log errors that occur with the
client’s connection. When logged, the message includes the client IP address.

Test Configuration Hook Added A new hook, test config has been added to aid modules that want to execute
special code only when the user passes -t to httpd.

Set Threaded MPM’s Stacksize A new directive, THREADSTACKSIZE has been added to set the stack size on all
threaded MPMs. This is required for some third-party modules on platforms with small default thread stack
size.

Protocol handling for output filters In the past, every filter has been responsible for ensuring that it generates the
correct response headers where it affects them. Filters can now delegate common protocol management to
MOD FILTER, using the ap register output filter protocol or ap filter protocol calls.

5http://www.ietf.org/rfc/rfc2817.txt
6http://apr.apache.org/

http://www.ietf.org/rfc/rfc2817.txt
http://apr.apache.org/

1.3. OVERVIEW OF NEW FEATURES IN APACHE HTTP SERVER 2.2 13

Monitor hook added Monitor hook enables modules to run regular/scheduled jobs in the parent (root) process.

Regular expression API changes The pcreposix.h header is no longer available; it is replaced by the new
ap regex.h header. The POSIX.2 regex.h implementation exposed by the old header is now available
under the ap namespace from ap regex.h. Calls to regcomp, regexec and so on can be replaced by
calls to ap regcomp, ap regexec.

DBD Framework (SQL Database API) With Apache 1.x and 2.0, modules requiring an SQL backend had to take
responsibility for managing it themselves. Apart from reinventing the wheel, this can be very inefficient, for
example when several modules each maintain their own connections.

Apache 2.1 and later provides the ap dbd API for managing database connections (including optimised strate-
gies for threaded and unthreaded MPMs), while APR 1.2 and later provides the apr dbd API for interacting
with the database.

New modules SHOULD now use these APIs for all SQL database operations. Existing applications SHOULD
be upgraded to use it where feasible, either transparently or as a recommended option to their users.

14 CHAPTER 1. RELEASE NOTES

1.4 Overview of new features in Apache HTTP Server 2.0

This document describes some of the major changes between the 1.3 and 2.0 versions of the Apache HTTP Server.

See also

• Upgrading to 2.0 from 1.3 (p. 2)

Core Enhancements

Unix Threading On Unix systems with POSIX threads support, Apache httpd can now run in a hybrid multiprocess,
multithreaded mode. This improves scalability for many, but not all configurations.

New Build System The build system has been rewritten from scratch to be based on autoconf and libtool. This
makes Apache httpd’s configuration system more similar to that of other packages.

Multiprotocol Support Apache HTTP Server now has some of the infrastructure in place to support serving multiple
protocols. MOD ECHO has been written as an example.

Better support for non-Unix platforms Apache HTTP Server 2.0 is faster and more stable on non-Unix platforms
such as BeOS, OS/2, and Windows. With the introduction of platform-specific multi-processing modules (p. 80)
(MPMs) and the Apache Portable Runtime (APR), these platforms are now implemented in their native API,
avoiding the often buggy and poorly performing POSIX-emulation layers.

New Apache httpd API The API for modules has changed significantly for 2.0. Many of the module-ordering/-
priority problems from 1.3 should be gone. 2.0 does much of this automatically, and module ordering is now
done per-hook to allow more flexibility. Also, new calls have been added that provide additional module capa-
bilities without patching the core Apache HTTP Server.

IPv6 Support On systems where IPv6 is supported by the underlying Apache Portable Runtime library, Apache httpd
gets IPv6 listening sockets by default. Additionally, the LISTEN, NAMEVIRTUALHOST, and VIRTUALHOST
directives support IPv6 numeric address strings (e.g., "Listen [2001:db8::1]:8080").

Filtering Apache httpd modules may now be written as filters which act on the stream of content as it is delivered to
or from the server. This allows, for example, the output of CGI scripts to be parsed for Server Side Include di-
rectives using the INCLUDES filter in MOD INCLUDE. The module MOD EXT FILTER allows external programs
to act as filters in much the same way that CGI programs can act as handlers.

Multilanguage Error Responses Error response messages to the browser are now provided in several languages,
using SSI documents. They may be customized by the administrator to achieve a consistent look and feel.

Simplified configuration Many confusing directives have been simplified. The often confusing Port and
BindAddress directives are gone; only the LISTEN directive is used for IP address binding; the SERVER-
NAME directive specifies the server name and port number only for redirection and vhost recognition.

Native Windows NT Unicode Support Apache httpd 2.0 on Windows NT now uses utf-8 for all filename encodings.
These directly translate to the underlying Unicode file system, providing multilanguage support for all Windows
NT-based installations, including Windows 2000 and Windows XP. This support does not extend to Windows
95, 98 or ME, which continue to use the machine’s local codepage for filesystem access.

Regular Expression Library Updated Apache httpd 2.0 includes the Perl Compatible Regular Expression Library7

(PCRE). All regular expression evaluation now uses the more powerful Perl 5 syntax.

7http://www.pcre.org/

http://www.pcre.org/

1.4. OVERVIEW OF NEW FEATURES IN APACHE HTTP SERVER 2.0 15

Module Enhancements

MOD SSL New module in Apache httpd 2.0. This module is an interface to the SSL/TLS encryption protocols pro-
vided by OpenSSL.

MOD DAV New module in Apache httpd 2.0. This module implements the HTTP Distributed Authoring and Version-
ing (DAV) specification for posting and maintaining web content.

MOD DEFLATE New module in Apache httpd 2.0. This module allows supporting browsers to request that content
be compressed before delivery, saving network bandwidth.

MOD AUTH LDAP New module in Apache httpd 2.0.41. This module allows an LDAP database to be used to store
credentials for HTTP Basic Authentication. A companion module, MOD LDAP provides connection pooling and
results caching.

MOD AUTH DIGEST Includes additional support for session caching across processes using shared memory.

MOD CHARSET LITE New module in Apache httpd 2.0. This experimental module allows for character set transla-
tion or recoding.

MOD FILE CACHE New module in Apache httpd 2.0. This module includes the functionality of mod mmap static
in Apache HTTP Server version 1.3, plus adds further caching abilities.

MOD HEADERS This module is much more flexible in Apache httpd 2.0. It can now modify request headers used by
MOD PROXY, and it can conditionally set response headers.

MOD PROXY The proxy module has been completely rewritten to take advantage of the new filter infrastructure
and to implement a more reliable, HTTP/1.1 compliant proxy. In addition, new <PROXY> configuration
sections provide more readable (and internally faster) control of proxied sites; overloaded <Directory
"proxy:..."> configuration are not supported. The module is now divided into specific protocol support
modules including proxy connect, proxy ftp and proxy http.

MOD NEGOTIATION A new FORCELANGUAGEPRIORITY directive can be used to assure that the client receives a
single document in all cases, rather than NOT ACCEPTABLE or MULTIPLE CHOICES responses. In addition,
the negotiation and MultiViews algorithms have been cleaned up to provide more consistent results and a new
form of type map that can include document content is provided.

MOD AUTOINDEX Autoindex’ed directory listings can now be configured to use HTML tables for cleaner formatting,
and allow finer-grained control of sorting, including version-sorting, and wildcard filtering of the directory
listing.

MOD INCLUDE New directives allow the default start and end tags for SSI elements to be changed and allow for
error and time format configuration to take place in the main configuration file rather than in the SSI document.
Results from regular expression parsing and grouping (now based on Perl’s regular expression syntax) can be
retrieved using MOD INCLUDE’s variables $0 .. $9.

MOD AUTH DBM Now supports multiple types of DBM-like databases using the AUTHDBMTYPE directive.

16 CHAPTER 1. RELEASE NOTES

1.5 The Apache License, Version 2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1
through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the
License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or
are under common control with that entity. For the purposes of this definition, "control" means (i) the power,
direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii)
ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software
source code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form,
including but not limited to compiled object code, generated documentation, and conversions to other media
types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License,
as indicated by a copyright notice that is included in or attached to the work (an example is provided in the
Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from)
the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as
a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include
works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative
Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modi-
fications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for
inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf
of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal,
or written communication sent to the Licensor or its representatives, including but not limited to communication
on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on
behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that
is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has
been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby
grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to
reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work
and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to
You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section)

1.5. THE APACHE LICENSE, VERSION 2.0 17

patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such
license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a
lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as
of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any
medium, with or without modifications, and in Source or Object form, provided that You meet the following
conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent,
trademark, and attribution notices from the Source form of the Work, excluding those notices that do not
pertain to any part of the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that
You distribute must include a readable copy of the attribution notices contained within such NOTICE file,
excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source
form or documentation, if provided along with the Derivative Works; or, within a display generated by the
Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE
file are for informational purposes only and do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different
license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Deriva-
tive Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted
for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without
any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the
terms of any separate license agreement you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or
product names of the Licensor, except as required for reasonable and customary use in describing the origin of
the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the
Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES
OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work
and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract,
or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in
writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental,
or consequential damages of any character arising as a result of this License or out of the use or inability to
use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of
the possibility of such damages.

18 CHAPTER 1. RELEASE NOTES

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof,
You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability
obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You
agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted
against, such Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don’t include the brackets!) The text should be enclosed in
the appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Chapter 2

Using the Apache HTTP Server

19

20 CHAPTER 2. USING THE APACHE HTTP SERVER

2.1 Compiling and Installing

This document covers compilation and installation of the Apache HTTP Server on Unix and Unix-like systems only.
For compiling and installation on Windows, see Using Apache HTTP Server with Microsoft Windows (p. 251) and
Compiling Apache for Microsoft Windows (p. 259) . For other platforms, see the platform (p. 250) documentation.

Apache httpd uses libtool and autoconf to create a build environment that looks like many other Open Source
projects.

If you are upgrading from one minor version to the next (for example, 2.4.9 to 2.4.10), please skip down to the
upgrading section.

See also

• Configure the source tree (p. 295)

• Starting Apache httpd (p. 25)

• Stopping and Restarting (p. 27)

Overview for the impatient

Download $ lynx http://httpd.apache.org/download.cgi

Extract $ gzip -d httpd-NN.tar.gz
$ tar xvf httpd-NN.tar
$ cd httpd-NN

Configure $./configure --prefix=PREFIX

Compile $ make

Install $ make install

Customize $ vi PREFIX/conf/httpd.conf

Test $ PREFIX/bin/apachectl -k start

NN must be replaced with the current version number, and PREFIX must be replaced with the filesystem path under
which the server should be installed. If PREFIX is not specified, it defaults to /usr/local/apache2.

Each section of the compilation and installation process is described in more detail below, beginning with the require-
ments for compiling and installing Apache httpd.

Requirements

The following requirements exist for building Apache httpd:

APR and APR-Util Make sure you have APR and APR-Util already installed on your system. If you
don’t, or prefer to not use the system-provided versions, download the latest versions of both APR
and APR-Util from Apache APR1, unpack them into /httpd source tree root/srclib/apr and
/httpd source tree root/srclib/apr-util (be sure the directory names do not have version
numbers; for example, the APR distribution must be under /httpd source tree root/srclib/apr/) and use
./configure’s --with-included-apr option. On some platforms, you may have to install the cor-
responding -dev packages to allow httpd to build against your installed copy of APR and APR-Util.

Perl-Compatible Regular Expressions Library (PCRE) This library is required but not longer bundled with httpd.
Download the source code from http://www.pcre.org2, or install a Port or Package. If your build system can’t
find the pcre-config script installed by the PCRE build, point to it using the --with-pcre parameter. On
some platforms, you may have to install the corresponding -dev package to allow httpd to build against your
installed copy of PCRE.

1http://apr.apache.org/
2http://www.pcre.org/

http://apr.apache.org/
http://www.pcre.org/

2.1. COMPILING AND INSTALLING 21

Disk Space Make sure you have at least 50 MB of temporary free disk space available. After installation the server
occupies approximately 10 MB of disk space. The actual disk space requirements will vary considerably based
on your chosen configuration options, any third-party modules, and, of course, the size of the web site or sites
that you have on the server.

ANSI-C Compiler and Build System Make sure you have an ANSI-C compiler installed. The GNU C compiler
(GCC)3 from the Free Software Foundation (FSF)4 is recommended. If you don’t have GCC then at least make
sure your vendor’s compiler is ANSI compliant. In addition, your PATH must contain basic build tools such as
make.

Accurate time keeping Elements of the HTTP protocol are expressed as the time of day. So, it’s time to investigate
setting some time synchronization facility on your system. Usually the ntpdate or xntpd programs are used
for this purpose which are based on the Network Time Protocol (NTP). See the NTP homepage5 for more details
about NTP software and public time servers.

Perl 56 [OPTIONAL] For some of the support scripts like apxs or dbmmanage (which are written in Perl) the
Perl 5 interpreter is required (versions 5.003 or newer are sufficient). If no Perl 5 interpreter is found by the
configure script, you will not be able to use the affected support scripts. Of course, you will still be able to
build and use Apache httpd.

Download

The Apache HTTP Server can be downloaded from the Apache HTTP Server download site7, which lists several
mirrors. Most users of Apache on unix-like systems will be better off downloading and compiling a source version.
The build process (described below) is easy, and it allows you to customize your server to suit your needs. In addition,
binary releases are often not up to date with the latest source releases. If you do download a binary, follow the
instructions in the INSTALL.bindist file inside the distribution.

After downloading, it is important to verify that you have a complete and unmodified version of the Apache HTTP
Server. This can be accomplished by testing the downloaded tarball against the PGP signature. Details on how to do
this are available on the download page8 and an extended example is available describing the use of PGP9.

Extract

Extracting the source from the Apache HTTP Server tarball is a simple matter of uncompressing, and then untarring:

$ gzip -d httpd-NN.tar.gz

$ tar xvf httpd-NN.tar

This will create a new directory under the current directory containing the source code for the distribution. You should
cd into that directory before proceeding with compiling the server.

Configuring the source tree

The next step is to configure the Apache source tree for your particular platform and personal requirements. This
is done using the script configure included in the root directory of the distribution. (Developers downloading an

3http://gcc.gnu.org/
4http://www.gnu.org/
5http://www.ntp.org
7http://httpd.apache.org/download.cgi
8http://httpd.apache.org/download.cgi#verify
9http://httpd.apache.org/dev/verification.html

http://gcc.gnu.org/
http://www.gnu.org/
http://www.ntp.org
http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi#verify
http://httpd.apache.org/dev/verification.html

22 CHAPTER 2. USING THE APACHE HTTP SERVER

unreleased version of the Apache source tree will need to have autoconf and libtool installed and will need to
run buildconf before proceeding with the next steps. This is not necessary for official releases.)

To configure the source tree using all the default options, simply type ./configure. To change the default options,
configure accepts a variety of variables and command line options.

The most important option is the location --prefix where Apache is to be installed later, because Apache has to
be configured for this location to work correctly. More fine-tuned control of the location of files is possible with
additional configure options (p. 295) .

Also at this point, you can specify which features (p. 295) you want included in Apache by enabling and disabling
modules (p. 1017) . Apache comes with a wide range of modules included by default. They will be compiled as shared
objects (DSOs) (p. 65) which can be loaded or unloaded at runtime. You can also choose to compile modules statically
by using the option --enable-module=static.

Additional modules are enabled using the --enable-module option, where module is the name of the module
with the mod string removed and with any underscore converted to a dash. Similarly, you can disable modules with
the --disable-module option. Be careful when using these options, since configure cannot warn you if the
module you specify does not exist; it will simply ignore the option.

In addition, it is sometimes necessary to provide the configure script with extra information about the location
of your compiler, libraries, or header files. This is done by passing either environment variables or command line
options to configure. For more information, see the configure manual page. Or invoke configure using the
--help option.

For a short impression of what possibilities you have, here is a typical example which compiles Apache for the
installation tree /sw/pkg/apache with a particular compiler and flags plus the two additional modules MOD LDAP
and MOD LUA:

$ CC="pgcc" CFLAGS="-O2" \
./configure --prefix=/sw/pkg/apache \
--enable-ldap=shared \
--enable-lua=shared

When configure is run it will take several minutes to test for the availability of features on your system and build
Makefiles which will later be used to compile the server.

Details on all the different configure options are available on the configure manual page.

Build

Now you can build the various parts which form the Apache package by simply running the command:

$ make

Please be patient here, since a base configuration takes several minutes to compile and the time will vary widely
depending on your hardware and the number of modules that you have enabled.

Install

Now it’s time to install the package under the configured installation PREFIX (see --prefix option above) by
running:

$ make install

2.1. COMPILING AND INSTALLING 23

This step will typically require root privileges, since PREFIX is usually a directory with restricted write permissions.

If you are upgrading, the installation will not overwrite your configuration files or documents.

Customize

Next, you can customize your Apache HTTP server by editing the configuration files (p. 30) under PREFIX/conf/.

$ vi PREFIX/conf/httpd.conf

Have a look at the Apache manual under PREFIX/docs/manual/ or consult http://httpd.apache.org/docs/2.4/ for
the most recent version of this manual and a complete reference of available configuration directives (p. 1022) .

Test

Now you can start (p. 25) your Apache HTTP server by immediately running:

$ PREFIX/bin/apachectl -k start

You should then be able to request your first document via the URL http://localhost/. The web page you see
is located under the DOCUMENTROOT, which will usually be PREFIX/htdocs/. Then stop (p. 27) the server again
by running:

$ PREFIX/bin/apachectl -k stop

Upgrading

The first step in upgrading is to read the release announcement and the file CHANGES in the source distribution to
find any changes that may affect your site. When changing between major releases (for example, from 2.0 to 2.2 or
from 2.2 to 2.4), there will likely be major differences in the compile-time and run-time configuration that will require
manual adjustments. All modules will also need to be upgraded to accommodate changes in the module API.

Upgrading from one minor version to the next (for example, from 2.2.55 to 2.2.57) is easier. The make install
process will not overwrite any of your existing documents, log files, or configuration files. In addition, the developers
make every effort to avoid incompatible changes in the configure options, run-time configuration, or the module
API between minor versions. In most cases you should be able to use an identical configure command line, an
identical configuration file, and all of your modules should continue to work.

To upgrade across minor versions, start by finding the file config.nice in the build directory of your installed
server or at the root of the source tree for your old install. This will contain the exact configure command line
that you used to configure the source tree. Then to upgrade from one version to the next, you need only copy the
config.nice file to the source tree of the new version, edit it to make any desired changes, and then run:

$./config.nice
$ make
$ make install
$ PREFIX/bin/apachectl -k graceful-stop

$ PREFIX/bin/apachectl -k start

24 CHAPTER 2. USING THE APACHE HTTP SERVER

! You should always test any new version in your environment before putting it into produc-
tion. For example, you can install and run the new version along side the old one by using a
different --prefix and a different port (by adjusting the LISTEN directive) to test for any
incompatibilities before doing the final upgrade.

You can pass additional arguments to config.nice, which will be appended to your original configure options:

$./config.nice --prefix=/home/test/apache --with-port=90

Third-party packages

A large number of third parties provide their own packaged distributions of the Apache HTTP Server for installation
on particular platforms. This includes the various Linux distributions, various third-party Windows packages, Mac OS
X, Solaris, and many more.

Our software license not only permits, but encourages, this kind of redistribution. However, it does result in a situation
where the configuration layout and defaults on your installation of the server may differ from what is stated in the
documentation. While unfortunate, this situation is not likely to change any time soon.

A description of these third-party distrubutions10 is maintained in the HTTP Server wiki, and should reflect the current
state of these third-party distributions. However, you will need to familiarize yourself with your particular platform’s
package management and installation procedures.

10http://wiki.apache.org/httpd/DistrosDefaultLayout

http://wiki.apache.org/httpd/DistrosDefaultLayout

2.2. STARTING APACHE 25

2.2 Starting Apache

On Windows, Apache is normally run as a service. For details, see Running Apache as a Service (p. 251) .

On Unix, the httpd program is run as a daemon that executes continuously in the background to handle requests.
This document describes how to invoke httpd.

See also

• Stopping and Restarting (p. 27)

• httpd

• apachectl

How Apache Starts

If the LISTEN specified in the configuration file is default of 80 (or any other port below 1024), then it is necessary to
have root privileges in order to start apache, so that it can bind to this privileged port. Once the server has started and
performed a few preliminary activities such as opening its log files, it will launch several child processes which do the
work of listening for and answering requests from clients. The main httpd process continues to run as the root user,
but the child processes run as a less privileged user. This is controlled by the selected Multi-Processing Module (p.
80) .

The recommended method of invoking the httpd executable is to use the apachectl control script. This script sets
certain environment variables that are necessary for httpd to function correctly under some operating systems, and
then invokes the httpd binary. apachectl will pass through any command line arguments, so any httpd options
may also be used with apachectl. You may also directly edit the apachectl script by changing the HTTPD
variable near the top to specify the correct location of the httpd binary and any command-line arguments that you
wish to be always present.

The first thing that httpd does when it is invoked is to locate and read the configuration file (p. 30) httpd.conf.
The location of this file is set at compile-time, but it is possible to specify its location at run time using the -f
command-line option as in

/usr/local/apache2/bin/apachectl -f

/usr/local/apache2/conf/httpd.conf

If all goes well during startup, the server will detach from the terminal and the command prompt will return almost
immediately. This indicates that the server is up and running. You can then use your browser to connect to the server
and view the test page in the DOCUMENTROOT directory.

Errors During Start-up

If Apache suffers a fatal problem during startup, it will write a message describing the problem either to the console
or to the ERRORLOG before exiting. One of the most common error messages is "Unable to bind to Port
...". This message is usually caused by either:

• Trying to start the server on a privileged port when not logged in as the root user; or

• Trying to start the server when there is another instance of Apache or some other web server already bound to
the same Port.

For further trouble-shooting instructions, consult the Apache FAQ11.
11http://wiki.apache.org/httpd/FAQ

http://wiki.apache.org/httpd/FAQ

26 CHAPTER 2. USING THE APACHE HTTP SERVER

Starting at Boot-Time

If you want your server to continue running after a system reboot, you should add a call to apachectl to your
system startup files (typically rc.local or a file in an rc.N directory). This will start Apache as root. Before doing
this ensure that your server is properly configured for security and access restrictions.

The apachectl script is designed to act like a standard SysV init script; it can take the arguments start,
restart, and stop and translate them into the appropriate signals to httpd. So you can often simply link
apachectl into the appropriate init directory. But be sure to check the exact requirements of your system.

Additional Information

Additional information about the command-line options of httpd and apachectl as well as other support pro-
grams included with the server is available on the Server and Supporting Programs (p. 282) page. There is also
documentation on all the modules (p. 1017) included with the Apache distribution and the directives (p. 1022) that
they provide.

2.3. STOPPING AND RESTARTING APACHE HTTP SERVER 27

2.3 Stopping and Restarting Apache HTTP Server

This document covers stopping and restarting Apache HTTP Server on Unix-like systems. Windows NT, 2000 and
XP users should see Running httpd as a Service (p. 251) and Windows 9x and ME users should see Running httpd as
a Console Application (p. 251) for information on how to control httpd on those platforms.

See also

• httpd

• apachectl

• Starting (p. 25)

Introduction

In order to stop or restart the Apache HTTP Server, you must send a signal to the running httpd processes. There
are two ways to send the signals. First, you can use the unix kill command to directly send signals to the processes.
You will notice many httpd executables running on your system, but you should not send signals to any of them
except the parent, whose pid is in the PIDFILE. That is to say you shouldn’t ever need to send signals to any process
except the parent. There are four signals that you can send the parent: TERM, USR1, HUP, and WINCH, which will be
described in a moment.

To send a signal to the parent you should issue a command such as:

kill -TERM ‘cat /usr/local/apache2/logs/httpd.pid‘

The second method of signaling the httpd processes is to use the -k command line options: stop, restart,
graceful and graceful-stop, as described below. These are arguments to the httpd binary, but we recom-
mend that you send them using the apachectl control script, which will pass them through to httpd.

After you have signaled httpd, you can read about its progress by issuing:

tail -f /usr/local/apache2/logs/error log

Modify those examples to match your SERVERROOT and PIDFILE settings.

Stop Now

Signal: TERM apachectl -k stop

Sending the TERM or stop signal to the parent causes it to immediately attempt to kill off all of its children. It may
take it several seconds to complete killing off its children. Then the parent itself exits. Any requests in progress are
terminated, and no further requests are served.

Graceful Restart

Signal: USR1 apachectl -k graceful

28 CHAPTER 2. USING THE APACHE HTTP SERVER

The USR1 or graceful signal causes the parent process to advise the children to exit after their current request (or
to exit immediately if they’re not serving anything). The parent re-reads its configuration files and re-opens its log
files. As each child dies off the parent replaces it with a child from the new generation of the configuration, which
begins serving new requests immediately.

This code is designed to always respect the process control directive of the MPMs, so the number of processes and
threads available to serve clients will be maintained at the appropriate values throughout the restart process. Further-
more, it respects STARTSERVERS in the following manner: if after one second at least STARTSERVERS new children
have not been created, then create enough to pick up the slack. Hence the code tries to maintain both the number of
children appropriate for the current load on the server, and respect your wishes with the STARTSERVERS parameter.

Users of MOD STATUS will notice that the server statistics are not set to zero when a USR1 is sent. The code was
written to both minimize the time in which the server is unable to serve new requests (they will be queued up by the
operating system, so they’re not lost in any event) and to respect your tuning parameters. In order to do this it has to
keep the scoreboard used to keep track of all children across generations.

The status module will also use a G to indicate those children which are still serving requests started before the graceful
restart was given.

At present there is no way for a log rotation script using USR1 to know for certain that all children writing the pre-
restart log have finished. We suggest that you use a suitable delay after sending the USR1 signal before you do anything
with the old log. For example if most of your hits take less than 10 minutes to complete for users on low bandwidth
links then you could wait 15 minutes before doing anything with the old log.

=⇒When you issue a restart, a syntax check is first run, to ensure that there are no errors in the
configuration files. If your configuration file has errors in it, you will get an error message
about that syntax error, and the server will refuse to restart. This avoids the situation where the
server halts and then cannot restart, leaving you with a non-functioning server.
This still will not guarantee that the server will restart correctly. To check the semantics of
the configuration files as well as the syntax, you can try starting httpd as a non-root user. If
there are no errors it will attempt to open its sockets and logs and fail because it’s not root (or
because the currently running httpd already has those ports bound). If it fails for any other
reason then it’s probably a config file error and the error should be fixed before issuing the
graceful restart.

Restart Now

Signal: HUP apachectl -k restart

Sending the HUP or restart signal to the parent causes it to kill off its children like in TERM, but the parent doesn’t
exit. It re-reads its configuration files, and re-opens any log files. Then it spawns a new set of children and continues
serving hits.

Users of MOD STATUS will notice that the server statistics are set to zero when a HUP is sent.

=⇒As with a graceful restart, a syntax check is run before the restart is attempted. If your config-
uration file has errors in it, the restart will not be attempted, and you will receive notification
of the syntax error(s).

Graceful Stop

Signal: WINCH apachectl -k graceful-stop

The WINCH or graceful-stop signal causes the parent process to advise the children to exit after their current
request (or to exit immediately if they’re not serving anything). The parent will then remove its PIDFILE and cease

2.3. STOPPING AND RESTARTING APACHE HTTP SERVER 29

listening on all ports. The parent will continue to run, and monitor children which are handling requests. Once all
children have finalised and exited or the timeout specified by the GRACEFULSHUTDOWNTIMEOUT has been reached,
the parent will also exit. If the timeout is reached, any remaining children will be sent the TERM signal to force them
to exit.

A TERM signal will immediately terminate the parent process and all children when in the "graceful" state. However
as the PIDFILE will have been removed, you will not be able to use apachectl or httpd to send this signal.

=⇒The graceful-stop signal allows you to run multiple identically configured instances of
httpd at the same time. This is a powerful feature when performing graceful upgrades of
httpd, however it can also cause deadlocks and race conditions with some configurations.
Care has been taken to ensure that on-disk files such as lock files (MUTEX) and Unix socket
files (SCRIPTSOCK) contain the server PID, and should coexist without problem. However, if
a configuration directive, third-party module or persistent CGI utilises any other on-disk lock
or state files, care should be taken to ensure that multiple running instances of httpd do not
clobber each other’s files.
You should also be wary of other potential race conditions, such as using rotatelogs style
piped logging. Multiple running instances of rotatelogs attempting to rotate the same
logfiles at the same time may destroy each other’s logfiles.

30 CHAPTER 2. USING THE APACHE HTTP SERVER

2.4 Configuration Files

This document describes the files used to configure Apache HTTP Server.

Main Configuration Files

Related Modules
MOD MIME

Related Directives
<IFDEFINE>
INCLUDE
TYPESCONFIG

Apache HTTP Server is configured by placing directives (p. 1022) in plain text configuration files. The main config-
uration file is usually called httpd.conf. The location of this file is set at compile-time, but may be overridden
with the -f command line flag. In addition, other configuration files may be added using the INCLUDE directive, and
wildcards can be used to include many configuration files. Any directive may be placed in any of these configuration
files. Changes to the main configuration files are only recognized by httpd when it is started or restarted.

The server also reads a file containing mime document types; the filename is set by the TYPESCONFIG directive, and
is mime.types by default.

Syntax of the Configuration Files

httpd configuration files contain one directive per line. The backslash "\" may be used as the last character on a line
to indicate that the directive continues onto the next line. There must be no other characters or white space between
the backslash and the end of the line.

Arguments to directives are separated by whitespace. If an argument contains spaces, you must enclose that argument
in quotes.

Directives in the configuration files are case-insensitive, but arguments to directives are often case sensitive. Lines
that begin with the hash character "#" are considered comments, and are ignored. Comments may not be included
on the same line as a configuration directive. White space occurring before a directive is ignored, so you may indent
directives for clarity. Blank lines are also ignored.

The values of variables defined with the DEFINE of or shell environment variables can be used in configuration file
lines using the syntax ${VAR}. If "VAR" is the name of a valid variable, the value of that variable is substituted into
that spot in the configuration file line, and processing continues as if that text were found directly in the configuration
file. Variables defined with DEFINE take precedence over shell environment variables. If the "VAR" variable is not
found, the characters ${VAR} are left unchanged, and a warning is logged. Variable names may not contain colon ":"
characters, to avoid clashes with REWRITEMAP’s syntax.

Only shell environment variables defined before the server is started can be used in expansions. Environment variables
defined in the configuration file itself, for example with SETENV, take effect too late to be used for expansions in the
configuration file.

The maximum length of a line in normal configuration files, after variable substitution and joining any continued lines,
is approximately 16 MiB. In .htaccess files (p. 30) , the maximum length is 8190 characters.

You can check your configuration files for syntax errors without starting the server by using apachectl
configtest or the -t command line option.

You can use MOD INFO’s -DDUMP CONFIG to dump the configuration with all included files and environment vari-
ables resolved and all comments and non-matching <IFDEFINE> and <IFMODULE> sections removed. However,
the output does not reflect the merging or overriding that may happen for repeated directives.

2.4. CONFIGURATION FILES 31

Modules

Related Modules
MOD SO

Related Directives
<IFMODULE>
LOADMODULE

httpd is a modular server. This implies that only the most basic functionality is included in the core server. Extended
features are available through modules (p. 1017) which can be loaded into httpd. By default, a base (p. 350) set of
modules is included in the server at compile-time. If the server is compiled to use dynamically loaded (p. 65) modules,
then modules can be compiled separately and added at any time using the LOADMODULE directive. Otherwise, httpd
must be recompiled to add or remove modules. Configuration directives may be included conditional on a presence of
a particular module by enclosing them in an <IFMODULE> block. However, <IFMODULE> blocks are not required,
and in some cases may mask the fact that you’re missing an important module.

To see which modules are currently compiled into the server, you can use the -l command line option. You can also
see what modules are loaded dynamically using the -M command line option.

Scope of Directives

Related Modules Related Directives
<DIRECTORY>
<DIRECTORYMATCH>
<FILES>
<FILESMATCH>
<LOCATION>
<LOCATIONMATCH>
<VIRTUALHOST>

Directives placed in the main configuration files apply to the entire server. If you wish to change the configuration for
only a part of the server, you can scope your directives by placing them in <DIRECTORY>, <DIRECTORYMATCH>,
<FILES>, <FILESMATCH>, <LOCATION>, and <LOCATIONMATCH> sections. These sections limit the applica-
tion of the directives which they enclose to particular filesystem locations or URLs. They can also be nested, allowing
for very fine grained configuration.

httpd has the capability to serve many different websites simultaneously. This is called Virtual Hosting (p. 114) .
Directives can also be scoped by placing them inside <VIRTUALHOST> sections, so that they will only apply to
requests for a particular website.

Although most directives can be placed in any of these sections, some directives do not make sense in some contexts.
For example, directives controlling process creation can only be placed in the main server context. To find which
directives can be placed in which sections, check the Context (p. 351) of the directive. For further information, we
provide details on How Directory, Location and Files sections work (p. 33) .

.htaccess Files

Related Modules Related Directives
ACCESSFILENAME
ALLOWOVERRIDE

httpd allows for decentralized management of configuration via special files placed inside the web tree. The special
files are usually called .htaccess, but any name can be specified in the ACCESSFILENAME directive. Directives

32 CHAPTER 2. USING THE APACHE HTTP SERVER

placed in .htaccess files apply to the directory where you place the file, and all sub-directories. The .htaccess
files follow the same syntax as the main configuration files. Since .htaccess files are read on every request, changes
made in these files take immediate effect.

To find which directives can be placed in .htaccess files, check the Context (p. 351) of the directive. The server ad-
ministrator further controls what directives may be placed in .htaccess files by configuring the ALLOWOVERRIDE
directive in the main configuration files.

For more information on .htaccess files, see the .htaccess tutorial (p. 239) .

2.5. CONFIGURATION SECTIONS 33

2.5 Configuration Sections

Directives in the configuration files (p. 30) may apply to the entire server, or they may be restricted to apply only to
particular directories, files, hosts, or URLs. This document describes how to use configuration section containers or
.htaccess files to change the scope of other configuration directives.

Types of Configuration Section Containers

Related Modules
CORE
MOD VERSION
MOD PROXY

Related Directives
<DIRECTORY>
<DIRECTORYMATCH>
<FILES>
<FILESMATCH>
<IF>
<IFDEFINE>
<IFMODULE>
<IFVERSION>
<LOCATION>
<LOCATIONMATCH>
<PROXY>
<PROXYMATCH>
<VIRTUALHOST>

There are two basic types of containers. Most containers are evaluated for each request. The enclosed directives are
applied only for those requests that match the containers. The <IFDEFINE>, <IFMODULE>, and <IFVERSION>
containers, on the other hand, are evaluated only at server startup and restart. If their conditions are true at startup,
then the enclosed directives will apply to all requests. If the conditions are not true, the enclosed directives will be
ignored.

The <IFDEFINE> directive encloses directives that will only be applied if an appropriate parameter is defined on the
httpd command line. For example, with the following configuration, all requests will be redirected to another site
only if the server is started using httpd -DClosedForNow:

<IfDefine ClosedForNow>
Redirect "/" "http://otherserver.example.com/"

</IfDefine>

The <IFMODULE> directive is very similar, except it encloses directives that will only be applied if a particular
module is available in the server. The module must either be statically compiled in the server, or it must be dynamically
compiled and its LOADMODULE line must be earlier in the configuration file. This directive should only be used if
you need your configuration file to work whether or not certain modules are installed. It should not be used to enclose
directives that you want to work all the time, because it can suppress useful error messages about missing modules.

In the following example, the MIMEMAGICFILE directive will be applied only if MOD MIME MAGIC is available.

<IfModule mod_mime_magic.c>
MimeMagicFile "conf/magic"

</IfModule>

The <IFVERSION> directive is very similar to <IFDEFINE> and <IFMODULE>, except it encloses directives that
will only be applied if a particular version of the server is executing. This module is designed for the use in test suites
and large networks which have to deal with different httpd versions and different configurations.

34 CHAPTER 2. USING THE APACHE HTTP SERVER

<IfVersion >= 2.4>
this happens only in versions greater or
equal 2.4.0.

</IfVersion>

<IFDEFINE>, <IFMODULE>, and the <IFVERSION> can apply negative conditions by preceding their test with
"!". Also, these sections can be nested to achieve more complex restrictions.

Filesystem, Webspace, and Boolean Expressions

The most commonly used configuration section containers are the ones that change the configuration of particular
places in the filesystem or webspace. First, it is important to understand the difference between the two. The filesys-
tem is the view of your disks as seen by your operating system. For example, in a default install, Apache httpd resides at
/usr/local/apache2 in the Unix filesystem or "c:/Program Files/Apache Group/Apache2" in the
Windows filesystem. (Note that forward slashes should always be used as the path separator in Apache httpd configura-
tion files, even for Windows.) In contrast, the webspace is the view of your site as delivered by the web server and seen
by the client. So the path /dir/ in the webspace corresponds to the path /usr/local/apache2/htdocs/dir/
in the filesystem of a default Apache httpd install on Unix. The webspace need not map directly to the filesystem,
since webpages may be generated dynamically from databases or other locations.

Filesystem Containers

The <DIRECTORY> and <FILES> directives, along with their regex counterparts, apply directives to parts of the
filesystem. Directives enclosed in a <DIRECTORY> section apply to the named filesystem directory and all subdirec-
tories of that directory (as well as the files in those directories). The same effect can be obtained using .htaccess files
(p. 239) . For example, in the following configuration, directory indexes will be enabled for the /var/web/dir1
directory and all subdirectories.

<Directory "/var/web/dir1">
Options +Indexes

</Directory>

Directives enclosed in a <FILES> section apply to any file with the specified name, regardless of what directory it lies
in. So for example, the following configuration directives will, when placed in the main section of the configuration
file, deny access to any file named private.html regardless of where it is found.

<Files "private.html">
Require all denied

</Files>

To address files found in a particular part of the filesystem, the <FILES> and <DIRECTORY> sections can be
combined. For example, the following configuration will deny access to /var/web/dir1/private.html,
/var/web/dir1/subdir2/private.html, /var/web/dir1/subdir3/private.html, and any
other instance of private.html found under the /var/web/dir1/ directory.

<Directory "/var/web/dir1">
<Files "private.html">

Require all denied
</Files>

</Directory>

2.5. CONFIGURATION SECTIONS 35

Webspace Containers

The <LOCATION> directive and its regex counterpart, on the other hand, change the config-
uration for content in the webspace. For example, the following configuration prevents ac-
cess to any URL-path that begins in /private. In particular, it will apply to requests for
http://yoursite.example.com/private, http://yoursite.example.com/private123, and
http://yoursite.example.com/private/dir/file.html as well as any other requests starting with
the /private string.

<LocationMatch "ˆ/private">
Require all denied

</LocationMatch>

The <LOCATION> directive need not have anything to do with the filesystem. For example, the following example
shows how to map a particular URL to an internal Apache HTTP Server handler provided by MOD STATUS. No file
called server-status needs to exist in the filesystem.

<Location "/server-status">
SetHandler server-status

</Location>

Overlapping Webspace

In order to have two overlapping URLs one has to consider the order in which certain sections or directives are
evaluated. For <LOCATION> this would be:

<Location "/foo">
</Location>
<Location "/foo/bar">
</Location>

<ALIAS>es on the other hand, are mapped vice-versa:

Alias "/foo/bar" "/srv/www/uncommon/bar"
Alias "/foo" "/srv/www/common/foo"

The same is true for the PROXYPASS directives:

ProxyPass "/special-area" "http://special.example.com" smax=5 max=10
ProxyPass "/" "balancer://mycluster/" stickysession=JSESSIONID|jsessionid nofailover=On

Wildcards and Regular Expressions

The <DIRECTORY>, <FILES>, and <LOCATION> directives can each use shell-style wildcard characters as in
fnmatch from the C standard library. The character "*" matches any sequence of characters, "?" matches any
single character, and "[seq]" matches any character in seq. The "/" character will not be matched by any wildcard; it
must be specified explicitly.

If even more flexible matching is required, each container has a regular expression (regex) counterpart <DIRECTORY-
MATCH>, <FILESMATCH>, and <LOCATIONMATCH> that allow perl-compatible regular expressions to be used
in choosing the matches. But see the section below on configuration merging to find out how using regex sections will
change how directives are applied.

A non-regex wildcard section that changes the configuration of all user directories could look as follows:

36 CHAPTER 2. USING THE APACHE HTTP SERVER

<Directory "/home/*/public_html">
Options Indexes

</Directory>

Using regex sections, we can deny access to many types of image files at once:

<FilesMatch "\.(?i:gif|jpe?g|png)$">
Require all denied

</FilesMatch>

Regular expressions containing named groups and backreferences are added to the environment with the correspond-
ing name in uppercase. This allows elements of filename paths and URLs to be referenced from within expressions (p.
89) and modules like MOD REWRITE.

<DirectoryMatch "ˆ/var/www/combined/(?<SITENAME>[ˆ/]+)">
require ldap-group "cn=%{env:MATCH_SITENAME},ou=combined,o=Example"

</DirectoryMatch>

Boolean expressions

The <IF> directive change the configuration depending on a condition which can be expressed by a boolean ex-
pression. For example, the following configuration denies access if the HTTP Referer header does not start with
"http://www.example.com/".

<If "!(%{HTTP_REFERER} -strmatch ’http://www.example.com/*’)">
Require all denied

</If>

What to use When

Choosing between filesystem containers and webspace containers is actually quite easy. When applying directives to
objects that reside in the filesystem always use <DIRECTORY> or <FILES>. When applying directives to objects
that do not reside in the filesystem (such as a webpage generated from a database), use <LOCATION>.

It is important to never use <LOCATION> when trying to restrict access to objects in the filesystem. This is because
many different webspace locations (URLs) could map to the same filesystem location, allowing your restrictions to be
circumvented. For example, consider the following configuration:

<Location "/dir/">
Require all denied

</Location>

This works fine if the request is for http://yoursite.example.com/dir/. But what if you
are on a case-insensitive filesystem? Then your restriction could be easily circumvented by requesting
http://yoursite.example.com/DIR/. The <DIRECTORY> directive, in contrast, will apply to any con-
tent served from that location, regardless of how it is called. (An exception is filesystem links. The same directory can
be placed in more than one part of the filesystem using symbolic links. The <DIRECTORY> directive will follow the
symbolic link without resetting the pathname. Therefore, for the highest level of security, symbolic links should be
disabled with the appropriate OPTIONS directive.)

If you are, perhaps, thinking that none of this applies to you because you use a case-sensitive filesystem, remember that
there are many other ways to map multiple webspace locations to the same filesystem location. Therefore you should

2.5. CONFIGURATION SECTIONS 37

always use the filesystem containers when you can. There is, however, one exception to this rule. Putting configuration
restrictions in a <Location "/"> section is perfectly safe because this section will apply to all requests regardless
of the specific URL.

Nesting of sections

Some section types can be nested inside other section types. On the one hand, <FILES> can be used inside <DIREC-
TORY>. On the other hand, <IF> can be used inside <DIRECTORY>, <LOCATION>, and <FILES> sections. The
regex counterparts of the named section behave identically.

Nested sections are merged after non-nested sections of the same type.

Virtual Hosts

The <VIRTUALHOST> container encloses directives that apply to specific hosts. This is useful when serving multiple
hosts from the same machine with a different configuration for each. For more information, see the Virtual Host
Documentation (p. 114) .

Proxy

The <PROXY> and <PROXYMATCH> containers apply enclosed configuration directives only to sites accessed
through MOD PROXY’s proxy server that match the specified URL. For example, the following configuration will
prevent the proxy server from being used to access the www.example.com website.

<Proxy "http://www.example.com/*">
Require all granted

</Proxy>

What Directives are Allowed?

To find out what directives are allowed in what types of configuration sections, check the Context (p. 351) of the direc-
tive. Everything that is allowed in <DIRECTORY> sections is also syntactically allowed in <DIRECTORYMATCH>,
<FILES>, <FILESMATCH>, <LOCATION>, <LOCATIONMATCH>, <PROXY>, and <PROXYMATCH> sections.
There are some exceptions, however:

• The ALLOWOVERRIDE directive works only in <DIRECTORY> sections.

• The FollowSymLinks and SymLinksIfOwnerMatch OPTIONS work only in <DIRECTORY> sections
or .htaccess files.

• The OPTIONS directive cannot be used in <FILES> and <FILESMATCH> sections.

How the sections are merged

The configuration sections are applied in a very particular order. Since this can have important effects on how config-
uration directives are interpreted, it is important to understand how this works.

The order of merging is:

1. <DIRECTORY> (except regular expressions) and .htaccess done simultaneously (with .htaccess, if
allowed, overriding <DIRECTORY>)

38 CHAPTER 2. USING THE APACHE HTTP SERVER

2. <DIRECTORYMATCH> (and <Directory "˜">)

3. <FILES> and <FILESMATCH> done simultaneously

4. <LOCATION> and <LOCATIONMATCH> done simultaneously

5. <IF>

Apart from <DIRECTORY>, each group is processed in the order that they appear in the configuration files. <DI-
RECTORY> (group 1 above) is processed in the order shortest directory component to longest. So for example,
<Directory "/var/web/dir"> will be processed before <Directory "/var/web/dir/subdir">.
If multiple <DIRECTORY> sections apply to the same directory they are processed in the configuration file order.
Configurations included via the INCLUDE directive will be treated as if they were inside the including file at the
location of the INCLUDE directive.

Sections inside <VIRTUALHOST> sections are applied after the corresponding sections outside the virtual host defi-
nition. This allows virtual hosts to override the main server configuration.

When the request is served by MOD PROXY, the <PROXY> container takes the place of the <DIRECTORY> container
in the processing order.

Later sections override earlier ones, however each module is responsible for interpreting what form this override takes.
A later configuration section with directives from a given module might cause a conceptual "merge" of some direc-
tives, all directives, or a complete replacement of the modules configuration with the module defaults and directives
explicitly listed in the later context.

=⇒Technical Note
There is actually a <Location>/<LocationMatch> sequence performed just before
the name translation phase (where Aliases and DocumentRoots are used to map URLs
to filenames). The results of this sequence are completely thrown away after the translation
has completed.

Some Examples

Below is an artificial example to show the order of merging. Assuming they all apply to the request, the directives in
this example will be applied in the order A > B > C > D > E.

<Location "/">
E

</Location>

<Files "f.html">
D

</Files>

<VirtualHost *>
<Directory "/a/b">

B
</Directory>
</VirtualHost>

<DirectoryMatch "ˆ.*b$">
C

</DirectoryMatch>

2.5. CONFIGURATION SECTIONS 39

<Directory "/a/b">
A

</Directory>

For a more concrete example, consider the following. Regardless of any access restrictions placed in <DIRECTORY>
sections, the <LOCATION> section will be evaluated last and will allow unrestricted access to the server. In other
words, order of merging is important, so be careful!

<Location "/">
Require all granted

</Location>

Woops! This <Directory> section will have no effect
<Directory "/">

<RequireAll>
Require all granted
Require not host badguy.example.com

</RequireAll>
</Directory>

40 CHAPTER 2. USING THE APACHE HTTP SERVER

2.6 Caching Guide

This document supplements the MOD CACHE, MOD CACHE DISK, MOD FILE CACHE and htcacheclean (p. 306) ref-
erence documentation. It describes how to use the Apache HTTP Server’s caching features to accelerate web and
proxy serving, while avoiding common problems and misconfigurations.

Introduction

The Apache HTTP server offers a range of caching features that are designed to improve the performance of the server
in various ways.

Three-state RFC2616 HTTP caching MOD CACHE and its provider modules MOD CACHE DISK provide intelli-
gent, HTTP-aware caching. The content itself is stored in the cache, and mod cache aims to honor all of
the various HTTP headers and options that control the cacheability of content as described in Section 13 of
RFC261612. MOD CACHE is aimed at both simple and complex caching configurations, where you are dealing
with proxied content, dynamic local content or have a need to speed up access to local files on a potentially slow
disk.

Two-state key/value shared object caching The shared object cache API (p. 104) (socache) and its provider modules
provide a server wide key/value based shared object cache. These modules are designed to cache low level data
such as SSL sessions and authentication credentials. Backends allow the data to be stored server wide in shared
memory, or datacenter wide in a cache such as memcache or distcache.

Specialized file caching MOD FILE CACHE offers the ability to pre-load files into memory on server startup, and can
improve access times and save file handles on files that are accessed often, as there is no need to go to disk on
each request.

To get the most from this document, you should be familiar with the basics of HTTP, and have read the Users’ Guides
to Mapping URLs to the Filesystem (p. 61) and Content negotiation (p. 68) .

Three-state RFC2616 HTTP caching

Related Modules
MOD CACHE
MOD CACHE DISK

Related Directives
CACHEENABLE
CACHEDISABLE
USECANONICALNAME
CACHENEGOTIATEDDOCS

The HTTP protocol contains built in support for an in-line caching mechanism

described by section 13 of RFC261613, and the MOD CACHE module can be used to take advantage of this.

Unlike a simple two state key/value cache where the content disappears completely when no longer fresh, an HTTP
cache includes a mechanism to retain stale content, and to ask the origin server whether this stale content has changed
and if not, make it fresh again.

An entry in an HTTP cache exists in one of three states:

Fresh If the content is new enough (younger than its freshness lifetime), it is considered fresh. An HTTP cache is
free to serve fresh content without making any calls to the origin server at all.

12http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
13http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

2.6. CACHING GUIDE 41

Stale If the content is too old (older than its freshness lifetime), it is considered stale. An HTTP cache should contact
the origin server and check whether the content is still fresh before serving stale content to a client. The origin
server will either respond with replacement content if not still valid, or ideally, the origin server will respond
with a code to tell the cache the content is still fresh, without the need to generate or send the content again. The
content becomes fresh again and the cycle continues.

The HTTP protocol does allow the cache to serve stale data under certain circumstances, such as when an
attempt to freshen the data with an origin server has failed with a 5xx error, or when another request is already
in the process of freshening the given entry. In these cases a Warning header is added to the response.

Non Existent If the cache gets full, it reserves the option to delete content from the cache to make space. Content can
be deleted at any time, and can be stale or fresh. The htcacheclean (p. 306) tool can be run on a once off basis,
or deployed as a daemon to keep the size of the cache within the given size, or the given number of inodes. The
tool attempts to delete stale content before attempting to delete fresh content.

Full details of how HTTP caching works can be found in

Section 13 of RFC261614.

Interaction with the Server

The MOD CACHE module hooks into the server in two possible places depending on the value of the CACHEQUICK-
HANDLER directive:

Quick handler phase This phase happens very early on during the request processing, just after the request has been
parsed. If the content is found within the cache, it is served immediately and almost all request processing is
bypassed.

In this scenario, the cache behaves as if it has been "bolted on" to the front of the server.

This mode offers the best performance, as the majority of server processing is bypassed. This mode however
also bypasses the authentication and authorization phases of server processing, so this mode should be chosen
with care when this is important.

Requests with an "Authorization" header (for example, HTTP Basic Authentication) are neither cacheable nor
served from the cache when MOD CACHE is running in this phase.

Normal handler phase This phase happens late in the request processing, after all the request phases have completed.

In this scenario, the cache behaves as if it has been "bolted on" to the back of the server.

This mode offers the most flexibility, as the potential exists for caching to occur at a precisely controlled point
in the filter chain, and cached content can be filtered or personalized before being sent to the client.

If the URL is not found within the cache, MOD CACHE will add a filter (p. 100) to the filter stack in order to record
the response to the cache, and then stand down, allowing normal request processing to continue. If the content is
determined to be cacheable, the content will be saved to the cache for future serving, otherwise the content will be
ignored.

If the content found within the cache is stale, the MOD CACHE module converts the request into a conditional request.
If the origin server responds with a normal response, the normal response is cached, replacing the content already
cached. If the origin server responds with a 304 Not Modified response, the content is marked as fresh again, and the
cached content is served by the filter instead of saving it.

14http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

42 CHAPTER 2. USING THE APACHE HTTP SERVER

Improving Cache Hits

When a virtual host is known by one of many different server aliases, ensuring that USECANONICALNAME is set
to On can dramatically improve the ratio of cache hits. This is because the hostname of the virtual-host serving the
content is used within the cache key. With the setting set to On virtual-hosts with multiple server names or aliases will
not produce differently cached entities, and instead content will be cached as per the canonical hostname.

Freshness Lifetime

Well formed content that is intended to be cached should declare an explicit freshness lifetime with the
Cache-Control header’s max-age or s-maxage fields, or by including an Expires header.

At the same time, the origin server defined freshness lifetime can be overridden by a client when the client presents
their own Cache-Control header within the request. In this case, the lowest freshness lifetime between request
and response wins.

When this freshness lifetime is missing from the request or the response, a default freshness lifetime is applied.
The default freshness lifetime for cached entities is one hour, however this can be easily over-ridden by using the
CACHEDEFAULTEXPIRE directive.

If a response does not include an Expires header but does include a Last-Modified header, MOD CACHE can
infer a freshness lifetime based on a heuristic, which can be controlled through the use of the CACHELASTMODI-
FIEDFACTOR directive.

For local content, or for remote content that does not define its own Expires header, MOD EXPIRES may be used to
fine-tune the freshness lifetime by adding max-age and Expires.

The maximum freshness lifetime may also be controlled by using the CACHEMAXEXPIRE.

A Brief Guide to Conditional Requests

When content expires from the cache and becomes stale, rather than pass on the original request, httpd will modify the
request to make it conditional instead.

When an ETag header exists in the original cached response, MOD CACHE will add an If-None-Match header to
the request to the origin server. When a Last-Modified header exists in the original cached response, MOD CACHE
will add an If-Modified-Since header to the request to the origin server. Performing either of these actions
makes the request conditional.

When a conditional request is received by an origin server, the origin server should check whether the ETag or the Last-
Modified parameter has changed, as appropriate for the request. If not, the origin should respond with a terse "304
Not Modified" response. This signals to the cache that the stale content is still fresh should be used for subsequent
requests until the content’s new freshness lifetime is reached again.

If the content has changed, then the content is served as if the request were not conditional to begin with.

Conditional requests offer two benefits. Firstly, when making such a request to the origin server, if the content from
the origin matches the content in the cache, this can be determined easily and without the overhead of transferring the
entire resource.

Secondly, a well designed origin server will be designed in such a way that conditional requests will be significantly
cheaper to produce than a full response. For static files, typically all that is involved is a call to stat() or similar
system call, to see if the file has changed in size or modification time. As such, even local content may still be served
faster from the cache if it has not changed.

Origin servers should make every effort to support conditional requests as is practical, however if conditional requests
are not supported, the origin will respond as if the request was not conditional, and the cache will respond as if the

2.6. CACHING GUIDE 43

content had changed and save the new content to the cache. In this case, the cache will behave like a simple two state
cache, where content is effectively either fresh or deleted.

What Can be Cached?

The full definition of which responses can be cached by an HTTP cache is defined in

RFC2616 Section 13.4 Response Cacheability15, and can be summed up as follows:

1. Caching must be enabled for this URL. See the CACHEENABLE and CACHEDISABLE directives.

2. The response must have a HTTP status code of 200, 203, 300, 301 or 410.

3. The request must be a HTTP GET request.

4. If the response contains an "Authorization:" header, it must also contain an "s-maxage", "must-revalidate" or
"public" option in the "Cache-Control:" header, or it won’t be cached.

5. If the URL included a query string (e.g. from a HTML form GET method) it will not be cached unless the
response specifies an explicit expiration by including an "Expires:" header or the max-age or s-maxage directive
of the "Cache-Control:" header, as per RFC2616 sections 13.9 and 13.2.1.

6. If the response has a status of 200 (OK), the response must also include at least one of the "Etag", "Last-
Modified" or the "Expires" headers, or the max-age or s-maxage directive of the "Cache-Control:" header,
unless the CACHEIGNORENOLASTMOD directive has been used to require otherwise.

7. If the response includes the "private" option in a "Cache-Control:" header, it will not be stored unless the
CACHESTOREPRIVATE has been used to require otherwise.

8. Likewise, if the response includes the "no-store" option in a "Cache-Control:" header, it will not be stored
unless the CACHESTORENOSTORE has been used.

9. A response will not be stored if it includes a "Vary:" header containing the match-all "*".

What Should Not be Cached?

It should be up to the client creating the request, or the origin server constructing the response to decide whether or not
the content should be cacheable or not by correctly setting the Cache-Control header, and MOD CACHE should be
left alone to honor the wishes of the client or server as appropriate.

Content that is time sensitive, or which varies depending on the particulars of the request that are not covered by HTTP
negotiation, should not be cached. This content should declare itself uncacheable using the Cache-Control header.

If content changes often, expressed by a freshness lifetime of minutes or seconds, the content can still be cached,
however it is highly desirable that the origin server supports conditional requests correctly to ensure that full responses
do not have to be generated on a regular basis.

Content that varies based on client provided request headers can be cached through intelligent use of the Vary re-
sponse header.

15http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.4

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.4

44 CHAPTER 2. USING THE APACHE HTTP SERVER

Variable/Negotiated Content

When the origin server is designed to respond with different content based on the value of headers in the request, for
example to serve multiple languages at the same URL, HTTP’s caching mechanism makes it possible to cache multiple
variants of the same page at the same URL.

This is done by the origin server adding a Vary header to indicate which headers must be taken into account by a
cache when determining whether two variants are different from one another.

If for example, a response is received with a vary header such as;

Vary: negotiate,accept-language,accept-charset

MOD CACHE will only serve the cached content to requesters with accept-language and accept-charset headers match-
ing those of the original request.

Multiple variants of the content can be cached side by side, MOD CACHE uses the Vary header and the corresponding
values of the request headers listed by Vary to decide on which of many variants to return to the client.

Caching to Disk

The MOD CACHE module relies on specific backend store implementations in order to manage the cache, and for
caching to disk MOD CACHE DISK is provided to support this.

Typically the module will be configured as so;

CacheRoot "/var/cache/apache/"
CacheEnable disk /
CacheDirLevels 2
CacheDirLength 1

Importantly, as the cached files are locally stored, operating system in-memory caching will typically be applied to
their access also. So although the files are stored on disk, if they are frequently accessed it is likely the operating
system will ensure that they are actually served from memory.

Understanding the Cache-Store

To store items in the cache, MOD CACHE DISK creates a 22 character hash of the URL being requested. This hash
incorporates the hostname, protocol, port, path and any CGI arguments to the URL, as well as elements defined by the
Vary header to ensure that multiple URLs do not collide with one another.

Each character may be any one of 64-different characters, which mean that overall there are 64ˆ22 possible hashes. For
example, a URL might be hashed to xyTGxSMO2b68mBCykqkp1w. This hash is used as a prefix for the naming of
the files specific to that URL within the cache, however first it is split up into directories as per the CACHEDIRLEVELS
and CACHEDIRLENGTH directives.

CACHEDIRLEVELS specifies how many levels of subdirectory there should be, and CACHEDIRLENGTH specifies
how many characters should be in each directory. With the example settings given above, the hash would be turned
into a filename prefix as /var/cache/apache/x/y/TGxSMO2b68mBCykqkp1w.

The overall aim of this technique is to reduce the number of subdirectories or files that may be in a particular directory,
as most file-systems slow down as this number increases. With setting of "1" for CACHEDIRLENGTH there can at
most be 64 subdirectories at any particular level. With a setting of 2 there can be 64 * 64 subdirectories, and so on.
Unless you have a good reason not to, using a setting of "1" for CACHEDIRLENGTH is recommended.

2.6. CACHING GUIDE 45

Setting CACHEDIRLEVELS depends on how many files you anticipate to store in the cache. With the setting of "2"
used in the above example, a grand total of 4096 subdirectories can ultimately be created. With 1 million files cached,
this works out at roughly 245 cached URLs per directory.

Each URL uses at least two files in the cache-store. Typically there is a ".header" file, which includes meta-
information about the URL, such as when it is due to expire and a ".data" file which is a verbatim copy of the
content to be served.

In the case of a content negotiated via the "Vary" header, a ".vary" directory will be created for the URL in question.
This directory will have multiple ".data" files corresponding to the differently negotiated content.

Maintaining the Disk Cache

The MOD CACHE DISK module makes no attempt to regulate the amount of disk space used by the cache, although it
will gracefully stand down on any disk error and behave as if the cache was never present.

Instead, provided with httpd is the htcacheclean (p. 306) tool which allows you to clean the cache periodically. De-
termining how frequently to run htcacheclean (p. 306) and what target size to use for the cache is somewhat complex
and trial and error may be needed to select optimal values.

htcacheclean (p. 306) has two modes of operation. It can be run as persistent daemon, or periodically from cron.
htcacheclean (p. 306) can take up to an hour or more to process very large (tens of gigabytes) caches and if you are
running it from cron it is recommended that you determine how long a typical run takes, to avoid running more than
one instance at a time.

It is also recommended that an appropriate "nice" level is chosen for htcacheclean so that the tool does not cause
excessive disk io while the server is running.

46 CHAPTER 2. USING THE APACHE HTTP SERVER

Figure 1: Typical cache growth / clean sequence.

Because MOD CACHE DISK does not itself pay attention to how much space is used you should ensure that ht-
cacheclean (p. 306) is configured to leave enough "grow room" following a clean.

Two-state Key/Value Shared Object Caching

Related Modules
MOD AUTHN SOCACHE
MOD SOCACHE DBM
MOD SOCACHE DC
MOD SOCACHE MEMCACHE
MOD SOCACHE SHMCB
MOD SSL

Related Directives
AUTHNCACHESOCACHE
SSLSESSIONCACHE
SSLSTAPLINGCACHE

The Apache HTTP server offers a low level shared object cache for caching information such as SSL sessions, or
authentication credentials, within the socache (p. 104) interface.

Additional modules are provided for each implementation, offering the following backends:

2.6. CACHING GUIDE 47

MOD SOCACHE DBM DBM based shared object cache.

MOD SOCACHE DC Distcache based shared object cache.

MOD SOCACHE MEMCACHE Memcache based shared object cache.

MOD SOCACHE SHMCB Shared memory based shared object cache.

Caching Authentication Credentials

Related Modules
MOD AUTHN SOCACHE

Related Directives
AUTHNCACHESOCACHE

The MOD AUTHN SOCACHE module allows the result of authentication to be cached, relieving load on authentication
backends.

Caching SSL Sessions

Related Modules
MOD SSL

Related Directives
SSLSESSIONCACHE
SSLSTAPLINGCACHE

The MOD SSL module uses the socache interface to provide a session cache and a stapling cache.

Specialized File Caching

Related Modules
MOD FILE CACHE

Related Directives
CACHEFILE
MMAPFILE

On platforms where a filesystem might be slow, or where file handles are expensive, the option exists to pre-load files
into memory on startup.

On systems where opening files is slow, the option exists to open the file on startup and cache the file handle. These
options can help on systems where access to static files is slow.

File-Handle Caching

The act of opening a file can itself be a source of delay, particularly on network filesystems. By maintaining a
cache of open file descriptors for commonly served files, httpd can avoid this delay. Currently httpd provides one
implementation of File-Handle Caching.

CacheFile

The most basic form of caching present in httpd is the file-handle caching provided by MOD FILE CACHE. Rather
than caching file-contents, this cache maintains a table of open file descriptors. Files to be cached in this manner are
specified in the configuration file using the CACHEFILE directive.

The CACHEFILE directive instructs httpd to open the file when it is started and to re-use this file-handle for all subse-
quent access to this file.

48 CHAPTER 2. USING THE APACHE HTTP SERVER

CacheFile /usr/local/apache2/htdocs/index.html

If you intend to cache a large number of files in this manner, you must ensure that your operating system’s limit for
the number of open files is set appropriately.

Although using CACHEFILE does not cause the file-contents to be cached per-se, it does mean that if the file changes
while httpd is running these changes will not be picked up. The file will be consistently served as it was when httpd
was started.

If the file is removed while httpd is running, it will continue to maintain an open file descriptor and serve the file as it
was when httpd was started. This usually also means that although the file will have been deleted, and not show up on
the filesystem, extra free space will not be recovered until httpd is stopped and the file descriptor closed.

In-Memory Caching

Serving directly from system memory is universally the fastest method of serving content. Reading files from a disk
controller or, even worse, from a remote network is orders of magnitude slower. Disk controllers usually involve
physical processes, and network access is limited by your available bandwidth. Memory access on the other hand can
take mere nano-seconds.

System memory isn’t cheap though, byte for byte it’s by far the most expensive type of storage and it’s important to
ensure that it is used efficiently. By caching files in memory you decrease the amount of memory available on the
system. As we’ll see, in the case of operating system caching, this is not so much of an issue, but when using httpd’s
own in-memory caching it is important to make sure that you do not allocate too much memory to a cache. Otherwise
the system will be forced to swap out memory, which will likely degrade performance.

Operating System Caching

Almost all modern operating systems cache file-data in memory managed directly by the kernel. This is a powerful
feature, and for the most part operating systems get it right. For example, on Linux, let’s look at the difference in the
time it takes to read a file for the first time and the second time;

colm@coroebus:˜$ time cat testfile > /dev/null
real 0m0.065s
user 0m0.000s
sys 0m0.001s
colm@coroebus:˜$ time cat testfile > /dev/null
real 0m0.003s
user 0m0.003s
sys 0m0.000s

Even for this small file, there is a huge difference in the amount of time it takes to read the file. This is because the
kernel has cached the file contents in memory.

By ensuring there is "spare" memory on your system, you can ensure that more and more file-contents will be stored
in this cache. This can be a very efficient means of in-memory caching, and involves no extra configuration of httpd at
all.

Additionally, because the operating system knows when files are deleted or modified, it can automatically remove file
contents from the cache when necessary. This is a big advantage over httpd’s in-memory caching which has no way
of knowing when a file has changed.

Despite the performance and advantages of automatic operating system caching there are some circumstances in which
in-memory caching may be better performed by httpd.

2.6. CACHING GUIDE 49

MMapFile Caching

MOD FILE CACHE provides the MMAPFILE directive, which allows you to have httpd map a static file’s contents into
memory at start time (using the mmap system call). httpd will use the in-memory contents for all subsequent accesses
to this file.

MMapFile /usr/local/apache2/htdocs/index.html

As with the CACHEFILE directive, any changes in these files will not be picked up by httpd after it has started.

The MMAPFILE directive does not keep track of how much memory it allocates, so you must ensure not to over-use
the directive. Each httpd child process will replicate this memory, so it is critically important to ensure that the files
mapped are not so large as to cause the system to swap memory.

Security Considerations

Authorization and Access Control

Using MOD CACHE in its default state where CACHEQUICKHANDLER is set to On is very much like having a caching
reverse-proxy bolted to the front of the server. Requests will be served by the caching module unless it determines that
the origin server should be queried just as an external cache would, and this drastically changes the security model of
httpd.

As traversing a filesystem hierarchy to examine potential .htaccess files would be a very expensive operation,
partially defeating the point of caching (to speed up requests), MOD CACHE makes no decision about whether a
cached entity is authorised for serving. In other words; if MOD CACHE has cached some content, it will be served
from the cache as long as that content has not expired.

If, for example, your configuration permits access to a resource by IP address you should ensure that this content is
not cached. You can do this by using the CACHEDISABLE directive, or MOD EXPIRES. Left unchecked, MOD CACHE
- very much like a reverse proxy - would cache the content when served and then serve it to any client, on any IP
address.

When the CACHEQUICKHANDLER directive is set to Off, the full set of request processing phases are executed and
the security model remains unchanged.

Local exploits

As requests to end-users can be served from the cache, the cache itself can become a target for those wishing to deface
or interfere with content. It is important to bear in mind that the cache must at all times be writable by the user which
httpd is running as. This is in stark contrast to the usually recommended situation of maintaining all content unwritable
by the Apache user.

If the Apache user is compromised, for example through a flaw in a CGI process, it is possible that the cache may be
targeted. When using MOD CACHE DISK, it is relatively easy to insert or modify a cached entity.

This presents a somewhat elevated risk in comparison to the other types of attack it is possible to make as the Apache
user. If you are using MOD CACHE DISK you should bear this in mind - ensure you upgrade httpd when security
upgrades are announced and run CGI processes as a non-Apache user using suEXEC (p. 105) if possible.

Cache Poisoning

When running httpd as a caching proxy server, there is also the potential for so-called cache poisoning. Cache Poi-
soning is a broad term for attacks in which an attacker causes the proxy server to retrieve incorrect (and usually
undesirable) content from the origin server.

50 CHAPTER 2. USING THE APACHE HTTP SERVER

For example if the DNS servers used by your system running httpd are vulnerable to DNS cache poisoning, an attacker
may be able to control where httpd connects to when requesting content from the origin server. Another example is
so-called HTTP request-smuggling attacks.

This document is not the correct place for an in-depth discussion of HTTP request smuggling (instead, try your
favourite search engine) however it is important to be aware that it is possible to make a series of requests, and to
exploit a vulnerability on an origin webserver such that the attacker can entirely control the content retrieved by the
proxy.

Denial of Service / Cachebusting

The Vary mechanism allows multiple variants of the same URL to be cached side by side. Depending on header values
provided by the client, the cache will select the correct variant to return to the client. This mechanism can become a
problem when an attempt is made to vary on a header that is known to contain a wide range of possible values under
normal use, for example the User-Agent header. Depending on the popularity of the particular web site thousands
or millions of duplicate cache entries could be created for the same URL, crowding out other entries in the cache.

In other cases, there may be a need to change the URL of a particular resource on every request, usually by adding a
"cachebuster" string to the URL. If this content is declared cacheable by a server for a significant freshness lifetime,
these entries can crowd out legitimate entries in a cache. While MOD CACHE provides a CACHEIGNOREURLSES-
SIONIDENTIFIERS directive, this directive should be used with care to ensure that downstream proxy or browser caches
aren’t subjected to the same denial of service issue.

2.7. SERVER-WIDE CONFIGURATION 51

2.7 Server-Wide Configuration

This document explains some of the directives provided by the CORE server which are used to configure the basic
operations of the server.

Server Identification

Related Modules Related Directives
SERVERNAME
SERVERADMIN
SERVERSIGNATURE
SERVERTOKENS
USECANONICALNAME
USECANONICALPHYSICALPORT

The SERVERADMIN and SERVERTOKENS directives control what information about the server will be presented in
server-generated documents such as error messages. The SERVERTOKENS directive sets the value of the Server HTTP
response header field.

The SERVERNAME, USECANONICALNAME and USECANONICALPHYSICALPORT directives are used by the server
to determine how to construct self-referential URLs. For example, when a client requests a directory, but does not
include the trailing slash in the directory name, httpd must redirect the client to the full name including the trailing
slash so that the client will correctly resolve relative references in the document.

File Locations

Related Modules Related Directives
COREDUMPDIRECTORY
DOCUMENTROOT
ERRORLOG
MUTEX
PIDFILE
SCOREBOARDFILE
SERVERROOT

These directives control the locations of the various files that httpd needs for proper operation. When the pathname
used does not begin with a slash (/), the files are located relative to the SERVERROOT. Be careful about locating files
in paths which are writable by non-root users. See the security tips (p. 338) documentation for more details.

52 CHAPTER 2. USING THE APACHE HTTP SERVER

Limiting Resource Usage

Related Modules Related Directives
LIMITREQUESTBODY
LIMITREQUESTFIELDS
LIMITREQUESTFIELDSIZE
LIMITREQUESTLINE
RLIMITCPU
RLIMITMEM
RLIMITNPROC
THREADSTACKSIZE

The LIMITREQUEST* directives are used to place limits on the amount of resources httpd will use in reading requests
from clients. By limiting these values, some kinds of denial of service attacks can be mitigated.

The RLIMIT* directives are used to limit the amount of resources which can be used by processes forked off from the
httpd children. In particular, this will control resources used by CGI scripts and SSI exec commands.

The THREADSTACKSIZE directive is used with some platforms to control the stack size.

Implementation Choices

Related Modules Related Directives
MUTEX

The MUTEX directive can be used to change the underlying implementation used for mutexes, in order to relieve
functional or performance problems with APR’s default choice.

2.8. LOG FILES 53

2.8 Log Files

In order to effectively manage a web server, it is necessary to get feedback about the activity and performance of the
server as well as any problems that may be occurring. The Apache HTTP Server provides very comprehensive and
flexible logging capabilities. This document describes how to configure its logging capabilities, and how to understand
what the logs contain.

Overview

Related Modules
MOD LOG CONFIG
MOD LOG FORENSIC
MOD LOGIO
MOD CGI

Related Directives

The Apache HTTP Server provides a variety of different mechanisms for logging everything that happens on your
server, from the initial request, through the URL mapping process, to the final resolution of the connection, including
any errors that may have occurred in the process. In addition to this, third-party modules may provide logging capa-
bilities, or inject entries into the existing log files, and applications such as CGI programs, or PHP scripts, or other
handlers, may send messages to the server error log.

In this document we discuss the logging modules that are a standard part of the http server.

Security Warning

Anyone who can write to the directory where Apache httpd is writing a log file can almost certainly gain access to the
uid that the server is started as, which is normally root. Do NOT give people write access to the directory the logs are
stored in without being aware of the consequences; see the security tips (p. 338) document for details.

In addition, log files may contain information supplied directly by the client, without escaping. Therefore, it is possible
for malicious clients to insert control-characters in the log files, so care must be taken in dealing with raw logs.

Error Log

Related Modules
CORE

Related Directives
ERRORLOG
ERRORLOGFORMAT
LOGLEVEL

The server error log, whose name and location is set by the ERRORLOG directive, is the most important log file. This
is the place where Apache httpd will send diagnostic information and record any errors that it encounters in processing
requests. It is the first place to look when a problem occurs with starting the server or with the operation of the server,
since it will often contain details of what went wrong and how to fix it.

The error log is usually written to a file (typically error log on Unix systems and error.log on Windows and
OS/2). On Unix systems it is also possible to have the server send errors to syslog or pipe them to a program.

The format of the error log is defined by the ERRORLOGFORMAT directive, with which you can customize what values
are logged. A default is format defined if you don’t specify one. A typical log message follows:

54 CHAPTER 2. USING THE APACHE HTTP SERVER

[Fri Sep 09 10:42:29.902022 2011] [core:error] [pid 35708:tid

4328636416] [client 72.15.99.187] File does not exist:

/usr/local/apache2/htdocs/favicon.ico

The first item in the log entry is the date and time of the message. The next is the module producing the message (core,
in this case) and the severity level of that message. This is followed by the process ID and, if appropriate, the thread
ID, of the process that experienced the condition. Next, we have the client address that made the request. And finally
is the detailed error message, which in this case indicates a request for a file that did not exist.

A very wide variety of different messages can appear in the error log. Most look similar to the example above. The
error log will also contain debugging output from CGI scripts. Any information written to stderr by a CGI script
will be copied directly to the error log.

Putting a %L token in both the error log and the access log will produce a log entry ID with which you can correlate
the entry in the error log with the entry in the access log. If MOD UNIQUE ID is loaded, its unique request ID will be
used as the log entry ID, too.

During testing, it is often useful to continuously monitor the error log for any problems. On Unix systems, you can
accomplish this using:

tail -f error log

Per-module logging

The LOGLEVEL directive allows you to specify a log severity level on a per-module basis. In this way, if you are
troubleshooting a problem with just one particular module, you can turn up its logging volume without also getting
the details of other modules that you’re not interested in. This is particularly useful for modules such as MOD PROXY
or MOD REWRITE where you want to know details about what it’s trying to do.

Do this by specifying the name of the module in your LOGLEVEL directive:

LogLevel info rewrite:trace5

This sets the main LOGLEVEL to info, but turns it up to trace5 for MOD REWRITE.

=⇒This replaces the per-module logging directives, such as RewriteLog, that were present in
earlier versions of the server.

Access Log

Related Modules
MOD LOG CONFIG
MOD SETENVIF

Related Directives
CUSTOMLOG
LOGFORMAT
SETENVIF

The server access log records all requests processed by the server. The location and content of the access log are
controlled by the CUSTOMLOG directive. The LOGFORMAT directive can be used to simplify the selection of the
contents of the logs. This section describes how to configure the server to record information in the access log.

Of course, storing the information in the access log is only the start of log management. The next step is to analyze this
information to produce useful statistics. Log analysis in general is beyond the scope of this document, and not really

2.8. LOG FILES 55

part of the job of the web server itself. For more information about this topic, and for applications which perform log
analysis, check the Open Directory16 or Yahoo17.

Various versions of Apache httpd have used other modules and directives to control access logging, including
mod log referer, mod log agent, and the TransferLog directive. The CUSTOMLOG directive now subsumes the
functionality of all the older directives.

The format of the access log is highly configurable. The format is specified using a format string that looks much like
a C-style printf(1) format string. Some examples are presented in the next sections. For a complete list of the possible
contents of the format string, see the MOD LOG CONFIG format strings (p. 656) .

Common Log Format

A typical configuration for the access log might look as follows.

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log common

This defines the nickname common and associates it with a particular log format string. The format string consists of
percent directives, each of which tell the server to log a particular piece of information. Literal characters may also be
placed in the format string and will be copied directly into the log output. The quote character (") must be escaped
by placing a backslash before it to prevent it from being interpreted as the end of the format string. The format string
may also contain the special control characters "\n" for new-line and "\t" for tab.

The CUSTOMLOG directive sets up a new log file using the defined nickname. The filename for the access log is
relative to the SERVERROOT unless it begins with a slash.

The above configuration will write log entries in a format known as the Common Log Format (CLF). This standard
format can be produced by many different web servers and read by many log analysis programs. The log file entries
produced in CLF will look something like this:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache pb.gif

HTTP/1.0" 200 2326

Each part of this log entry is described below.

127.0.0.1 (%h) This is the IP address of the client (remote host) which made the request to the server. If HOST-
NAMELOOKUPS is set to On, then the server will try to determine the hostname and log it in place of the IP
address. However, this configuration is not recommended since it can significantly slow the server. Instead, it
is best to use a log post-processor such as logresolve to determine the hostnames. The IP address reported
here is not necessarily the address of the machine at which the user is sitting. If a proxy server exists between
the user and the server, this address will be the address of the proxy, rather than the originating machine.

- (%l) The "hyphen" in the output indicates that the requested piece of information is not available. In this case, the
information that is not available is the RFC 1413 identity of the client determined by identd on the clients
machine. This information is highly unreliable and should almost never be used except on tightly controlled
internal networks. Apache httpd will not even attempt to determine this information unless IDENTITYCHECK is
set to On.

frank (%u) This is the userid of the person requesting the document as determined by HTTP authentication. The
same value is typically provided to CGI scripts in the REMOTE USER environment variable. If the status code
for the request (see below) is 401, then this value should not be trusted because the user is not yet authenticated.
If the document is not password protected, this part will be "-" just like the previous one.

16http://dmoz.org/Computers/Software/Internet/Site Management/Log analysis/
17http://dir.yahoo.com/Computers and Internet/Software/Internet/World Wide Web/Servers/Log Analysis Tools/

http://dmoz.org/Computers/Software/Internet/Site_Management/Log_analysis/
http://dir.yahoo.com/Computers_and_Internet/Software/Internet/World_Wide_Web/Servers/Log_Analysis_Tools/

56 CHAPTER 2. USING THE APACHE HTTP SERVER

[10/Oct/2000:13:55:36 -0700] (%t) The time that the request was received. The format is:

[day/month/year:hour:minute:second zone]
day = 2*digit
month = 3*letter
year = 4*digit
hour = 2*digit
minute = 2*digit
second = 2*digit
zone = (‘+’ | ‘-’) 4*digit

It is possible to have the time displayed in another format by specifying %{format}t in the log format string,
where format is either as in strftime(3) from the C standard library, or one of the supported special
tokens. For details see the MOD LOG CONFIG format strings (p. 656) .

"GET /apache pb.gif HTTP/1.0" (\"%r\") The request line from the client is given in double quotes. The
request line contains a great deal of useful information. First, the method used by the client is GET. Second, the
client requested the resource /apache pb.gif, and third, the client used the protocol HTTP/1.0. It is also
possible to log one or more parts of the request line independently. For example, the format string "%m %U%q
%H" will log the method, path, query-string, and protocol, resulting in exactly the same output as "%r".

200 (%>s) This is the status code that the server sends back to the client. This information is very valuable, because
it reveals whether the request resulted in a successful response (codes beginning in 2), a redirection (codes
beginning in 3), an error caused by the client (codes beginning in 4), or an error in the server (codes beginning
in 5). The full list of possible status codes can be found in the HTTP specification18 (RFC2616 section 10).

2326 (%b) The last part indicates the size of the object returned to the client, not including the response headers. If
no content was returned to the client, this value will be "-". To log "0" for no content, use %B instead.

Combined Log Format

Another commonly used format string is called the Combined Log Format. It can be used as follows.

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\"" combined
CustomLog log/access_log combined

This format is exactly the same as the Common Log Format, with the addition of two more fields. Each of the
additional fields uses the percent-directive %{header}i, where header can be any HTTP request header. The access
log under this format will look like:

127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache pb.gif

HTTP/1.0" 200 2326 "http://www.example.com/start.html" "Mozilla/4.08

[en] (Win98; I ;Nav)"

The additional fields are:

"http://www.example.com/start.html" (\"%{Referer}i\") The "Referer" (sic) HTTP request
header. This gives the site that the client reports having been referred from. (This should be the page that
links to or includes /apache pb.gif).

"Mozilla/4.08 [en] (Win98; I ;Nav)" (\"%{User-agent}i\") The User-Agent HTTP request
header. This is the identifying information that the client browser reports about itself.

18http://www.w3.org/Protocols/rfc2616/rfc2616.txt

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

2.8. LOG FILES 57

Multiple Access Logs

Multiple access logs can be created simply by specifying multiple CUSTOMLOG directives in the configuration file.
For example, the following directives will create three access logs. The first contains the basic CLF information, while
the second and third contain referer and browser information. The last two CUSTOMLOG lines show how to mimic
the effects of the ReferLog and AgentLog directives.

LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog logs/access_log common
CustomLog logs/referer_log "%{Referer}i -> %U"
CustomLog logs/agent_log "%{User-agent}i"

This example also shows that it is not necessary to define a nickname with the LOGFORMAT directive. Instead, the
log format can be specified directly in the CUSTOMLOG directive.

Conditional Logs

There are times when it is convenient to exclude certain entries from the access logs based on characteristics of
the client request. This is easily accomplished with the help of environment variables (p. 82) . First, an environment
variable must be set to indicate that the request meets certain conditions. This is usually accomplished with SETENVIF.
Then the env= clause of the CUSTOMLOG directive is used to include or exclude requests where the environment
variable is set. Some examples:

Mark requests from the loop-back interface
SetEnvIf Remote_Addr "127\.0\.0\.1" dontlog
Mark requests for the robots.txt file
SetEnvIf Request_URI "ˆ/robots\.txt$" dontlog
Log what remains
CustomLog logs/access_log common env=!dontlog

As another example, consider logging requests from english-speakers to one log file, and non-english speakers to a
different log file.

SetEnvIf Accept-Language "en" english
CustomLog logs/english_log common env=english
CustomLog logs/non_english_log common env=!english

In a caching scenario one would want to know about the efficiency of the cache. A very simple method to find this out
would be:

SetEnv CACHE_MISS 1
LogFormat "%h %l %u %t "%r " %>s %b %{CACHE_MISS}e" common-cache
CustomLog logs/access_log common-cache

MOD CACHE will run before MOD ENV and, when successful, will deliver the content without it. In that case a cache
hit will log -, while a cache miss will log 1.

In addition to the env= syntax, LOGFORMAT supports logging values conditional upon the HTTP response code:

LogFormat "%400,501{User-agent}i" browserlog
LogFormat "%!200,304,302{Referer}i" refererlog

58 CHAPTER 2. USING THE APACHE HTTP SERVER

In the first example, the User-agent will be logged if the HTTP status code is 400 or 501. In other cases, a literal
"-" will be logged instead. Likewise, in the second example, the Referer will be logged if the HTTP status code is
not 200, 204, or 302. (Note the "!" before the status codes.

Although we have just shown that conditional logging is very powerful and flexible, it is not the only way to control
the contents of the logs. Log files are more useful when they contain a complete record of server activity. It is often
easier to simply post-process the log files to remove requests that you do not want to consider.

Log Rotation

On even a moderately busy server, the quantity of information stored in the log files is very large. The access log file
typically grows 1 MB or more per 10,000 requests. It will consequently be necessary to periodically rotate the log
files by moving or deleting the existing logs. This cannot be done while the server is running, because Apache httpd
will continue writing to the old log file as long as it holds the file open. Instead, the server must be restarted (p. 27)
after the log files are moved or deleted so that it will open new log files.

By using a graceful restart, the server can be instructed to open new log files without losing any existing or pending
connections from clients. However, in order to accomplish this, the server must continue to write to the old log files
while it finishes serving old requests. It is therefore necessary to wait for some time after the restart before doing any
processing on the log files. A typical scenario that simply rotates the logs and compresses the old logs to save space
is:

mv access log access log.old
mv error log error log.old
apachectl graceful
sleep 600

gzip access log.old error log.old

Another way to perform log rotation is using piped logs as discussed in the next section.

Piped Logs

Apache httpd is capable of writing error and access log files through a pipe to another process, rather than directly
to a file. This capability dramatically increases the flexibility of logging, without adding code to the main server. In
order to write logs to a pipe, simply replace the filename with the pipe character "|", followed by the name of the
executable which should accept log entries on its standard input. The server will start the piped-log process when the
server starts, and will restart it if it crashes while the server is running. (This last feature is why we can refer to this
technique as "reliable piped logging".)

Piped log processes are spawned by the parent Apache httpd process, and inherit the userid of that process. This means
that piped log programs usually run as root. It is therefore very important to keep the programs simple and secure.

One important use of piped logs is to allow log rotation without having to restart the server. The Apache HTTP Server
includes a simple program called rotatelogs for this purpose. For example, to rotate the logs every 24 hours, you
can use:

CustomLog "|/usr/local/apache/bin/rotatelogs /var/log/access_log 86400" common

Notice that quotes are used to enclose the entire command that will be called for the pipe. Although these examples
are for the access log, the same technique can be used for the error log.

As with conditional logging, piped logs are a very powerful tool, but they should not be used where a simpler solution
like off-line post-processing is available.

2.8. LOG FILES 59

By default the piped log process is spawned without invoking a shell. Use "|$" instead of "|" to spawn using a shell
(usually with /bin/sh -c):

Invoke "rotatelogs" using a shell
CustomLog "|$/usr/local/apache/bin/rotatelogs /var/log/access_log 86400" common

This was the default behaviour for Apache 2.2. Depending on the shell specifics this might lead to an additional shell
process for the lifetime of the logging pipe program and signal handling problems during restart. For compatibility
reasons with Apache 2.2 the notation "||" is also supported and equivalent to using "|".

=⇒Windows note
Note that on Windows, you may run into problems when running many piped log-
ger processes, especially when HTTPD is running as a service. This is caused by
running out of desktop heap space. The desktop heap space given to each ser-
vice is specified by the third argument to the SharedSectionparameter in the
HKEY LOCAL MACHINE\System\CurrentControlSet\Control\SessionManager\SubSystems\Windows
registry value.Change this value with care; the normal caveats for changing the Windows
registry apply, but you might also exhaust the desktop heap pool if the number is adjusted too
high.

Virtual Hosts

When running a server with many virtual hosts (p. 114) , there are several options for dealing with log files. First,
it is possible to use logs exactly as in a single-host server. Simply by placing the logging directives outside the
<VIRTUALHOST> sections in the main server context, it is possible to log all requests in the same access log and
error log. This technique does not allow for easy collection of statistics on individual virtual hosts.

If CUSTOMLOG or ERRORLOG directives are placed inside a <VIRTUALHOST> section, all requests or errors for
that virtual host will be logged only to the specified file. Any virtual host which does not have logging directives will
still have its requests sent to the main server logs. This technique is very useful for a small number of virtual hosts,
but if the number of hosts is very large, it can be complicated to manage. In addition, it can often create problems with
insufficient file descriptors (p. 134) .

For the access log, there is a very good compromise. By adding information on the virtual host to the log format string,
it is possible to log all hosts to the same log, and later split the log into individual files. For example, consider the
following directives.

LogFormat "%v %l %u %t \"%r\" %>s %b" comonvhost
CustomLog logs/access_log comonvhost

The %v is used to log the name of the virtual host that is serving the request. Then a program like split-logfile (p. 321)
can be used to post-process the access log in order to split it into one file per virtual host.

Other Log Files

Related Modules
MOD LOGIO
MOD LOG CONFIG
MOD LOG FORENSIC
MOD CGI

Related Directives
LOGFORMAT
BUFFEREDLOGS
FORENSICLOG
PIDFILE
SCRIPTLOG
SCRIPTLOGBUFFER
SCRIPTLOGLENGTH

60 CHAPTER 2. USING THE APACHE HTTP SERVER

Logging actual bytes sent and received

MOD LOGIO adds in two additional LOGFORMAT fields (%I and %O) that log the actual number of bytes received and
sent on the network.

Forensic Logging

MOD LOG FORENSIC provides for forensic logging of client requests. Logging is done before and after processing
a request, so the forensic log contains two log lines for each request. The forensic logger is very strict with no
customizations. It can be an invaluable debugging and security tool.

PID File

On startup, Apache httpd saves the process id of the parent httpd process to the file logs/httpd.pid. This filename
can be changed with the PIDFILE directive. The process-id is for use by the administrator in restarting and terminating
the daemon by sending signals to the parent process; on Windows, use the -k command line option instead. For more
information see the Stopping and Restarting (p. 27) page.

Script Log

In order to aid in debugging, the SCRIPTLOG directive allows you to record the input to and output from CGI scripts.
This should only be used in testing - not for live servers. More information is available in the mod cgi (p. 548)
documentation.

2.9. MAPPING URLS TO FILESYSTEM LOCATIONS 61

2.9 Mapping URLs to Filesystem Locations

This document explains how the Apache HTTP Server uses the URL of a request to determine the filesystem location
from which to serve a file.

Related Modules and Directives

Related Modules
MOD ACTIONS
MOD ALIAS
MOD AUTOINDEX
MOD DIR
MOD IMAGEMAP
MOD NEGOTIATION
MOD PROXY
MOD REWRITE
MOD SPELING
MOD USERDIR
MOD VHOST ALIAS

Related Directives
ALIAS
ALIASMATCH
CHECKSPELLING
DIRECTORYINDEX
DOCUMENTROOT
ERRORDOCUMENT
OPTIONS
PROXYPASS
PROXYPASSREVERSE
PROXYPASSREVERSECOOKIEDOMAIN
PROXYPASSREVERSECOOKIEPATH
REDIRECT
REDIRECTMATCH
REWRITECOND
REWRITERULE
SCRIPTALIAS
SCRIPTALIASMATCH
USERDIR

DocumentRoot

In deciding what file to serve for a given request, httpd’s default behavior is to take the URL-Path for the request (the
part of the URL following the hostname and port) and add it to the end of the DOCUMENTROOT specified in your
configuration files. Therefore, the files and directories underneath the DOCUMENTROOT make up the basic document
tree which will be visible from the web.

For example, if DOCUMENTROOT were set to /var/www/html then a request
for http://www.example.com/fish/guppies.html would result in the file
/var/www/html/fish/guppies.html being served to the requesting client.

If a directory is requested (i.e. a path ending with /), the file served from that directory is defined by the DIRECTO-
RYINDEX directive. For example, if DocumentRoot were set as above, and you were to set:

DirectoryIndex index.html index.php

Then a request for http://www.example.com/fish/ will cause httpd to attempt to serve the file
/var/www/html/fish/index.html. In the event that that file does not exist, it will next attempt to serve
the file /var/www/html/fish/index.php.

If neither of these files existed, the next step is to attempt to provide a directory index, if MOD AUTOINDEX is loaded
and configured to permit that.

httpd is also capable of Virtual Hosting (p. 114) , where the server receives requests for more than one host. In this
case, a different DOCUMENTROOT can be specified for each virtual host, or alternatively, the directives provided by

62 CHAPTER 2. USING THE APACHE HTTP SERVER

the module MOD VHOST ALIAS can be used to dynamically determine the appropriate place from which to serve
content based on the requested IP address or hostname.

The DOCUMENTROOT directive is set in your main server configuration file (httpd.conf) and, possibly, once per
additional Virtual Host (p. 114) you create.

Files Outside the DocumentRoot

There are frequently circumstances where it is necessary to allow web access to parts of the filesystem that are not
strictly underneath the DOCUMENTROOT. httpd offers several different ways to accomplish this. On Unix sys-
tems, symbolic links can bring other parts of the filesystem under the DOCUMENTROOT. For security reasons, httpd
will follow symbolic links only if the OPTIONS setting for the relevant directory includes FollowSymLinks or
SymLinksIfOwnerMatch.

Alternatively, the ALIAS directive will map any part of the filesystem into the web space. For example, with

Alias "/docs" "/var/web"

the URL http://www.example.com/docs/dir/file.html will be served from
/var/web/dir/file.html. The SCRIPTALIAS directive works the same way, with the additional
effect that all content located at the target path is treated as CGI scripts.

For situations where you require additional flexibility, you can use the ALIASMATCH and SCRIPTALIASMATCH
directives to do powerful regular expression based matching and substitution. For example,

ScriptAliasMatch "ˆ/˜([a-zA-Z0-9]+)/cgi-bin/(.+)" "/home/$1/cgi-bin/$2"

will map a request to http://example.com/˜user/cgi-bin/script.cgi to the path
/home/user/cgi-bin/script.cgi and will treat the resulting file as a CGI script.

User Directories

Traditionally on Unix systems, the home directory of a particular user can be referred to as ˜user/. The module
MOD USERDIR extends this idea to the web by allowing files under each user’s home directory to be accessed using
URLs such as the following.

http://www.example.com/˜user/file.html

For security reasons, it is inappropriate to give direct access to a user’s home directory from the web. There-
fore, the USERDIR directive specifies a directory underneath the user’s home directory where web files are lo-
cated. Using the default setting of Userdir public html, the above URL maps to a file at a directory like
/home/user/public html/file.html where /home/user/ is the user’s home directory as specified in
/etc/passwd.

There are also several other forms of the Userdir directive which you can use on systems where /etc/passwd
does not contain the location of the home directory.

Some people find the "˜" symbol (which is often encoded on the web as %7e) to be awkward and prefer to use an
alternate string to represent user directories. This functionality is not supported by mod userdir. However, if users’
home directories are structured in a regular way, then it is possible to use the ALIASMATCH directive to achieve
the desired effect. For example, to make http://www.example.com/upages/user/file.html map to
/home/user/public html/file.html, use the following AliasMatch directive:

AliasMatch "ˆ/upages/([a-zA-Z0-9]+)(/(.*))?$" "/home/$1/public_html/$3"

2.9. MAPPING URLS TO FILESYSTEM LOCATIONS 63

URL Redirection

The configuration directives discussed in the above sections tell httpd to get content from a specific place in the
filesystem and return it to the client. Sometimes, it is desirable instead to inform the client that the requested content is
located at a different URL, and instruct the client to make a new request with the new URL. This is called redirection
and is implemented by the REDIRECT directive. For example, if the contents of the directory /foo/ under the
DOCUMENTROOT are moved to the new directory /bar/, you can instruct clients to request the content at the new
location as follows:

Redirect permanent "/foo/" "http://www.example.com/bar/"

This will redirect any URL-Path starting in /foo/ to the same URL path on the www.example.com server with
/bar/ substituted for /foo/. You can redirect clients to any server, not only the origin server.

httpd also provides a REDIRECTMATCH directive for more complicated rewriting problems. For example, to redirect
requests for the site home page to a different site, but leave all other requests alone, use the following configuration:

RedirectMatch permanent "ˆ/$" "http://www.example.com/startpage.html"

Alternatively, to temporarily redirect all pages on one site to a particular page on another site, use the following:

RedirectMatch temp ".*" "http://othersite.example.com/startpage.html"

Reverse Proxy

httpd also allows you to bring remote documents into the URL space of the local server. This technique is called
reverse proxying because the web server acts like a proxy server by fetching the documents from a remote server
and returning them to the client. It is different from normal (forward) proxying because, to the client, it appears the
documents originate at the reverse proxy server.

In the following example, when clients request documents under the /foo/ directory, the server fetches those docu-
ments from the /bar/ directory on internal.example.com and returns them to the client as if they were from
the local server.

ProxyPass "/foo/" "http://internal.example.com/bar/"
ProxyPassReverse "/foo/" "http://internal.example.com/bar/"
ProxyPassReverseCookieDomain internal.example.com public.example.com
ProxyPassReverseCookiePath "/foo/" "/bar/"

The PROXYPASS configures the server to fetch the appropriate documents, while the PROXYPASSREVERSE direc-
tive rewrites redirects originating at internal.example.com so that they target the appropriate directory on the
local server. Similarly, the PROXYPASSREVERSECOOKIEDOMAIN and PROXYPASSREVERSECOOKIEPATH rewrite
cookies set by the backend server.

It is important to note, however, that links inside the documents will not be rewritten. So any absolute links on
internal.example.com will result in the client breaking out of the proxy server and requesting directly from
internal.example.com. You can modify these links (and other content) in a page as it is being served to the
client using MOD SUBSTITUTE.

Substitute "s/internal\.example\.com/www.example.com/i"

For more sophisticated rewriting of links in HTML and XHTML, the MOD PROXY HTML module is also available. It
allows you to create maps of URLs that need to be rewritten, so that complex proxying scenarios can be handled.

64 CHAPTER 2. USING THE APACHE HTTP SERVER

Rewriting Engine

When even more powerful substitution is required, the rewriting engine provided by MOD REWRITE can be useful.
The directives provided by this module can use characteristics of the request such as browser type or source IP address
in deciding from where to serve content. In addition, mod rewrite can use external database files or programs to
determine how to handle a request. The rewriting engine is capable of performing all three types of mappings discussed
above: internal redirects (aliases), external redirects, and proxying. Many practical examples employing mod rewrite
are discussed in the detailed mod rewrite documentation (p. 136) .

File Not Found

Inevitably, URLs will be requested for which no matching file can be found in the filesystem. This can happen for
several reasons. In some cases, it can be a result of moving documents from one location to another. In this case, it is
best to use URL redirection to inform clients of the new location of the resource. In this way, you can assure that old
bookmarks and links will continue to work, even though the resource is at a new location.

Another common cause of "File Not Found" errors is accidental mistyping of URLs, either directly in the browser,
or in HTML links. httpd provides the module MOD SPELING (sic) to help with this problem. When this module is
activated, it will intercept "File Not Found" errors and look for a resource with a similar filename. If one such file is
found, mod speling will send an HTTP redirect to the client informing it of the correct location. If several "close"
files are found, a list of available alternatives will be presented to the client.

An especially useful feature of mod speling, is that it will compare filenames without respect to case. This can help
systems where users are unaware of the case-sensitive nature of URLs and the unix filesystem. But using mod speling
for anything more than the occasional URL correction can place additional load on the server, since each "incorrect"
request is followed by a URL redirection and a new request from the client.

MOD DIR provides FALLBACKRESOURCE, which can be used to map virtual URIs to a real resource, which then
serves them. This is a very useful replacement for MOD REWRITE when implementing a ’front controller’

If all attempts to locate the content fail, httpd returns an error page with HTTP status code 404 (file not found). The
appearance of this page is controlled with the ERRORDOCUMENT directive and can be customized in a flexible manner
as discussed in the Custom error responses (p. 75) document.

Other URL Mapping Modules

Other modules available for URL mapping include:

• MOD ACTIONS - Maps a request to a CGI script based on the request method, or resource MIME type.

• MOD DIR - Provides basic mapping of a trailing slash into an index file such as index.html.

• MOD IMAGEMAP - Maps a request to a URL based on where a user clicks on an image embedded in a HTML
document.

• MOD NEGOTIATION - Selects an appropriate document based on client preferences such as language or content
compression.

2.10. DYNAMIC SHARED OBJECT (DSO) SUPPORT 65

2.10 Dynamic Shared Object (DSO) Support

The Apache HTTP Server is a modular program where the administrator can choose the functionality to include in
the server by selecting a set of modules. Modules will be compiled as Dynamic Shared Objects (DSOs) that exist
separately from the main httpd binary file. DSO modules may be compiled at the time the server is built, or they
may be compiled and added at a later time using the Apache Extension Tool (apxs).

Alternatively, the modules can be statically compiled into the httpd binary when the server is built.

This document describes how to use DSO modules as well as the theory behind their use.

Implementation

Related Modules
MOD SO

Related Directives
LOADMODULE

The DSO support for loading individual Apache httpd modules is based on a module named MOD SO which must
be statically compiled into the Apache httpd core. It is the only module besides CORE which cannot be put into a
DSO itself. Practically all other distributed Apache httpd modules will then be placed into a DSO. After a module is
compiled into a DSO named mod foo.so you can use MOD SO’s LOADMODULE directive in your httpd.conf
file to load this module at server startup or restart.

The DSO builds for individual modules can be disabled via configure’s --enable-mods-static option as
discussed in the install documentation (p. 20) .

To simplify this creation of DSO files for Apache httpd modules (especially for third-party modules) a support program
named apxs (APache eXtenSion) is available. It can be used to build DSO based modules outside of the Apache httpd
source tree. The idea is simple: When installing Apache HTTP Server the configure’s make install procedure
installs the Apache httpd C header files and puts the platform-dependent compiler and linker flags for building DSO
files into the apxs program. This way the user can use apxs to compile his Apache httpd module sources without the
Apache httpd distribution source tree and without having to fiddle with the platform-dependent compiler and linker
flags for DSO support.

Usage Summary

To give you an overview of the DSO features of Apache HTTP Server 2.x, here is a short and concise summary:

1. Build and install a distributed Apache httpd module, say mod foo.c, into its own DSO mod foo.so:

$./configure --prefix=/path/to/install --enable-foo

$ make install

2. Configure Apache HTTP Server with all modules enabled. Only a basic set will be loaded during server
startup. You can change the set of loaded modules by activating or deactivating the LOADMODULE directives
in httpd.conf.

$./configure --enable-mods-shared=all

$ make install

66 CHAPTER 2. USING THE APACHE HTTP SERVER

3. Some modules are only useful for developers and will not be build. when using the module set all. To build all
available modules including developer modules use reallyall. In addition the LOADMODULE directives for all
built modules can be activated via the configure option --enable-load-all-modules.

$./configure --enable-mods-shared=reallyall
--enable-load-all-modules

$ make install

4. Build and install a third-party Apache httpd module, say mod foo.c, into its own DSO mod foo.so outside
of the Apache httpd source tree using apxs:

$ cd /path/to/3rdparty

$ apxs -cia mod foo.c

In all cases, once the shared module is compiled, you must use a LOADMODULE directive in httpd.conf to tell
Apache httpd to activate the module.

See the apxs documentation (p. 291) for more details.

Background

On modern Unix derivatives there exists a mechanism called dynamic linking/loading of Dynamic Shared Objects
(DSO) which provides a way to build a piece of program code in a special format for loading it at run-time into the
address space of an executable program.

This loading can usually be done in two ways: automatically by a system program called ld.so when an executable
program is started or manually from within the executing program via a programmatic system interface to the Unix
loader through the system calls dlopen()/dlsym().

In the first way the DSO’s are usually called shared libraries or DSO libraries and named libfoo.so or
libfoo.so.1.2. They reside in a system directory (usually /usr/lib) and the link to the executable program
is established at build-time by specifying -lfoo to the linker command. This hard-codes library references into the
executable program file so that at start-time the Unix loader is able to locate libfoo.so in /usr/lib, in paths
hard-coded via linker-options like -R or in paths configured via the environment variable LD LIBRARY PATH. It then
resolves any (yet unresolved) symbols in the executable program which are available in the DSO.

Symbols in the executable program are usually not referenced by the DSO (because it’s a reusable library of general
code) and hence no further resolving has to be done. The executable program has no need to do anything on its own
to use the symbols from the DSO because the complete resolving is done by the Unix loader. (In fact, the code to
invoke ld.so is part of the run-time startup code which is linked into every executable program which has been
bound non-static). The advantage of dynamic loading of common library code is obvious: the library code needs to be
stored only once, in a system library like libc.so, saving disk space for every program.

In the second way the DSO’s are usually called shared objects or DSO files and can be named with an arbitrary
extension (although the canonical name is foo.so). These files usually stay inside a program-specific directory
and there is no automatically established link to the executable program where they are used. Instead the executable
program manually loads the DSO at run-time into its address space via dlopen(). At this time no resolving of
symbols from the DSO for the executable program is done. But instead the Unix loader automatically resolves any
(yet unresolved) symbols in the DSO from the set of symbols exported by the executable program and its already
loaded DSO libraries (especially all symbols from the ubiquitous libc.so). This way the DSO gets knowledge of
the executable program’s symbol set as if it had been statically linked with it in the first place.

Finally, to take advantage of the DSO’s API the executable program has to resolve particular symbols from the DSO
via dlsym() for later use inside dispatch tables etc. In other words: The executable program has to manually resolve

2.10. DYNAMIC SHARED OBJECT (DSO) SUPPORT 67

every symbol it needs to be able to use it. The advantage of such a mechanism is that optional program parts need not
be loaded (and thus do not spend memory) until they are needed by the program in question. When required, these
program parts can be loaded dynamically to extend the base program’s functionality.

Although this DSO mechanism sounds straightforward there is at least one difficult step here: The resolving of symbols
from the executable program for the DSO when using a DSO to extend a program (the second way). Why? Because
"reverse resolving" DSO symbols from the executable program’s symbol set is against the library design (where the
library has no knowledge about the programs it is used by) and is neither available under all platforms nor standardized.
In practice the executable program’s global symbols are often not re-exported and thus not available for use in a DSO.
Finding a way to force the linker to export all global symbols is the main problem one has to solve when using DSO
for extending a program at run-time.

The shared library approach is the typical one, because it is what the DSO mechanism was designed for, hence it is
used for nearly all types of libraries the operating system provides.

Advantages and Disadvantages

The above DSO based features have the following advantages:

• The server package is more flexible at run-time because the server process can be assembled at run-time via
LOADMODULE httpd.conf configuration directives instead of configure options at build-time. For in-
stance, this way one is able to run different server instances (standard & SSL version, minimalistic & dynamic
version [mod perl, mod php], etc.) with only one Apache httpd installation.

• The server package can be easily extended with third-party modules even after installation. This is a great
benefit for vendor package maintainers, who can create an Apache httpd core package and additional packages
containing extensions like PHP, mod perl, mod security, etc.

• Easier Apache httpd module prototyping, because with the DSO/apxs pair you can both work outside the
Apache httpd source tree and only need an apxs -i command followed by an apachectl restart to
bring a new version of your currently developed module into the running Apache HTTP Server.

DSO has the following disadvantages:

• The server is approximately 20% slower at startup time because of the symbol resolving overhead the Unix
loader now has to do.

• The server is approximately 5% slower at execution time under some platforms, because position independent
code (PIC) sometimes needs complicated assembler tricks for relative addressing, which are not necessarily as
fast as absolute addressing.

• Because DSO modules cannot be linked against other DSO-based libraries (ld -lfoo) on all platforms (for
instance a.out-based platforms usually don’t provide this functionality while ELF-based platforms do) you can-
not use the DSO mechanism for all types of modules. Or in other words, modules compiled as DSO files are
restricted to only use symbols from the Apache httpd core, from the C library (libc) and all other dynamic or
static libraries used by the Apache httpd core, or from static library archives (libfoo.a) containing position
independent code. The only chances to use other code is to either make sure the httpd core itself already contains
a reference to it or loading the code yourself via dlopen().

68 CHAPTER 2. USING THE APACHE HTTP SERVER

2.11 Content Negotiation

Apache HTTPD supports content negotiation as described in the HTTP/1.1 specification. It can choose the best
representation of a resource based on the browser-supplied preferences for media type, languages, character set and
encoding. It also implements a couple of features to give more intelligent handling of requests from browsers that send
incomplete negotiation information.

Content negotiation is provided by the MOD NEGOTIATION module, which is compiled in by default.

About Content Negotiation

A resource may be available in several different representations. For example, it might be available in different
languages or different media types, or a combination. One way of selecting the most appropriate choice is to give the
user an index page, and let them select. However it is often possible for the server to choose automatically. This works
because browsers can send, as part of each request, information about what representations they prefer. For example,
a browser could indicate that it would like to see information in French, if possible, else English will do. Browsers
indicate their preferences by headers in the request. To request only French representations, the browser would send

Accept-Language: fr

Note that this preference will only be applied when there is a choice of representations and they vary by language.

As an example of a more complex request, this browser has been configured to accept French and English, but prefer
French, and to accept various media types, preferring HTML over plain text or other text types, and preferring GIF or
JPEG over other media types, but also allowing any other media type as a last resort:

Accept-Language: fr; q=1.0, en; q=0.5

Accept: text/html; q=1.0, text/*; q=0.8, image/gif; q=0.6,

image/jpeg; q=0.6, image/*; q=0.5, */*; q=0.1

httpd supports ’server driven’ content negotiation, as defined in the HTTP/1.1 specification. It fully supports the
Accept, Accept-Language, Accept-Charset and Accept-Encoding request headers. httpd also sup-
ports ’transparent’ content negotiation, which is an experimental negotiation protocol defined in RFC 2295 and RFC
2296. It does not offer support for ’feature negotiation’ as defined in these RFCs.

A resource is a conceptual entity identified by a URI (RFC 2396). An HTTP server like Apache HTTP Server provides
access to representations of the resource(s) within its namespace, with each representation in the form of a sequence
of bytes with a defined media type, character set, encoding, etc. Each resource may be associated with zero, one, or
more than one representation at any given time. If multiple representations are available, the resource is referred to
as negotiable and each of its representations is termed a variant. The ways in which the variants for a negotiable
resource vary are called the dimensions of negotiation.

Negotiation in httpd

In order to negotiate a resource, the server needs to be given information about each of the variants. This is done in
one of two ways:

• Using a type map (i.e., a *.var file) which names the files containing the variants explicitly, or

• Using a ’MultiViews’ search, where the server does an implicit filename pattern match and chooses from among
the results.

2.11. CONTENT NEGOTIATION 69

Using a type-map file

A type map is a document which is associated with the handler named type-map (or, for backwards-compatibility
with older httpd configurations, the MIME-type application/x-type-map). Note that to use this feature, you
must have a handler set in the configuration that defines a file suffix as type-map; this is best done with

AddHandler type-map .var

in the server configuration file.

Type map files should have the same name as the resource which they are describing, followed by the extension .var.
In the examples shown below, the resource is named foo, so the type map file is named foo.var.

This file should have an entry for each available variant; these entries consist of contiguous HTTP-format header lines.
Entries for different variants are separated by blank lines. Blank lines are illegal within an entry. It is conventional to
begin a map file with an entry for the combined entity as a whole (although this is not required, and if present will be
ignored). An example map file is shown below.

URIs in this file are relative to the location of the type map file. Usually, these files will be located in the same directory
as the type map file, but this is not required. You may provide absolute or relative URIs for any file located on the
same server as the map file.

URI: foo

URI: foo.en.html
Content-type: text/html
Content-language: en

URI: foo.fr.de.html
Content-type: text/html;charset=iso-8859-2

Content-language: fr, de

Note also that a typemap file will take precedence over the filename’s extension, even when Multiviews is on. If the
variants have different source qualities, that may be indicated by the "qs" parameter to the media type, as in this
picture (available as JPEG, GIF, or ASCII-art):

URI: foo

URI: foo.jpeg
Content-type: image/jpeg; qs=0.8

URI: foo.gif
Content-type: image/gif; qs=0.5

URI: foo.txt

Content-type: text/plain; qs=0.01

qs values can vary in the range 0.000 to 1.000. Note that any variant with a qs value of 0.000 will never be chosen.
Variants with no ’qs’ parameter value are given a qs factor of 1.0. The qs parameter indicates the relative ’quality’
of this variant compared to the other available variants, independent of the client’s capabilities. For example, a JPEG
file is usually of higher source quality than an ASCII file if it is attempting to represent a photograph. However, if the
resource being represented is an original ASCII art, then an ASCII representation would have a higher source quality
than a JPEG representation. A qs value is therefore specific to a given variant depending on the nature of the resource
it represents.

The full list of headers recognized is available in the mod negotiation typemap (p. 716) documentation.

70 CHAPTER 2. USING THE APACHE HTTP SERVER

Multiviews

MultiViews is a per-directory option, meaning it can be set with an OPTIONS directive within a <DIRECTORY>,
<LOCATION> or <FILES> section in httpd.conf, or (if ALLOWOVERRIDE is properly set) in .htaccess files.
Note that Options All does not set MultiViews; you have to ask for it by name.

The effect of MultiViews is as follows: if the server receives a request for /some/dir/foo, if /some/dir has
MultiViews enabled, and /some/dir/foo does not exist, then the server reads the directory looking for files
named foo.*, and effectively fakes up a type map which names all those files, assigning them the same media types
and content-encodings it would have if the client had asked for one of them by name. It then chooses the best match
to the client’s requirements.

MultiViewsmay also apply to searches for the file named by the DIRECTORYINDEX directive, if the server is trying
to index a directory. If the configuration files specify

DirectoryIndex index

then the server will arbitrate between index.html and index.html3 if both are present. If neither are present,
and index.cgi is there, the server will run it.

If one of the files found when reading the directory does not have an extension recognized by mod mime to designate
its Charset, Content-Type, Language, or Encoding, then the result depends on the setting of the MULTIVIEWSMATCH
directive. This directive determines whether handlers, filters, and other extension types can participate in MultiViews
negotiation.

The Negotiation Methods

After httpd has obtained a list of the variants for a given resource, either from a type-map file or from the filenames in
the directory, it invokes one of two methods to decide on the ’best’ variant to return, if any. It is not necessary to know
any of the details of how negotiation actually takes place in order to use httpd’s content negotiation features. However
the rest of this document explains the methods used for those interested.

There are two negotiation methods:

1. Server driven negotiation with the httpd algorithm is used in the normal case. The httpd algorithm is ex-
plained in more detail below. When this algorithm is used, httpd can sometimes ’fiddle’ the quality factor of a
particular dimension to achieve a better result. The ways httpd can fiddle quality factors is explained in more
detail below.

2. Transparent content negotiation is used when the browser specifically requests this through the mechanism
defined in RFC 2295. This negotiation method gives the browser full control over deciding on the ’best’ variant,
the result is therefore dependent on the specific algorithms used by the browser. As part of the transparent
negotiation process, the browser can ask httpd to run the ’remote variant selection algorithm’ defined in RFC
2296.

Dimensions of Negotiation

Dimension Notes
Media Type Browser indicates preferences with the Accept header field. Each item can have an associated quality factor.

Variant description can also have a quality factor (the "qs" parameter).
Language Browser indicates preferences with the Accept-Language header field. Each item can have a quality factor.

Variants can be associated with none, one or more than one language.
Encoding Browser indicates preference with the Accept-Encoding header field. Each item can have a quality factor.
Charset Browser indicates preference with the Accept-Charset header field. Each item can have a quality factor.

Variants can indicate a charset as a parameter of the media type.

2.11. CONTENT NEGOTIATION 71

httpd Negotiation Algorithm

httpd can use the following algorithm to select the ’best’ variant (if any) to return to the browser. This algorithm is not
further configurable. It operates as follows:

1. First, for each dimension of the negotiation, check the appropriate Accept* header field and assign a quality to
each variant. If the Accept* header for any dimension implies that this variant is not acceptable, eliminate it. If
no variants remain, go to step 4.

2. Select the ’best’ variant by a process of elimination. Each of the following tests is applied in order. Any variants
not selected at each test are eliminated. After each test, if only one variant remains, select it as the best match
and proceed to step 3. If more than one variant remains, move on to the next test.

(a) Multiply the quality factor from the Accept header with the quality-of-source factor for this variants
media type, and select the variants with the highest value.

(b) Select the variants with the highest language quality factor.

(c) Select the variants with the best language match, using either the order of languages in the
Accept-Language header (if present), or else the order of languages in the LanguagePriority
directive (if present).

(d) Select the variants with the highest ’level’ media parameter (used to give the version of text/html media
types).

(e) Select variants with the best charset media parameters, as given on the Accept-Charset header line.
Charset ISO-8859-1 is acceptable unless explicitly excluded. Variants with a text/* media type but not
explicitly associated with a particular charset are assumed to be in ISO-8859-1.

(f) Select those variants which have associated charset media parameters that are not ISO-8859-1. If there are
no such variants, select all variants instead.

(g) Select the variants with the best encoding. If there are variants with an encoding that is acceptable to the
user-agent, select only these variants. Otherwise if there is a mix of encoded and non-encoded variants,
select only the unencoded variants. If either all variants are encoded or all variants are not encoded, select
all variants.

(h) Select the variants with the smallest content length.

(i) Select the first variant of those remaining. This will be either the first listed in the type-map file, or when
variants are read from the directory, the one whose file name comes first when sorted using ASCII code
order.

3. The algorithm has now selected one ’best’ variant, so return it as the response. The HTTP response header Vary
is set to indicate the dimensions of negotiation (browsers and caches can use this information when caching the
resource). End.

4. To get here means no variant was selected (because none are acceptable to the browser). Return a 406 status
(meaning "No acceptable representation") with a response body consisting of an HTML document listing the
available variants. Also set the HTTP Vary header to indicate the dimensions of variance.

Fiddling with Quality Values

httpd sometimes changes the quality values from what would be expected by a strict interpretation of the httpd negoti-
ation algorithm above. This is to get a better result from the algorithm for browsers which do not send full or accurate
information. Some of the most popular browsers send Accept header information which would otherwise result in
the selection of the wrong variant in many cases. If a browser sends full and correct information these fiddles will not
be applied.

72 CHAPTER 2. USING THE APACHE HTTP SERVER

Media Types and Wildcards

The Accept: request header indicates preferences for media types. It can also include ’wildcard’ media types, such
as "image/*" or "*/*" where the * matches any string. So a request including:

Accept: image/*, */*

would indicate that any type starting "image/" is acceptable, as is any other type. Some browsers routinely send
wildcards in addition to explicit types they can handle. For example:

Accept: text/html, text/plain, image/gif, image/jpeg, */*

The intention of this is to indicate that the explicitly listed types are preferred, but if a different representation is
available, that is ok too. Using explicit quality values, what the browser really wants is something like:

Accept: text/html, text/plain, image/gif, image/jpeg, */*; q=0.01

The explicit types have no quality factor, so they default to a preference of 1.0 (the highest). The wildcard */* is given
a low preference of 0.01, so other types will only be returned if no variant matches an explicitly listed type.

If the Accept: header contains no q factors at all, httpd sets the q value of "*/*", if present, to 0.01 to emulate
the desired behavior. It also sets the q value of wildcards of the format "type/*" to 0.02 (so these are preferred over
matches against "*/*". If any media type on the Accept: header contains a q factor, these special values are not
applied, so requests from browsers which send the explicit information to start with work as expected.

Language Negotiation Exceptions

New in httpd 2.0, some exceptions have been added to the negotiation algorithm to allow graceful fallback when
language negotiation fails to find a match.

When a client requests a page on your server, but the server cannot find a single page that matches the
Accept-language sent by the browser, the server will return either a "No Acceptable Variant" or "Multiple
Choices" response to the client. To avoid these error messages, it is possible to configure httpd to ignore the
Accept-language in these cases and provide a document that does not explicitly match the client’s request. The
FORCELANGUAGEPRIORITY directive can be used to override one or both of these error messages and substitute the
servers judgement in the form of the LANGUAGEPRIORITY directive.

The server will also attempt to match language-subsets when no other match can be found. For example, if a client
requests documents with the language en-GB for British English, the server is not normally allowed by the HTTP/1.1
standard to match that against a document that is marked as simply en. (Note that it is almost surely a configura-
tion error to include en-GB and not en in the Accept-Language header, since it is very unlikely that a reader
understands British English, but doesn’t understand English in general. Unfortunately, many current clients have de-
fault configurations that resemble this.) However, if no other language match is possible and the server is about to
return a "No Acceptable Variants" error or fallback to the LANGUAGEPRIORITY, the server will ignore the subset
specification and match en-GB against en documents. Implicitly, httpd will add the parent language to the client’s
acceptable language list with a very low quality value. But note that if the client requests "en-GB; q=0.9, fr; q=0.8",
and the server has documents designated "en" and "fr", then the "fr" document will be returned. This is necessary
to maintain compliance with the HTTP/1.1 specification and to work effectively with properly configured clients.

In order to support advanced techniques (such as cookies or special URL-paths) to determine the user’s preferred
language, since httpd 2.0.47 MOD NEGOTIATION recognizes the environment variable (p. 82) prefer-language.
If it exists and contains an appropriate language tag, MOD NEGOTIATION will try to select a matching variant. If
there’s no such variant, the normal negotiation process applies.

2.11. CONTENT NEGOTIATION 73

Example

SetEnvIf Cookie "language=(.+)" prefer-language=$1
Header append Vary cookie

Extensions to Transparent Content Negotiation

httpd extends the transparent content negotiation protocol (RFC 2295) as follows. A new {encoding ..} element
is used in variant lists to label variants which are available with a specific content-encoding only. The implementation
of the RVSA/1.0 algorithm (RFC 2296) is extended to recognize encoded variants in the list, and to use them as
candidate variants whenever their encodings are acceptable according to the Accept-Encoding request header.
The RVSA/1.0 implementation does not round computed quality factors to 5 decimal places before choosing the best
variant.

Note on hyperlinks and naming conventions

If you are using language negotiation you can choose between different naming conventions, because files can have
more than one extension, and the order of the extensions is normally irrelevant (see the mod mime (p. 699) documen-
tation for details).

A typical file has a MIME-type extension (e.g., html), maybe an encoding extension (e.g., gz), and of course a
language extension (e.g., en) when we have different language variants of this file.

Examples:

• foo.en.html

• foo.html.en

• foo.en.html.gz

Here some more examples of filenames together with valid and invalid hyperlinks:

Filename Valid hyperlink Invalid hyperlink
foo.html.en foo

foo.html
-

foo.en.html foo foo.html
foo.html.en.gz foo

foo.html
foo.gz
foo.html.gz

foo.en.html.gz foo foo.html
foo.html.gz
foo.gz

foo.gz.html.en foo
foo.gz
foo.gz.html

foo.html

foo.html.gz.en foo
foo.html
foo.html.gz

foo.gz

Looking at the table above, you will notice that it is always possible to use the name without any extensions in a
hyperlink (e.g., foo). The advantage is that you can hide the actual type of a document rsp. file and can change it
later, e.g., from html to shtml or cgi without changing any hyperlink references.

If you want to continue to use a MIME-type in your hyperlinks (e.g. foo.html) the language extension (including an
encoding extension if there is one) must be on the right hand side of the MIME-type extension (e.g., foo.html.en).

74 CHAPTER 2. USING THE APACHE HTTP SERVER

Note on Caching

When a cache stores a representation, it associates it with the request URL. The next time that URL is requested, the
cache can use the stored representation. But, if the resource is negotiable at the server, this might result in only the
first requested variant being cached and subsequent cache hits might return the wrong response. To prevent this, httpd
normally marks all responses that are returned after content negotiation as non-cacheable by HTTP/1.0 clients. httpd
also supports the HTTP/1.1 protocol features to allow caching of negotiated responses.

For requests which come from a HTTP/1.0 compliant client (either a browser or a cache), the directive CACHENE-
GOTIATEDDOCS can be used to allow caching of responses which were subject to negotiation. This directive can be
given in the server config or virtual host, and takes no arguments. It has no effect on requests from HTTP/1.1 clients.

For HTTP/1.1 clients, httpd sends a Vary HTTP response header to indicate the negotiation dimensions for the
response. Caches can use this information to determine whether a subsequent request can be served from the local
copy. To encourage a cache to use the local copy regardless of the negotiation dimensions, set the force-no-vary
environment variable (p. 82) .

2.12. CUSTOM ERROR RESPONSES 75

2.12 Custom Error Responses

Although the Apache HTTP Server provides generic error responses in the event of 4xx or 5xx HTTP status codes,
these responses are rather stark, uninformative, and can be intimidating to site users. You may wish to provide custom
error responses which are either friendlier, or in some language other than English, or perhaps which are styled more
in line with your site layout.

Customized error responses can be defined for any HTTP status code designated as an error condition - that is, any
4xx or 5xx status.

Additionally, a set of values are provided, so that the error document can be customized further based on the values of
these variables, using Server Side Includes (p. 233) . Or, you can have error conditions handled by a cgi program, or
other dynamic handler (PHP, mod perl, etc) which makes use of these variables.

Configuration

Custom error documents are configured using the ERRORDOCUMENT directive, which may be used in global, virtu-
alhost, or directory context. It may be used in .htaccess files if ALLOWOVERRIDE is set to FileInfo.

ErrorDocument 500 "Sorry, our script crashed. Oh dear"
ErrorDocument 500 /cgi-bin/crash-recover
ErrorDocument 500 http://error.example.com/server_error.html
ErrorDocument 404 /errors/not_found.html
ErrorDocument 401 /subscription/how_to_subscribe.html

The syntax of the ErrorDocument directive is:

ErrorDocument <3-digit-code> <action>

where the action will be treated as:

1. A local URL to redirect to (if the action begins with a "/").

2. An external URL to redirect to (if the action is a valid URL).

3. Text to be displayed (if none of the above). The text must be wrapped in quotes (") if it consists of more than
one word.

When redirecting to a local URL, additional environment variables are set so that the response can be further cus-
tomized. They are not sent to external URLs.

Available Variables

Redirecting to another URL can be useful, but only if some information can be passed which can then be used to
explain or log the error condition more clearly.

To achieve this, when the error redirect is sent, additional environment variables will be set, which will be generated
from the headers provided to the original request by prepending ’REDIRECT ’ onto the original header name. This
provides the error document the context of the original request.

For example, you might receive, in addition to more usual environment variables, the following.

76 CHAPTER 2. USING THE APACHE HTTP SERVER

REDIRECT HTTP ACCEPT=*/*, image/gif, image/jpeg, image/png
REDIRECT HTTP USER AGENT=Mozilla/5.0 Fedora/3.5.8-1.fc12 Firefox/3.5.8
REDIRECT PATH=.:/bin:/usr/local/bin:/sbin
REDIRECT QUERY STRING=
REDIRECT REMOTE ADDR=121.345.78.123
REDIRECT REMOTE HOST=client.example.com
REDIRECT SERVER NAME=www.example.edu
REDIRECT SERVER PORT=80
REDIRECT SERVER SOFTWARE=Apache/2.2.15

REDIRECT URL=/cgi-bin/buggy.pl

REDIRECT environment variables are created from the environment variables which existed prior to the redirect.
They are renamed with a REDIRECT prefix, i.e., HTTP USER AGENT becomes REDIRECT HTTP USER AGENT.

REDIRECT URL, REDIRECT STATUS, and REDIRECT QUERY STRING are guaranteed to be set, and the other
headers will be set only if they existed prior to the error condition.

None of these will be set if the ERRORDOCUMENT target is an external redirect (anything starting with a scheme
name like http:, even if it refers to the same host as the server).

Customizing Error Responses

If you point your ErrorDocument to some variety of dynamic handler such as a server-side include document, CGI
script, or some variety of other handler, you may wish to use the available custom environment variables to customize
this response.

If the ErrorDocument specifies a local redirect to a CGI script, the script should include a "Status:" header field
in its output in order to ensure the propagation all the way back to the client of the error condition that caused it to be
invoked. For instance, a Perl ErrorDocument script might include the following:

...
print "Content-type: text/html\n";
printf "Status: %s Condition Intercepted\n", $ENV{"REDIRECT_STATUS"};
...

If the script is dedicated to handling a particular error condition, such as 404NotFound, it can use the specific code
and error text instead.

Note that if the response contains Location: header (in order to issue a client-side redirect), the script must emit an
appropriate Status: header (such as 302Found). Otherwise the Location: header may have no effect.

Multi Language Custom Error Documents

Provided with your installation of the Apache HTTP Server is a directory of custom error documents translated into 16
different languages. There’s also a configuration file in the conf/extra configuration directory that can be included
to enable this feature.

In your server configuration file, you’ll see a line such as:

Multi-language error messages
#Include conf/extra/httpd-multilang-errordoc.conf

Uncommenting this Include line will enable this feature, and provide language-negotiated error messages, based on
the language preference set in the client browser.

2.12. CUSTOM ERROR RESPONSES 77

Additionally, these documents contain various of the REDIRECT variables, so that additional information can be
provided to the end-user about what happened, and what they can do now.

These documents can be customized to whatever degree you wish to provide more useful information to users about
your site, and what they can expect to find there.

MOD INCLUDE and MOD NEGOTIATION must be enabled to use this feature.

78 CHAPTER 2. USING THE APACHE HTTP SERVER

2.13 Binding to Addresses and Ports

Configuring Apache HTTP Server to listen on specific addresses and ports.

See also

• Virtual Hosts (p. 114)

• DNS Issues (p. 111)

Overview

Related Modules
CORE
MPM COMMON

Related Directives
<VIRTUALHOST>
LISTEN

When httpd starts, it binds to some port and address on the local machine and waits for incoming requests. By default,
it listens to all addresses on the machine. However, it may need to be told to listen on specific ports, or only on selected
addresses, or a combination of both. This is often combined with the Virtual Host (p. 114) feature, which determines
how httpd responds to different IP addresses, hostnames and ports.

The LISTEN directive tells the server to accept incoming requests only on the specified port(s) or address-and-port
combinations. If only a port number is specified in the LISTEN directive, the server listens to the given port on all
interfaces. If an IP address is given as well as a port, the server will listen on the given port and interface. Multiple
LISTEN directives may be used to specify a number of addresses and ports to listen on. The server will respond to
requests from any of the listed addresses and ports.

For example, to make the server accept connections on both port 80 and port 8000, on all interfaces, use:

Listen 80
Listen 8000

To make the server accept connections on port 80 for one interface, and port 8000 on another, use

Listen 192.0.2.1:80
Listen 192.0.2.5:8000

IPv6 addresses must be enclosed in square brackets, as in the following example:

Listen [2001:db8::a00:20ff:fea7:ccea]:80

! Overlapping LISTEN directives will result in a fatal error which will prevent the server from
starting up.

(48)Address already in use: make sock: could not bind

to address [::]:80

See the discussion in the wikia for further troubleshooting tips.
ahttp://wiki.apache.org/httpd/CouldNotBindToAddress

http://wiki.apache.org/httpd/CouldNotBindToAddress

2.13. BINDING TO ADDRESSES AND PORTS 79

Special IPv6 Considerations

A growing number of platforms implement IPv6, and APR supports IPv6 on most of these platforms, allowing httpd
to allocate IPv6 sockets, and to handle requests sent over IPv6.

One complicating factor for httpd administrators is whether or not an IPv6 socket can handle both IPv4 connections
and IPv6 connections. Handling IPv4 connections with an IPv6 socket uses IPv4-mapped IPv6 addresses, which are
allowed by default on most platforms, but are disallowed by default on FreeBSD, NetBSD, and OpenBSD, in order to
match the system-wide policy on those platforms. On systems where it is disallowed by default, a special configure
parameter can change this behavior for httpd.

On the other hand, on some platforms, such as Linux and Tru64, the only way to handle both IPv6 and IPv4 is to
use mapped addresses. If you want httpd to handle IPv4 and IPv6 connections with a minimum of sockets, which
requires using IPv4-mapped IPv6 addresses, specify the --enable-v4-mapped configure option.

--enable-v4-mapped is the default on all platforms except FreeBSD, NetBSD, and OpenBSD, so this is probably
how your httpd was built.

If you want httpd to handle IPv4 connections only, regardless of what your platform and APR will support, specify an
IPv4 address on all LISTEN directives, as in the following examples:

Listen 0.0.0.0:80
Listen 192.0.2.1:80

If your platform supports it and you want httpd to handle IPv4 and IPv6 connections on separate sockets (i.e., to disable
IPv4-mapped addresses), specify the --disable-v4-mapped configure option. --disable-v4-mapped
is the default on FreeBSD, NetBSD, and OpenBSD.

Specifying the protocol with Listen

The optional second protocol argument of LISTEN is not required for most configurations. If not specified, https
is the default for port 443 and http the default for all other ports. The protocol is used to determine which module
should handle a request, and to apply protocol specific optimizations with the ACCEPTFILTER directive.

You only need to set the protocol if you are running on non-standard ports. For example, running an https site on
port 8443:

Listen 192.170.2.1:8443 https

How This Works With Virtual Hosts

The LISTEN directive does not implement Virtual Hosts - it only tells the main server what addresses and ports to
listen on. If no <VIRTUALHOST> directives are used, the server will behave in the same way for all accepted
requests. However, <VIRTUALHOST> can be used to specify a different behavior for one or more of the addresses
or ports. To implement a VirtualHost, the server must first be told to listen to the address and port to be used. Then
a <VIRTUALHOST> section should be created for the specified address and port to set the behavior of this virtual
host. Note that if the <VIRTUALHOST> is set for an address and port that the server is not listening to, it cannot be
accessed.

80 CHAPTER 2. USING THE APACHE HTTP SERVER

2.14 Multi-Processing Modules (MPMs)

This document describes what a Multi-Processing Module is and how they are used by the Apache HTTP Server.

Introduction

The Apache HTTP Server is designed to be a powerful and flexible web server that can work on a very wide variety of
platforms in a range of different environments. Different platforms and different environments often require different
features, or may have different ways of implementing the same feature most efficiently. Apache httpd has always
accommodated a wide variety of environments through its modular design. This design allows the webmaster to
choose which features will be included in the server by selecting which modules to load either at compile-time or at
run-time.

Apache HTTP Server 2.0 extends this modular design to the most basic functions of a web server. The server ships
with a selection of Multi-Processing Modules (MPMs) which are responsible for binding to network ports on the
machine, accepting requests, and dispatching children to handle the requests.

Extending the modular design to this level of the server allows two important benefits:

• Apache httpd can more cleanly and efficiently support a wide variety of operating systems. In particular, the
Windows version of the server is now much more efficient, since MPM WINNT can use native networking fea-
tures in place of the POSIX layer used in Apache httpd 1.3. This benefit also extends to other operating systems
that implement specialized MPMs.

• The server can be better customized for the needs of the particular site. For example, sites that need a great
deal of scalability can choose to use a threaded MPM like WORKER or EVENT, while sites requiring stability or
compatibility with older software can use a PREFORK.

At the user level, MPMs appear much like other Apache httpd modules. The main difference is that one and only one
MPM must be loaded into the server at any time. The list of available MPMs appears on the module index page (p.
1017) .

MPM Defaults

The following table lists the default MPMs for various operating systems. This will be the MPM selected if you do
not make another choice at compile-time.

Netware MPM NETWARE

OS/2 MPMT OS2
Unix PREFORK, WORKER, or

EVENT, depending on
platform capabilities

Windows MPM WINNT

=⇒Here, ’Unix’ is used to mean Unix-like operating systems, such as Linux, BSD, Solaris, Mac
OS X, etc.

In the case of Unix, the decision as to which MPM is installed is based on two questions:

1. Does the system support threads?

2. Does the system support thread-safe polling (Specifically, the kqueue and epoll functions)?

If the answer to both questions is ’yes’, the default MPM is EVENT.

If The answer to #1 is ’yes’, but the answer to #2 is ’no’, the default will be WORKER.

2.14. MULTI-PROCESSING MODULES (MPMS) 81

If the answer to both questions is ’no’, then the default MPM will be PREFORK.

In practical terms, this means that the default will almost always be EVENT, as all modern operating systems support
these two features.

Building an MPM as a static module

MPMs can be built as static modules on all platforms. A single MPM is chosen at build time and linked into the server.
The server must be rebuilt in order to change the MPM.

To override the default MPM choice, use the --with-mpm=NAME option of the configure script. NAME is the
name of the desired MPM.

Once the server has been compiled, it is possible to determine which MPM was chosen by using ./httpd -l. This
command will list every module that is compiled into the server, including the MPM.

Building an MPM as a DSO module

On Unix and similar platforms, MPMs can be built as DSO modules and dynamically loaded into the server in the
same manner as other DSO modules. Building MPMs as DSO modules allows the MPM to be changed by updating
the LOADMODULE directive for the MPM instead of by rebuilding the server.

LoadModule mpm_prefork_module modules/mod_mpm_prefork.so

Attempting to LOADMODULE more than one MPM will result in a startup failure with the following error.

AH00534: httpd: Configuration error: More than one MPM loaded.

This feature is enabled using the --enable-mpms-shared option of the configure script. With argument all,
all possible MPMs for the platform will be installed. Alternately, a list of MPMs can be specified as the argument.

The default MPM, either selected automatically or specified with the --with-mpm option of the configure script,
will be loaded in the generated server configuration file. Edit the LOADMODULE directive to select a different MPM.

82 CHAPTER 2. USING THE APACHE HTTP SERVER

2.15 Environment Variables in Apache

There are two kinds of environment variables that affect the Apache HTTP Server.

First, there are the environment variables controlled by the underlying operating system. These are set before the
server starts. They can be used in expansions in configuration files, and can optionally be passed to CGI scripts and
SSI using the PassEnv directive.

Second, the Apache HTTP Server provides a mechanism for storing information in named variables that are also
called environment variables. This information can be used to control various operations such as logging or access
control. The variables are also used as a mechanism to communicate with external programs such as CGI scripts. This
document discusses different ways to manipulate and use these variables.

Although these variables are referred to as environment variables, they are not the same as the environment variables
controlled by the underlying operating system. Instead, these variables are stored and manipulated in an internal
Apache structure. They only become actual operating system environment variables when they are provided to CGI
scripts and Server Side Include scripts. If you wish to manipulate the operating system environment under which
the server itself runs, you must use the standard environment manipulation mechanisms provided by your operating
system shell.

Setting Environment Variables

Related Modules
MOD CACHE
MOD ENV
MOD REWRITE
MOD SETENVIF
MOD UNIQUE ID

Related Directives
BROWSERMATCH
BROWSERMATCHNOCASE
PASSENV
REWRITERULE
SETENV
SETENVIF
SETENVIFNOCASE
UNSETENV

Basic Environment Manipulation

The most basic way to set an environment variable in Apache is using the unconditional SETENV directive. Variables
may also be passed from the environment of the shell which started the server using the PASSENV directive.

Conditional Per-Request Settings

For additional flexibility, the directives provided by MOD SETENVIF allow environment variables to be set on a per-
request basis, conditional on characteristics of particular requests. For example, a variable could be set only when
a specific browser (User-Agent) is making a request, or only when a specific Referer [sic] header is found. Even
more flexibility is available through the MOD REWRITE’s REWRITERULE which uses the [E=...] option to set
environment variables.

Unique Identifiers

Finally, MOD UNIQUE ID sets the environment variable UNIQUE ID for each request to a value which is guaranteed
to be unique across "all" requests under very specific conditions.

2.15. ENVIRONMENT VARIABLES IN APACHE 83

Standard CGI Variables

In addition to all environment variables set within the Apache configuration and passed from the shell, CGI scripts and
SSI pages are provided with a set of environment variables containing meta-information about the request as required
by the CGI specification19.

Some Caveats

• It is not possible to override or change the standard CGI variables using the environment manipulation directives.

• When suexec is used to launch CGI scripts, the environment will be cleaned down to a set of safe variables
before CGI scripts are launched. The list of safe variables is defined at compile-time in suexec.c.

• For portability reasons, the names of environment variables may contain only letters, numbers, and the un-
derscore character. In addition, the first character may not be a number. Characters which do not match this
restriction will be replaced by an underscore when passed to CGI scripts and SSI pages.

• A special case are HTTP headers which are passed to CGI scripts and the like via environment variables (see
below). They are converted to uppercase and only dashes are replaced with underscores; if the header contains
any other (invalid) character, the whole header is silently dropped. See below for a workaround.

• The SETENV directive runs late during request processing meaning that directives such as SETENVIF and
REWRITECOND will not see the variables set with it.

• When the server looks up a path via an internal subrequest such as looking for a DIRECTORYINDEX or gen-
erating a directory listing with MOD AUTOINDEX, per-request environment variables are not inherited in the
subrequest. Additionally, SETENVIF directives are not separately evaluated in the subrequest due to the API
phases MOD SETENVIF takes action in.

Using Environment Variables

Related Modules
MOD AUTHZ HOST
MOD CGI
MOD EXT FILTER
MOD HEADERS
MOD INCLUDE
MOD LOG CONFIG
MOD REWRITE

Related Directives
REQUIRE
CUSTOMLOG
DENY
EXTFILTERDEFINE
HEADER
LOGFORMAT
REWRITECOND
REWRITERULE

CGI Scripts

One of the primary uses of environment variables is to communicate information to CGI scripts. As discussed above,
the environment passed to CGI scripts includes standard meta-information about the request in addition to any variables
set within the Apache configuration. For more details, see the CGI tutorial (p. 226) .

SSI Pages

Server-parsed (SSI) documents processed by MOD INCLUDE’s INCLUDES filter can print environment variables using
the echo element, and can use environment variables in flow control elements to makes parts of a page conditional on

19http://www.ietf.org/rfc/rfc3875

http://www.ietf.org/rfc/rfc3875

84 CHAPTER 2. USING THE APACHE HTTP SERVER

characteristics of a request. Apache also provides SSI pages with the standard CGI environment variables as discussed
above. For more details, see the SSI tutorial (p. 233) .

Access Control

Access to the server can be controlled based on the value of environment variables using the allow from env=
and deny from env= directives. In combination with SETENVIF, this allows for flexible control of access to the
server based on characteristics of the client. For example, you can use these directives to deny access to a particular
browser (User-Agent).

Conditional Logging

Environment variables can be logged in the access log using the LOGFORMAT option %e. In addition, the decision on
whether or not to log requests can be made based on the status of environment variables using the conditional form
of the CUSTOMLOG directive. In combination with SETENVIF this allows for flexible control of which requests are
logged. For example, you can choose not to log requests for filenames ending in gif, or you can choose to only log
requests from clients which are outside your subnet.

Conditional Response Headers

The HEADER directive can use the presence or absence of an environment variable to determine whether or not a
certain HTTP header will be placed in the response to the client. This allows, for example, a certain response header
to be sent only if a corresponding header is received in the request from the client.

External Filter Activation

External filters configured by MOD EXT FILTER using the EXTFILTERDEFINE directive can by activated conditional
on an environment variable using the disableenv= and enableenv= options.

URL Rewriting

The %{ENV:variable} form of TestString in the REWRITECOND allows MOD REWRITE’s rewrite engine to make
decisions conditional on environment variables. Note that the variables accessible in MOD REWRITE without the ENV:
prefix are not actually environment variables. Rather, they are variables special to MOD REWRITE which cannot be
accessed from other modules.

Special Purpose Environment Variables

Interoperability problems have led to the introduction of mechanisms to modify the way Apache behaves when talking
to particular clients. To make these mechanisms as flexible as possible, they are invoked by defining environment
variables, typically with BROWSERMATCH, though SETENV and PASSENV could also be used, for example.

downgrade-1.0

This forces the request to be treated as a HTTP/1.0 request even if it was in a later dialect.

2.15. ENVIRONMENT VARIABLES IN APACHE 85

force-gzip

If you have the DEFLATE filter activated, this environment variable will ignore the accept-encoding setting of your
browser and will send compressed output unconditionally.

force-no-vary

This causes any Vary fields to be removed from the response header before it is sent back to the client. Some clients
don’t interpret this field correctly; setting this variable can work around this problem. Setting this variable also implies
force-response-1.0.

force-response-1.0

This forces an HTTP/1.0 response to clients making an HTTP/1.0 request. It was originally implemented as a result of
a problem with AOL’s proxies. Some HTTP/1.0 clients may not behave correctly when given an HTTP/1.1 response,
and this can be used to interoperate with them.

gzip-only-text/html

When set to a value of "1", this variable disables the DEFLATE output filter provided by MOD DEFLATE for content-
types other than text/html. If you’d rather use statically compressed files, MOD NEGOTIATION evaluates the
variable as well (not only for gzip, but for all encodings that differ from "identity").

no-gzip

When set, the DEFLATE filter of MOD DEFLATE will be turned off and MOD NEGOTIATION will refuse to deliver
encoded resources.

no-cache

Available in versions 2.2.12 and later

When set, MOD CACHE will not save an otherwise cacheable response. This environment variable does not influence
whether a response already in the cache will be served for the current request.

nokeepalive

This disables KEEPALIVE when set.

prefer-language

This influences MOD NEGOTIATION’s behaviour. If it contains a language tag (such as en, ja or x-klingon),
MOD NEGOTIATION tries to deliver a variant with that language. If there’s no such variant, the normal negotiation (p.
68) process applies.

86 CHAPTER 2. USING THE APACHE HTTP SERVER

redirect-carefully

This forces the server to be more careful when sending a redirect to the client. This is typically used when a client
has a known problem handling redirects. This was originally implemented as a result of a problem with Microsoft’s
WebFolders software which has a problem handling redirects on directory resources via DAV methods.

suppress-error-charset

Available in versions after 2.0.54

When Apache issues a redirect in response to a client request, the response includes some actual text to be displayed
in case the client can’t (or doesn’t) automatically follow the redirection. Apache ordinarily labels this text according
to the character set which it uses, which is ISO-8859-1.

However, if the redirection is to a page that uses a different character set, some broken browser versions will try to
use the character set from the redirection text rather than the actual page. This can result in Greek, for instance, being
incorrectly rendered.

Setting this environment variable causes Apache to omit the character set for the redirection text, and these broken
browsers will then correctly use that of the destination page.

! Security note

Sending error pages without a specified character set may allow a cross-site-scripting attack
for existing browsers (MSIE) which do not follow the HTTP/1.1 specification and attempt to
"guess" the character set from the content. Such browsers can be easily fooled into using the
UTF-7 character set, and UTF-7 content from input data (such as the request-URI) will not be
escaped by the usual escaping mechanisms designed to prevent cross-site-scripting attacks.

force-proxy-request-1.0, proxy-nokeepalive, proxy-sendchunked, proxy-sendcl, proxy-chain-auth, proxy-
interim-response, proxy-initial-not-pooled

These directives alter the protocol behavior of MOD PROXY. See the MOD PROXY and MOD PROXY HTTP documen-
tation for more details.

Examples

Passing broken headers to CGI scripts

Starting with version 2.4, Apache is more strict about how HTTP headers are converted to environment variables in
MOD CGI and other modules: Previously any invalid characters in header names were simply translated to under-
scores. This allowed for some potential cross-site-scripting attacks via header injection (see Unusual Web Bugs20,
slide 19/20).

If you have to support a client which sends broken headers and which can’t be fixed, a simple workaround involving
MOD SETENVIF and MOD HEADERS allows you to still accept these headers:

#
The following works around a client sending a broken Accept_Encoding
header.
#

20http://events.ccc.de/congress/2007/Fahrplan/events/2212.en.html

http://events.ccc.de/congress/2007/Fahrplan/events/2212.en.html

2.15. ENVIRONMENT VARIABLES IN APACHE 87

SetEnvIfNoCase ˆAccept.Encoding$ ˆ(.*)$ fix_accept_encoding=$1
RequestHeader set Accept-Encoding %{fix_accept_encoding}e env=fix_accept_encoding

Changing protocol behavior with misbehaving clients

Earlier versions recommended that the following lines be included in httpd.conf to deal with known client problems.
Since the affected clients are no longer seen in the wild, this configuration is likely no-longer necessary.

#
The following directives modify normal HTTP response behavior.
The first directive disables keepalive for Netscape 2.x and browsers that
spoof it. There are known problems with these browser implementations.
The second directive is for Microsoft Internet Explorer 4.0b2
which has a broken HTTP/1.1 implementation and does not properly
support keepalive when it is used on 301 or 302 (redirect) responses.
#
BrowserMatch "Mozilla/2" nokeepalive
BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-1.0 force-response-1.0

#
The following directive disables HTTP/1.1 responses to browsers which
are in violation of the HTTP/1.0 spec by not being able to understand a
basic 1.1 response.
#
BrowserMatch "RealPlayer 4\.0" force-response-1.0
BrowserMatch "Java/1\.0" force-response-1.0
BrowserMatch "JDK/1\.0" force-response-1.0

Do not log requests for images in the access log

This example keeps requests for images from appearing in the access log. It can be easily modified to prevent logging
of particular directories, or to prevent logging of requests coming from particular hosts.

SetEnvIf Request_URI \.gif image-request
SetEnvIf Request_URI \.jpg image-request
SetEnvIf Request_URI \.png image-request
CustomLog logs/access_log common env=!image-request

Prevent "Image Theft"

This example shows how to keep people not on your server from using images on your server as inline-images on their
pages. This is not a recommended configuration, but it can work in limited circumstances. We assume that all your
images are in a directory called /web/images.

SetEnvIf Referer "ˆhttp://www\.example\.com/" local_referal
Allow browsers that do not send Referer info
SetEnvIf Referer "ˆ$" local_referal
<Directory "/web/images">

Require env local_referal
</Directory>

88 CHAPTER 2. USING THE APACHE HTTP SERVER

For more information about this technique, see the "Keeping Your Images from Adorning Other Sites21" tutorial on
ServerWatch.

21http://www.serverwatch.com/tutorials/article.php/1132731

http://www.serverwatch.com/tutorials/article.php/1132731

2.16. EXPRESSIONS IN APACHE HTTP SERVER 89

2.16 Expressions in Apache HTTP Server

Historically, there are several syntax variants for expressions used to express a condition in the different modules of the
Apache HTTP Server. There is some ongoing effort to only use a single variant, called ap expr, for all configuration
directives. This document describes the ap expr expression parser.

The ap expr expression is intended to replace most other expression variants in HTTPD. For example, the deprecated
SSLREQUIRE expressions can be replaced by Require expr (p. 487) .

See also

• <IF>

• <ELSEIF>

• <ELSE>

• <ERRORDOCUMENT>

• AUTHBASICFAKE

• AUTHFORMLOGINREQUIREDLOCATION

• AUTHFORMLOGINSUCCESSLOCATION

• AUTHFORMLOGOUTLOCATION

• REWRITECOND

• SETENVIFEXPR

• HEADER

• REQUESTHEADER

• FILTERPROVIDER

• Require expr (p. 487)

• Require ldap-user (p. 469)

• Require ldap-group (p. 469)

• Require ldap-dn (p. 469)

• Require ldap-attribute (p. 469)

• Require ldap-filter (p. 469)

• Require dbd-group (p. 495)

• Require dbm-group (p. 499)

• Require group (p. 502)

• Require host (p. 504)

• SSLREQUIRE

• LOGMESSAGE

• MOD INCLUDE

Grammar in Backus-Naur Form notation

Backus-Naur Form22 (BNF) is a notation technique for context-free grammars, often used to describe the syntax of
languages used in computing. In most cases, expressions are used to express boolean values. For these, the starting
point in the BNF is expr. However, a few directives like LOGMESSAGE accept expressions that evaluate to a string
value. For those, the starting point in the BNF is string.

22http://en.wikipedia.org/wiki/Backus%E2%80%93Naur Form

http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form

90 CHAPTER 2. USING THE APACHE HTTP SERVER

expr ::= "true" | "false"
| "!" expr
| expr "&&" expr
| expr "||" expr
| "(" expr ")"
| comp

comp ::= stringcomp
| integercomp
| unaryop word
| word binaryop word
| word "in" "{" wordlist "}"
| word "in" listfunction
| word "=˜" regex
| word "!˜" regex

stringcomp ::= word "==" word
| word "!=" word
| word "<" word
| word "<=" word
| word ">" word
| word ">=" word

integercomp ::= word "-eq" word | word "eq" word
| word "-ne" word | word "ne" word
| word "-lt" word | word "lt" word
| word "-le" word | word "le" word
| word "-gt" word | word "gt" word
| word "-ge" word | word "ge" word

wordlist ::= word
| wordlist "," word

word ::= word "." word
| digit
| "’" string "’"
| """ string """
| variable
| rebackref
| function

string ::= stringpart
| string stringpart

stringpart ::= cstring
| variable
| rebackref

cstring ::= ...
digit ::= [0-9]+

variable ::= "%{" varname "}"

2.16. EXPRESSIONS IN APACHE HTTP SERVER 91

| "%{" funcname ":" funcargs "}"

rebackref ::= "$" [0-9]

function ::= funcname "(" word ")"

listfunction ::= listfuncname "(" word ")"

Variables

The expression parser provides a number of variables of the form %{HTTP HOST}. Note that the value of a variable
may depend on the phase of the request processing in which it is evaluated. For example, an expression used in an
<IF > directive is evaluated before authentication is done. Therefore, %{REMOTE USER} will not be set in this case.

The following variables provide the values of the named HTTP request headers. The values of other headers can be
obtained with the req function. Using these variables may cause the header name to be added to the Vary header
of the HTTP response, except where otherwise noted for the directive accepting the expression. The req novary
function may be used to circumvent this behavior.

Name
HTTP ACCEPT

HTTP COOKIE

HTTP FORWARDED

HTTP HOST

HTTP PROXY CONNECTION

HTTP REFERER

HTTP USER AGENT

Other request related variables

Name Description
REQUEST METHOD The HTTP method of the incoming request (e.g. GET)
REQUEST SCHEME The scheme part of the request’s URI
REQUEST URI The path part of the request’s URI
DOCUMENT URI Same as REQUEST URI

REQUEST FILENAME The full local filesystem path to the file or script matching the request, if this
has already been determined by the server at the time REQUEST FILENAME
is referenced. Otherwise, such as when used in virtual host context, the same
value as REQUEST URI

SCRIPT FILENAME Same as REQUEST FILENAME

LAST MODIFIED The date and time of last modification of the file in the format
20101231235959, if this has already been determined by the server at the
time LAST MODIFIED is referenced.

SCRIPT USER The user name of the owner of the script.
SCRIPT GROUP The group name of the group of the script.
PATH INFO The trailing path name information, see ACCEPTPATHINFO

QUERY STRING The query string of the current request
IS SUBREQ "true" if the current request is a subrequest, "false" otherwise
THE REQUEST The complete request line (e.g., "GET /index.html HTTP/1.1")
REMOTE ADDR The IP address of the remote host
REMOTE HOST The host name of the remote host
REMOTE USER The name of the authenticated user, if any (not available during <IF >)
REMOTE IDENT The user name set by MOD IDENT

SERVER NAME The SERVERNAME of the current vhost

92 CHAPTER 2. USING THE APACHE HTTP SERVER

SERVER PORT The server port of the current vhost, see SERVERNAME

SERVER ADMIN The SERVERADMIN of the current vhost
SERVER PROTOCOL The protocol used by the request
DOCUMENT ROOT The DOCUMENTROOT of the current vhost
AUTH TYPE The configured AUTHTYPE (e.g. "basic")
CONTENT TYPE The content type of the response (not available during <IF >)
HANDLER The name of the handler (p. 98) creating the response
HTTPS "on" if the request uses https, "off" otherwise
IPV6 "on" if the connection uses IPv6, "off" otherwise
REQUEST STATUS The HTTP error status of the request (not available during <IF >)
REQUEST LOG ID The error log id of the request (see ERRORLOGFORMAT)
CONN LOG ID The error log id of the connection (see ERRORLOGFORMAT)
CONN REMOTE ADDR The peer IP address of the connection (see the MOD REMOTEIP module)
CONTEXT PREFIX

CONTEXT DOCUMENT ROOT

Misc variables

Name Description
TIME YEAR The current year (e.g. 2010)
TIME MON The current month (1, ..., 12)
TIME DAY The current day of the month
TIME HOUR The hour part of the current time (0, ..., 23)
TIME MIN The minute part of the current time
TIME SEC The second part of the current time
TIME WDAY The day of the week (starting with 0 for Sunday)
TIME The date and time in the format 20101231235959
SERVER SOFTWARE The server version string
API VERSION The date of the API version (module magic number)

Some modules register additional variables, see e.g. MOD SSL.

Binary operators

With the exception of some built-in comparison operators, binary operators have the form
"-[a-zA-Z][a-zA-Z0-9]+", i.e. a minus and at least two characters. The name is not case
sensitive. Modules may register additional binary operators.

2.16. EXPRESSIONS IN APACHE HTTP SERVER 93

Comparison operators

Name Alternative Description
== = String equality
!= String inequality
< String less than
<= String less than or equal
> String greater than
>= String greater than or equal
-eq eq Integer equality
-ne ne Integer inequality
-lt lt Integer less than
-le le Integer less than or equal
-gt gt Integer greater than
-ge ge Integer greater than or equal

Other binary operators

Name Description
-ipmatch IP address matches address/netmask
-strmatch left string matches pattern given by right string (containing wildcards *, ?, [])
-strcmatch same as -strmatch, but case insensitive
-fnmatch same as -strmatch, but slashes are not matched by wildcards

Unary operators

Unary operators take one argument and have the form "-[a-zA-Z]", i.e. a minus and one character. The name is
case sensitive. Modules may register additional unary operators.

94 CHAPTER 2. USING THE APACHE HTTP SERVER

Name Description Restricted
-d The argument is treated as

a filename. True if the file
exists and is a directory

yes

-e The argument is treated as
a filename. True if the file
(or dir or special) exists

yes

-f The argument is treated as
a filename. True if the file
exists and is regular file

yes

-s The argument is treated as
a filename. True if the file
exists and is not empty

yes

-L The argument is treated as
a filename. True if the file
exists and is symlink

yes

-h The argument is treated as
a filename. True if the
file exists and is symlink
(same as -L)

yes

-F True if string is a valid
file, accessible via all
the server’s currently-
configured access controls
for that path. This uses an
internal subrequest to do
the check, so use it with
care - it can impact your
server’s performance!

-U True if string is a valid
URL, accessible via all
the server’s currently-
configured access controls
for that path. This uses an
internal subrequest to do
the check, so use it with
care - it can impact your
server’s performance!

-A Alias for -U
-n True if string is not empty
-z True if string is empty
-T False if string is empty,

"0", "off", "false",
or "no" (case insensi-
tive). True otherwise.

-R Same as
"%{REMOTE ADDR}
-ipmatch ...", but
more efficient

The operators marked as "restricted" are not available in some modules like MOD INCLUDE.

Functions

Normal string-valued functions take one string as argument and return a string. Functions names are not case sensitive.
Modules may register additional functions.

2.16. EXPRESSIONS IN APACHE HTTP SERVER 95

Name Description Restricted
req, http Get HTTP request header; header names may be

added to the Vary header, see below
req novary Same as req, but header names will not be added to

the Vary header
resp Get HTTP response header
reqenv Lookup request environment variable (as a shortcut,

v can be used too to access variables).
osenv Lookup operating system environment variable
note Lookup request note
env Return first match of note, reqenv, osenv
tolower Convert string to lower case
toupper Convert string to upper case
escape Escape special characters in %hex encoding
unescape Unescape %hex encoded string, leaving encoded

slashes alone; return empty string if %00 is found
base64 Encode the string using base64 encoding
unbase64 Decode base64 encoded string, return truncated

string if 0x00 is found
md5 Hash the string using MD5, then encode the hash

with hexadecimal encoding
sha1 Hash the string using SHA1, then encode the hash

with hexadecimal encoding
file Read contents from a file (including line endings,

when present)
yes

filesize Return size of a file (or 0 if file does not exist or is
not regular file)

yes

The functions marked as "restricted" are not available in some modules like MOD INCLUDE.

When the functions req or http are used, the header name will automatically be added to the Vary header of the
HTTP response, except where otherwise noted for the directive accepting the expression. The req novary function
can be used to prevent names from being added to the Vary header.

In addition to string-valued functions, there are also list-valued functions which take one string as argument and return
a wordlist, i.e. a list of strings. The wordlist can be used with the special -in operator. Functions names are not case
sensitive. Modules may register additional functions.

There are no built-in list-valued functions. MOD SSL provides PeerExtList. See the description of SSLREQUIRE
for details (but PeerExtList is also usable outside of SSLREQUIRE).

Example expressions

The following examples show how expressions might be used to evaluate requests:

Compare the host name to example.com and redirect to www.example.com if it matches
<If "%{HTTP_HOST} == ’example.com’">

Redirect permanent "/" "http://www.example.com/"
</If>

Force text/plain if requesting a file with the query string contains ’forcetext’
<If "%{QUERY_STRING} =˜ /forcetext/">

ForceType text/plain
</If>

96 CHAPTER 2. USING THE APACHE HTTP SERVER

Only allow access to this content during business hours
<Directory "/foo/bar/business">

Require expr %{TIME_HOUR} -gt 9 && %{TIME_HOUR} -lt 17
</Directory>

Check a HTTP header for a list of values
<If "%{HTTP:X-example-header} in { ’foo’, ’bar’, ’baz’ }">

Header set matched true
</If>

Check an environment variable for a regular expression, negated.
<If "! reqenv(’REDIRECT_FOO’) =˜ /bar/">

Header set matched true
</If>

Check result of URI mapping by running in Directory context with -f
<Directory "/var/www">

AddEncoding x-gzip gz
<If "-f ’%{REQUEST_FILENAME}.unzipme’ && ! %{HTTP:Accept-Encoding} =˜ /gzip/">

SetOutputFilter INFLATE
</If>
</Directory>

Function examples in boolean context
<If "md5(’foo’) == ’acbd18db4cc2f85cedef654fccc4a4d8’">

Header set checksum-matched true
</If>
<If "md5(’foo’) == replace(’md5:XXXd18db4cc2f85cedef654fccc4a4d8’, ’md5:XXX’, ’acb’)>

Header set checksum-matched-2 true
</If>

Function example in string context
Header set foo-checksum "expr=%{md5:foo}"

Other

Name Alternative Description
-in in string contained in wordlist
/regexp/ m#regexp# Regular expression (the second form allows different delimiters than /)
/regexp/i m#regexp#i Case insensitive regular expression
$0 ... $9 Regular expression backreferences

Regular expression backreferences

The strings $0 ... $9 allow to reference the capture groups from a previously executed, successfully matching regular
expressions. They can normally only be used in the same expression as the matching regex, but some modules allow
special uses.

2.16. EXPRESSIONS IN APACHE HTTP SERVER 97

Comparison with SSLRequire

The ap expr syntax is mostly a superset of the syntax of the deprecated SSLREQUIRE directive. The differences are
described in SSLREQUIRE’s documentation.

Version History

The req novary function is available for versions 2.4.4 and later.

98 CHAPTER 2. USING THE APACHE HTTP SERVER

2.17 Apache’s Handler Use

This document describes the use of Apache’s Handlers.

What is a Handler

Related Modules
MOD ACTIONS
MOD ASIS
MOD CGI
MOD IMAGEMAP
MOD INFO
MOD MIME
MOD NEGOTIATION
MOD STATUS

Related Directives
ACTION
ADDHANDLER
REMOVEHANDLER
SETHANDLER

A "handler" is an internal Apache representation of the action to be performed when a file is called. Generally, files
have implicit handlers, based on the file type. Normally, all files are simply served by the server, but certain file types
are "handled" separately.

Handlers may also be configured explicitly, based on either filename extensions or on location, without relation to file
type. This is advantageous both because it is a more elegant solution, and because it also allows for both a type and a
handler to be associated with a file. (See also Files with Multiple Extensions (p. 699) .)

Handlers can either be built into the server or included in a module, or they can be added with the ACTION directive.
The built-in handlers in the standard distribution are as follows:

• default-handler: Send the file using the default handler(), which is the handler used by default to handle
static content. (core)

• send-as-is: Send file with HTTP headers as is. (MOD ASIS)

• cgi-script: Treat the file as a CGI script. (MOD CGI)

• imap-file: Parse as an imagemap rule file. (MOD IMAGEMAP)

• server-info: Get the server’s configuration information. (MOD INFO)

• server-status: Get the server’s status report. (MOD STATUS)

• type-map: Parse as a type map file for content negotiation. (MOD NEGOTIATION)

Examples

Modifying static content using a CGI script

The following directives will cause requests for files with the html extension to trigger the launch of the footer.pl
CGI script.

Action add-footer /cgi-bin/footer.pl
AddHandler add-footer .html

Then the CGI script is responsible for sending the originally requested document (pointed to by the
PATH TRANSLATED environment variable) and making whatever modifications or additions are desired.

2.17. APACHE’S HANDLER USE 99

Files with HTTP headers

The following directives will enable the send-as-is handler, which is used for files which contain their own HTTP
headers. All files in the /web/htdocs/asis/ directory will be processed by the send-as-is handler, regardless
of their filename extensions.

<Directory "/web/htdocs/asis">
SetHandler send-as-is

</Directory>

Programmer’s Note

In order to implement the handler features, an addition has been made to the Apache API (p. 935) that you may wish
to make use of. Specifically, a new record has been added to the request rec structure:

char *handler

If you wish to have your module engage a handler, you need only to set r->handler to the name of the handler at
any time prior to the invoke handler stage of the request. Handlers are implemented as they were before, albeit
using the handler name instead of a content type. While it is not necessary, the naming convention for handlers is to
use a dash-separated word, with no slashes, so as to not invade the media type name-space.

100 CHAPTER 2. USING THE APACHE HTTP SERVER

2.18 Filters

This document describes the use of filters in Apache.

Filtering in Apache 2

Related Modules
MOD FILTER
MOD DEFLATE
MOD EXT FILTER
MOD INCLUDE
MOD CHARSET LITE
MOD REFLECTOR
MOD BUFFER
MOD DATA
MOD RATELIMIT
MOD REQTIMEOUT
MOD REQUEST
MOD SED
MOD SUBSTITUTE
MOD XML2ENC
MOD PROXY HTML

Related Directives
FILTERCHAIN
FILTERDECLARE
FILTERPROTOCOL
FILTERPROVIDER
ADDINPUTFILTER
ADDOUTPUTFILTER
REMOVEINPUTFILTER
REMOVEOUTPUTFILTER
REFLECTORHEADER
EXTFILTERDEFINE
EXTFILTEROPTIONS
SETINPUTFILTER
SETOUTPUTFILTER

The Filter Chain is available in Apache 2.0 and higher, and enables applications to process incoming and outgoing data
in a highly flexible and configurable manner, regardless of where the data comes from. We can pre-process incoming
data, and post-process outgoing data, at will. This is basically independent of the traditional request processing phases.

2.18. FILTERS 101

Some examples of filtering in the standard Apache distribution are:

• MOD INCLUDE, implements server-side includes.

• MOD SSL, implements SSL encryption (https).

• MOD DEFLATE, implements compression/decompression on the fly.

• MOD CHARSET LITE, transcodes between different character sets.

• MOD EXT FILTER, runs an external program as a filter.

Apache also uses a number of filters internally to perform functions like chunking and byte-range handling.

A wider range of applications are implemented by third-party filter modules available from modules.apache.org23 and
elsewhere. A few of these are:

• HTML and XML processing and rewriting

• XSLT transforms and XIncludes

• XML Namespace support

23http://modules.apache.org/

http://modules.apache.org/

102 CHAPTER 2. USING THE APACHE HTTP SERVER

• File Upload handling and decoding of HTML Forms

• Image processing

• Protection of vulnerable applications such as PHP scripts

• Text search-and-replace editing

Smart Filtering

MOD FILTER, included in Apache 2.1 and later, enables the filter chain to be configured dynamically at run time.
So for example you can set up a proxy to rewrite HTML with an HTML filter and JPEG images with a completely
separate filter, despite the proxy having no prior information about what the origin server will send. This works by
using a filter harness, that dispatches to different providers according to the actual contents at runtime. Any filter may
be either inserted directly in the chain and run unconditionally, or used as a provider and inserted dynamically. For
example,

• an HTML processing filter will only run if the content is text/html or application/xhtml+xml

• A compression filter will only run if the input is a compressible type and not already compressed

• A charset conversion filter will be inserted if a text document is not already in the desired charset

Exposing Filters as an HTTP Service

Filters can be used to process content originating from the client in addition to processing content originating on the
server using the MOD REFLECTOR module.

2.18. FILTERS 103

MOD REFLECTOR accepts POST requests from clients, and reflects the content request body received within the POST
request back in the response, passing through the output filter stack on the way back to the client.

This technique can be used as an alternative to a web service running within an application server stack, where an
output filter provides the transformation required on the request body. For example, the MOD DEFLATE module might
be used to provide a general compression service, or an image transformation filter might be turned into an image
transformation service.

Using Filters

There are two ways to use filtering: Simple and Dynamic. In general, you should use one or the other; mixing them
can have unexpected consequences (although simple Input filtering can be mixed freely with either simple or dynamic
Output filtering).

The Simple Way is the only way to configure input filters, and is sufficient for output filters where you need a static filter
chain. Relevant directives are SETINPUTFILTER, SETOUTPUTFILTER, ADDINPUTFILTER, ADDOUTPUTFILTER,
REMOVEINPUTFILTER, and REMOVEOUTPUTFILTER.

The Dynamic Way enables both static and flexible, dynamic configuration of output filters, as discussed in the
MOD FILTER page. Relevant directives are FILTERCHAIN, FILTERDECLARE, and FILTERPROVIDER.

One further directive ADDOUTPUTFILTERBYTYPE is still supported, but deprecated. Use dynamic configuration
instead.

104 CHAPTER 2. USING THE APACHE HTTP SERVER

2.19 Shared Object Cache in Apache HTTP Server

The Shared Object Cache provides a means to share simple data across all a server’s workers, regardless of thread and
process models (p. 80) . It is used where the advantages of sharing data across processes outweigh the performance
overhead of inter-process communication.

Shared Object Cache Providers

The shared object cache as such is an abstraction. Four different modules implement it. To use the cache, one or more
of these modules must be present, and configured.

The only configuration required is to select which cache provider to use. This is the responsibility of modules using
the cache, and they enable selection using directives such as CACHESOCACHE, AUTHNCACHESOCACHE, SSLSES-
SIONCACHE, and SSLSTAPLINGCACHE.

Currently available providers are:

"dbm" (MOD SOCACHE DBM) This makes use of a DBM hash file. The choice of underlying DBM used may be
configurable if the installed APR version supports multiple DBM implementations.

"dc" (MOD SOCACHE DC) This makes use of the distcache24 distributed session caching libraries.

"memcache" (MOD SOCACHE MEMCACHE) This makes use of the memcached25 high-performance, distributed
memory object caching system.

"shmcb" (MOD SOCACHE SHMCB) This makes use of a high-performance cyclic buffer inside a shared memory
segment.

The API provides the following functions:

const char *create(ap socache instance t **instance, const char *arg, apr pool t *tmp, apr pool t *p); Create
a session cache based on the given configuration string. The instance pointer returned in the instance paramater
will be passed as the first argument to subsequent invocations.

apr status t init(ap socache instance t *instance, const char *cname, const struct ap socache hints *hints, server rec *s, apr pool t *pool)
Initialize the cache. The cname must be of maximum length 16 characters, and uniquely identifies the consumer
of the cache within the server; using the module name is recommended, e.g. "mod ssl-sess". This string may
be used within a filesystem path so use of only alphanumeric [a-z0-9 -] characters is recommended. If hints is
non-NULL, it gives a set of hints for the provider. Return APR error code.

void destroy(ap socache instance t *instance, server rec *s) Destroy a given cache instance object.

apr status t store(ap socache instance t *instance, server rec *s, const unsigned char *id, unsigned int idlen, apr time t expiry, unsigned char *data, unsigned int datalen, apr pool t *pool)
Store an object in a cache instance.

apr status t retrieve(ap socache instance t *instance, server rec *s, const unsigned char *id, unsigned int idlen, unsigned char *data, unsigned int *datalen, apr pool t *pool)
Retrieve a cached object.

apr status t remove(ap socache instance t *instance, server rec *s, const unsigned char *id, unsigned int idlen, apr pool t *pool)
Remove an object from the cache.

void status(ap socache instance t *instance, request rec *r, int flags) Dump the status of a cache instance for
mod status.

apr status t iterate(ap socache instance t *instance, server rec *s, void *userctx, ap socache iterator t *iterator, apr pool t *pool)
Dump all cached objects through an iterator callback.

24http://www.distcache.org/
25http://memcached.org/

http://www.distcache.org/
http://memcached.org/

2.20. SUEXEC SUPPORT 105

2.20 suEXEC Support

The suEXEC feature provides users of the Apache HTTP Server the ability to run CGI and SSI programs under user
IDs different from the user ID of the calling web server. Normally, when a CGI or SSI program executes, it runs as the
same user who is running the web server.

Used properly, this feature can reduce considerably the security risks involved with allowing users to develop and run
private CGI or SSI programs. However, if suEXEC is improperly configured, it can cause any number of problems
and possibly create new holes in your computer’s security. If you aren’t familiar with managing setuid root programs
and the security issues they present, we highly recommend that you not consider using suEXEC.

Before we begin

Before jumping head-first into this document, you should be aware that certain assumptions are made about you and
the environment in which you will be using suexec.

First, it is assumed that you are using a UNIX derivative operating system that is capable of setuid and setgid oper-
ations. All command examples are given in this regard. Other platforms, if they are capable of supporting suEXEC,
may differ in their configuration.

Second, it is assumed you are familiar with some basic concepts of your computer’s security and its administration.
This involves an understanding of setuid/setgid operations and the various effects they may have on your system and
its level of security.

Third, it is assumed that you are using an unmodified version of suEXEC code. All code for suEXEC has been
carefully scrutinized and tested by the developers as well as numerous beta testers. Every precaution has been taken
to ensure a simple yet solidly safe base of code. Altering this code can cause unexpected problems and new security
risks. It is highly recommended you not alter the suEXEC code unless you are well versed in the particulars of security
programming and are willing to share your work with the Apache HTTP Server development team for consideration.

Fourth, and last, it has been the decision of the Apache HTTP Server development team to NOT make suEXEC part
of the default installation of Apache httpd. To this end, suEXEC configuration requires of the administrator careful
attention to details. After due consideration has been given to the various settings for suEXEC, the administrator may
install suEXEC through normal installation methods. The values for these settings need to be carefully determined
and specified by the administrator to properly maintain system security during the use of suEXEC functionality. It is
through this detailed process that we hope to limit suEXEC installation only to those who are careful and determined
enough to use it.

Still with us? Yes? Good. Let’s move on!

suEXEC Security Model

Before we begin configuring and installing suEXEC, we will first discuss the security model you are about to imple-
ment. By doing so, you may better understand what exactly is going on inside suEXEC and what precautions are taken
to ensure your system’s security.

suEXEC is based on a setuid "wrapper" program that is called by the main Apache HTTP Server. This wrapper is
called when an HTTP request is made for a CGI or SSI program that the administrator has designated to run as a userid
other than that of the main server. When such a request is made, Apache httpd provides the suEXEC wrapper with the
program’s name and the user and group IDs under which the program is to execute.

The wrapper then employs the following process to determine success or failure – if any one of these conditions fail,
the program logs the failure and exits with an error, otherwise it will continue:

1. Is the user executing this wrapper a valid user of this system?
This is to ensure that the user executing the wrapper is truly a user of the system.

106 CHAPTER 2. USING THE APACHE HTTP SERVER

2. Was the wrapper called with the proper number of arguments?

The wrapper will only execute if it is given the proper number of arguments. The proper argument format is
known to the Apache HTTP Server. If the wrapper is not receiving the proper number of arguments, it is either
being hacked, or there is something wrong with the suEXEC portion of your Apache httpd binary.

3. Is this valid user allowed to run the wrapper?

Is this user the user allowed to run this wrapper? Only one user (the Apache user) is allowed to execute this
program.

4. Does the target CGI or SSI program have an unsafe hierarchical reference?

Does the target CGI or SSI program’s path contain a leading ’/’ or have a ’..’ backreference?
These are not allowed; the target CGI/SSI program must reside within suEXEC’s document root (see
--with-suexec-docroot=DIR below).

5. Is the target user name valid?

Does the target user exist?

6. Is the target group name valid?

Does the target group exist?

7. Is the target user NOT superuser?

suEXEC does not allow root to execute CGI/SSI programs.

8. Is the target userid ABOVE the minimum ID number?

The minimum user ID number is specified during configuration. This allows you to set the lowest possible
userid that will be allowed to execute CGI/SSI programs. This is useful to block out "system" accounts.

9. Is the target group NOT the superuser group?

Presently, suEXEC does not allow the root group to execute CGI/SSI programs.

10. Is the target groupid ABOVE the minimum ID number?

The minimum group ID number is specified during configuration. This allows you to set the lowest possible
groupid that will be allowed to execute CGI/SSI programs. This is useful to block out "system" groups.

11. Can the wrapper successfully become the target user and group?

Here is where the program becomes the target user and group via setuid and setgid calls. The group access list
is also initialized with all of the groups of which the user is a member.

12. Can we change directory to the one in which the target CGI/SSI program resides?

If it doesn’t exist, it can’t very well contain files. If we can’t change directory to it, it might as well not exist.

13. Is the directory within the httpd webspace?

If the request is for a regular portion of the server, is the requested directory within suEXEC’s document root?
If the request is for a USERDIR, is the requested directory within the directory configured as suEXEC’s userdir
(see suEXEC’s configuration options)?

14. Is the directory NOT writable by anyone else?

We don’t want to open up the directory to others; only the owner user may be able to alter this directories
contents.

15. Does the target CGI/SSI program exist?

If it doesn’t exists, it can’t very well be executed.

2.20. SUEXEC SUPPORT 107

16. Is the target CGI/SSI program NOT writable by anyone else?
We don’t want to give anyone other than the owner the ability to change the CGI/SSI program.

17. Is the target CGI/SSI program NOT setuid or setgid?
We do not want to execute programs that will then change our UID/GID again.

18. Is the target user/group the same as the program’s user/group?
Is the user the owner of the file?

19. Can we successfully clean the process environment to ensure safe operations?
suEXEC cleans the process’ environment by establishing a safe execution PATH (defined during configuration),
as well as only passing through those variables whose names are listed in the safe environment list (also created
during configuration).

20. Can we successfully become the target CGI/SSI program and execute?
Here is where suEXEC ends and the target CGI/SSI program begins.

This is the standard operation of the suEXEC wrapper’s security model. It is somewhat stringent and can impose new
limitations and guidelines for CGI/SSI design, but it was developed carefully step-by-step with security in mind.

For more information as to how this security model can limit your possibilities in regards to server configuration, as
well as what security risks can be avoided with a proper suEXEC setup, see the "Beware the Jabberwock" section of
this document.

Configuring & Installing suEXEC

Here’s where we begin the fun.

suEXEC configuration options

--enable-suexec This option enables the suEXEC feature which is never installed or activated by default. At
least one --with-suexec-xxxxx option has to be provided together with the --enable-suexec option
to let APACI accept your request for using the suEXEC feature.

--with-suexec-bin=PATH The path to the suexec binary must be hard-coded in the server for security rea-
sons. Use this option to override the default path. e.g. --with-suexec-bin=/usr/sbin/suexec

--with-suexec-caller=UID The username (p. 910) under which httpd normally runs. This is the only user
allowed to execute the suEXEC wrapper.

--with-suexec-userdir=DIR Define to be the subdirectory under users’ home directories where suEXEC
access should be allowed. All executables under this directory will be executable by suEXEC as the user so they
should be "safe" programs. If you are using a "simple" USERDIR directive (ie. one without a "*" in it) this
should be set to the same value. suEXEC will not work properly in cases where the USERDIR directive points
to a location that is not the same as the user’s home directory as referenced in the passwd file. Default value is
"public html".
If you have virtual hosts with a different USERDIR for each, you will need to define them to all reside in one
parent directory; then name that parent directory here. If this is not defined properly, "˜userdir" cgi requests
will not work!

--with-suexec-docroot=DIR Define as the DocumentRoot set for httpd. This will be the only hierarchy
(aside from USERDIRs) that can be used for suEXEC behavior. The default directory is the --datadir
value with the suffix "/htdocs", e.g. if you configure with "--datadir=/home/apache" the directory
"/home/apache/htdocs" is used as document root for the suEXEC wrapper.

108 CHAPTER 2. USING THE APACHE HTTP SERVER

--with-suexec-uidmin=UID Define this as the lowest UID allowed to be a target user for suEXEC. For most
systems, 500 or 100 is common. Default value is 100.

--with-suexec-gidmin=GID Define this as the lowest GID allowed to be a target group for suEXEC. For most
systems, 100 is common and therefore used as default value.

--with-suexec-logfile=FILE This defines the filename to which all suEXEC transactions and errors are
logged (useful for auditing and debugging purposes). By default the logfile is named "suexec log" and
located in your standard logfile directory (--logfiledir).

--with-suexec-safepath=PATH Define a safe PATH environment to pass to CGI executables. Default value
is "/usr/local/bin:/usr/bin:/bin".

Compiling and installing the suEXEC wrapper

If you have enabled the suEXEC feature with the --enable-suexec option the suexec binary (together with
httpd itself) is automatically built if you execute the make command.

After all components have been built you can execute the command make install to install them. The bi-
nary image suexec is installed in the directory defined by the --sbindir option. The default location is
"/usr/local/apache2/bin/suexec".

Please note that you need root privileges for the installation step. In order for the wrapper to set the user ID, it must
be installed as owner root and must have the setuserid execution bit set for file modes.

Setting paranoid permissions

Although the suEXEC wrapper will check to ensure that its caller is the correct user as specified with the
--with-suexec-caller configure option, there is always the possibility that a system or library call suEXEC
uses before this check may be exploitable on your system. To counter this, and because it is best-practise in general,
you should use filesystem permissions to ensure that only the group httpd runs as may execute suEXEC.

If for example, your web server is configured to run as:

User www
Group webgroup

and suexec is installed at "/usr/local/apache2/bin/suexec", you should run:

chgrp webgroup /usr/local/apache2/bin/suexec

chmod 4750 /usr/local/apache2/bin/suexec

This will ensure that only the group httpd runs as can even execute the suEXEC wrapper.

Enabling & Disabling suEXEC

Upon startup of httpd, it looks for the file suexec in the directory defined by the --sbindir option (default is
"/usr/local/apache/sbin/suexec"). If httpd finds a properly configured suEXEC wrapper, it will print the following
message to the error log:

[notice] suEXEC mechanism enabled (wrapper: /path/to/suexec)

2.20. SUEXEC SUPPORT 109

If you don’t see this message at server startup, the server is most likely not finding the wrapper program where it
expects it, or the executable is not installed setuid root.

If you want to enable the suEXEC mechanism for the first time and an Apache HTTP Server is already running you
must kill and restart httpd. Restarting it with a simple HUP or USR1 signal will not be enough.

If you want to disable suEXEC you should kill and restart httpd after you have removed the suexec file.

Using suEXEC

Requests for CGI programs will call the suEXEC wrapper only if they are for a virtual host containing a SUEXE-
CUSERGROUP directive or if they are processed by MOD USERDIR.

Virtual Hosts:
One way to use the suEXEC wrapper is through the SUEXECUSERGROUP directive in VIRTUALHOST definitions. By
setting this directive to values different from the main server user ID, all requests for CGI resources will be executed
as the User and Group defined for that <VIRTUALHOST>. If this directive is not specified for a <VIRTUALHOST>
then the main server userid is assumed.

User directories:
Requests that are processed by MOD USERDIR will call the suEXEC wrapper to execute CGI programs under the
userid of the requested user directory. The only requirement needed for this feature to work is for CGI execution
to be enabled for the user and that the script must meet the scrutiny of the security checks above. See also the
--with-suexec-userdir compile time option.

Debugging suEXEC

The suEXEC wrapper will write log information to the file defined with the --with-suexec-logfile option as
indicated above. If you feel you have configured and installed the wrapper properly, have a look at this log and the
error log for the server to see where you may have gone astray.

Beware the Jabberwock: Warnings & Examples

NOTE! This section may not be complete. For the latest revision of this section of the documentation, see the Online
Documentation26 version.

There are a few points of interest regarding the wrapper that can cause limitations on server setup. Please review these
before submitting any "bugs" regarding suEXEC.

• suEXEC Points Of Interest

• Hierarchy limitations

For security and efficiency reasons, all suEXEC requests must remain within either a top-level document root
for virtual host requests, or one top-level personal document root for userdir requests. For example, if you have
four VirtualHosts configured, you would need to structure all of your VHosts’ document roots off of one main
httpd document hierarchy to take advantage of suEXEC for VirtualHosts. (Example forthcoming.)

• suEXEC’s PATH environment variable

This can be a dangerous thing to change. Make certain every path you include in this define is a trusted
directory. You don’t want to open people up to having someone from across the world running a trojan horse on
them.

26http://httpd.apache.org/docs/2.4/suexec.html

http://httpd.apache.org/docs/2.4/suexec.html

110 CHAPTER 2. USING THE APACHE HTTP SERVER

• Altering the suEXEC code

Again, this can cause Big Trouble if you try this without knowing what you are doing. Stay away from it if at
all possible.

2.21. ISSUES REGARDING DNS AND APACHE HTTP SERVER 111

2.21 Issues Regarding DNS and Apache HTTP Server

This page could be summarized with the statement: don’t configure Apache HTTP Server in such a way that it relies
on DNS resolution for parsing of the configuration files. If httpd requires DNS resolution to parse the configuration
files then your server may be subject to reliability problems (ie. it might not start up), or denial and theft of service
attacks (including virtual hosts able to steal hits from other virtual hosts).

A Simple Example

This is a misconfiguration example, do not use on your server
<VirtualHost www.example.dom>

ServerAdmin webgirl@example.dom
DocumentRoot "/www/example"

</VirtualHost>

In order for the server to function properly, it absolutely needs to have two pieces of information about each virtual
host: the SERVERNAME and at least one IP address that the server will bind and respond to. The above example does
not include the IP address, so httpd must use DNS to find the address of www.example.dom. If for some reason
DNS is not available at the time your server is parsing its config file, then this virtual host will not be configured. It
won’t be able to respond to any hits to this virtual host.

Suppose that www.example.dom has address 192.0.2.1. Then consider this configuration snippet:

This is a misconfiguration example, do not use on your server
<VirtualHost 192.0.2.1>

ServerAdmin webgirl@example.dom
DocumentRoot "/www/example"

</VirtualHost>

This time httpd needs to use reverse DNS to find the ServerName for this virtualhost. If that reverse lookup fails
then it will partially disable the virtualhost. If the virtual host is name-based then it will effectively be totally disabled,
but if it is IP-based then it will mostly work. However, if httpd should ever have to generate a full URL for the server
which includes the server name (such as when a Redirect is issued), then it will fail to generate a valid URL.

Here is a snippet that avoids both of these problems:

<VirtualHost 192.0.2.1>
ServerName www.example.dom
ServerAdmin webgirl@example.dom
DocumentRoot "/www/example"

</VirtualHost>

Denial of Service

Consider this configuration snippet:

<VirtualHost www.example1.dom>
ServerAdmin webgirl@example1.dom
DocumentRoot "/www/example1"

</VirtualHost>
<VirtualHost www.example2.dom>

ServerAdmin webguy@example2.dom

112 CHAPTER 2. USING THE APACHE HTTP SERVER

DocumentRoot "/www/example2"
</VirtualHost>

Suppose that you’ve assigned 192.0.2.1 to www.example1.dom and 192.0.2.2 to www.example2.dom. Further-
more, suppose that example1.dom has control of their own DNS. With this config you have put example1.dom
into a position where they can steal all traffic destined to example2.dom. To do so, all they have to do is set
www.example1.dom to 192.0.2.2. Since they control their own DNS you can’t stop them from pointing the
www.example1.dom record wherever they wish.

Requests coming in to 192.0.2.2 (including all those where users typed in URLs of the form
http://www.example2.dom/whatever) will all be served by the example1.dom virtual host.
To better understand why this happens requires a more in-depth discussion of how httpd matches up incoming
requests with the virtual host that will serve it. A rough document describing this is available (p. 131) .

The "main server" Address

Name-based virtual host support (p. 115) requires httpd to know the IP address(es) of the host that httpd is running
on. To get this address it uses either the global SERVERNAME (if present) or calls the C function gethostname
(which should return the same as typing "hostname" at the command prompt). Then it performs a DNS lookup on
this address. At present there is no way to avoid this lookup.

If you fear that this lookup might fail because your DNS server is down then you can insert the hostname in
/etc/hosts (where you probably already have it so that the machine can boot properly). Then ensure that your
machine is configured to use /etc/hosts in the event that DNS fails. Depending on what OS you are using this
might be accomplished by editing /etc/resolv.conf, or maybe /etc/nsswitch.conf.

If your server doesn’t have to perform DNS for any other reason then you might be able to get away with running httpd
with the HOSTRESORDER environment variable set to "local". This all depends on what OS and resolver libraries
you are using. It also affects CGIs unless you use MOD ENV to control the environment. It’s best to consult the man
pages or FAQs for your OS.

Tips to Avoid These Problems

• use IP addresses in VIRTUALHOST

• use IP addresses in LISTEN

• ensure all virtual hosts have an explicit SERVERNAME

• create a <VirtualHost default :*> server that has no pages to serve

Chapter 3

Apache Virtual Host documentation

113

114 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

3.1 Apache Virtual Host documentation

The term Virtual Host refers to the practice of running more than one web site (such as company1.example.com
and company2.example.com) on a single machine. Virtual hosts can be "IP-based (p. 118) ", meaning that you
have a different IP address for every web site, or "name-based (p. 115) ", meaning that you have multiple names
running on each IP address. The fact that they are running on the same physical server is not apparent to the end user.

Apache was one of the first servers to support IP-based virtual hosts right out of the box. Versions 1.1 and later of
Apache support both IP-based and name-based virtual hosts (vhosts). The latter variant of virtual hosts is sometimes
also called host-based or non-IP virtual hosts.

Below is a list of documentation pages which explain all details of virtual host support in Apache HTTP Server:

See also

• MOD VHOST ALIAS

• Name-based virtual hosts (p. 115)

• IP-based virtual hosts (p. 118)

• Virtual host examples (p. 124)

• File descriptor limits (p. 134)

• Mass virtual hosting (p. 120)

• Details of host matching (p. 131)

Virtual Host Support

• Name-based Virtual Hosts (p. 115) (More than one web site per IP address)

• IP-based Virtual Hosts (p. 118) (An IP address for each web site)

• Virtual Host examples for common setups (p. 124)

• File Descriptor Limits (p. 134) (or, Too many log files)

• Dynamically Configured Mass Virtual Hosting (p. 120)

• In-Depth Discussion of Virtual Host Matching (p. 131)

Configuration directives

• <VIRTUALHOST>

• SERVERNAME

• SERVERALIAS

• SERVERPATH

If you are trying to debug your virtual host configuration, you may find the Apache -S command line switch useful.
That is, type the following command:

/usr/local/apache2/bin/httpd -S

This command will dump out a description of how Apache parsed the configuration file. Careful examination of the
IP addresses and server names may help uncover configuration mistakes. (See the docs for the httpd program for
other command line options)

3.2. NAME-BASED VIRTUAL HOST SUPPORT 115

3.2 Name-based Virtual Host Support

This document describes when and how to use name-based virtual hosts.

See also

• IP-based Virtual Host Support (p. 118)

• An In-Depth Discussion of Virtual Host Matching (p. 131)

• Dynamically configured mass virtual hosting (p. 120)

• Virtual Host examples for common setups (p. 124)

Name-based vs. IP-based Virtual Hosts

IP-based virtual hosts (p. 118) use the IP address of the connection to determine the correct virtual host to serve.
Therefore you need to have a separate IP address for each host.

With name-based virtual hosting, the server relies on the client to report the hostname as part of the HTTP headers.
Using this technique, many different hosts can share the same IP address.

Name-based virtual hosting is usually simpler, since you need only configure your DNS server to map each hostname
to the correct IP address and then configure the Apache HTTP Server to recognize the different hostnames. Name-
based virtual hosting also eases the demand for scarce IP addresses. Therefore you should use name-based virtual
hosting unless you are using equipment that explicitly demands IP-based hosting. Historical reasons for IP-based
virtual hosting based on client support are no longer applicable to a general-purpose web server.

Name-based virtual hosting builds off of the IP-based virtual host selection algorithm, meaning that searches for the
proper server name occur only between virtual hosts that have the best IP-based address.

How the server selects the proper name-based virtual host

It is important to recognize that the first step in name-based virtual host resolution is IP-based resolution. Name-based
virtual host resolution only chooses the most appropriate name-based virtual host after narrowing down the candidates
to the best IP-based match. Using a wildcard (*) for the IP address in all of the VirtualHost directives makes this
IP-based mapping irrelevant.

When a request arrives, the server will find the best (most specific) matching <VIRTUALHOST> argument based on
the IP address and port used by the request. If there is more than one virtual host containing this best-match address
and port combination, Apache will further compare the SERVERNAME and SERVERALIAS directives to the server
name present in the request.

If you omit the SERVERNAME directive from any name-based virtual host, the server will default to a fully qualified
domain name (FQDN) derived from the system hostname. This implicitly set server name can lead to counter-intuitive
virtual host matching and is discouraged.

The default name-based vhost for an IP and port combination

If no matching ServerName or ServerAlias is found in the set of virtual hosts containing the most specific matching
IP address and port combination, then the first listed virtual host that matches that will be used.

116 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

Using Name-based Virtual Hosts

Related Modules
CORE

Related Directives
DOCUMENTROOT
SERVERALIAS
SERVERNAME
<VIRTUALHOST>

The first step is to create a <VIRTUALHOST> block for each different host that you would like to serve. Inside each
<VIRTUALHOST> block, you will need at minimum a SERVERNAME directive to designate which host is served and
a DOCUMENTROOT directive to show where in the filesystem the content for that host lives.

=⇒Main host goes away
Any request that doesn’t match an existing <VIRTUALHOST> is handled by the global server
configuration, regardless of the hostname or ServerName.
When you add a name-based virtual host to an existing server, and the virtual host arguments
match preexisting IP and port combinations, requests will now be handled by an explicit vir-
tual host. In this case, it’s usually wise to create a default virtual host with a SERVERNAME
matching that of the base server. New domains on the same interface and port, but requiring
separate configurations, can then be added as subsequent (non-default) virtual hosts.

=⇒ServerName inheritance
It is best to always explicitly list a SERVERNAME in every name-based virtual host.
If a VIRTUALHOST doesn’t specify a SERVERNAME, a server name will be inherited from the
base server configuration. If no server name was specified globally, one is detected at startup
through reverse DNS resolution of the first listening address. In either case, this inherited
server name will influence name-based virtual host resolution, so it is best to always explicitly
list a SERVERNAME in every name-based virtual host.

For example, suppose that you are serving the domain www.example.com and you wish to add the virtual host
other.example.com, which points at the same IP address. Then you simply add the following to httpd.conf:

<VirtualHost *:80>
This first-listed virtual host is also the default for *:80
ServerName www.example.com
ServerAlias example.com
DocumentRoot "/www/domain"

</VirtualHost>

<VirtualHost *:80>
ServerName other.example.com
DocumentRoot "/www/otherdomain"

</VirtualHost>

You can alternatively specify an explicit IP address in place of the * in <VIRTUALHOST> directives. For example,
you might want to do this in order to run some name-based virtual hosts on one IP address, and either IP-based, or
another set of name-based virtual hosts on another address.

Many servers want to be accessible by more than one name. This is possible with the SERVERALIAS directive, placed
inside the <VIRTUALHOST> section. For example in the first <VIRTUALHOST> block above, the SERVERALIAS
directive indicates that the listed names are other names which people can use to see that same web site:

ServerAlias example.com *.example.com

3.2. NAME-BASED VIRTUAL HOST SUPPORT 117

then requests for all hosts in the example.com domain will be served by the www.example.com virtual host. The
wildcard characters * and ? can be used to match names. Of course, you can’t just make up names and place them in
SERVERNAME or ServerAlias. You must first have your DNS server properly configured to map those names to
an IP address associated with your server.

Name-based virtual hosts for the best-matching set of <VIRTUALHOST>s are processed in the order they appear in the
configuration. The first matching SERVERNAME or SERVERALIAS is used, with no different precedence for wildcards
(nor for ServerName vs. ServerAlias).

The complete list of names in the VIRTUALHOST directive are treated just like a (non wildcard) SERVERALIAS.

Finally, you can fine-tune the configuration of the virtual hosts by placing other directives inside the <VIRTUAL-
HOST> containers. Most directives can be placed in these containers and will then change the configuration only of
the relevant virtual host. To find out if a particular directive is allowed, check the Context (p. 351) of the directive.
Configuration directives set in the main server context (outside any <VIRTUALHOST> container) will be used only if
they are not overridden by the virtual host settings.

118 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

3.3 Apache IP-based Virtual Host Support

See also

• Name-based Virtual Hosts Support (p. 115)

What is IP-based virtual hosting

IP-based virtual hosting is a method to apply different directives based on the IP address and port a request is received
on. Most commonly, this is used to serve different websites on different ports or interfaces.

In many cases, name-based virtual hosts (p. 115) are more convenient, because they allow many virtual hosts to share
a single address/port. See Name-based vs. IP-based Virtual Hosts (p. 115) to help you decide.

System requirements

As the term IP-based indicates, the server must have a different IP address/port combination for each IP-based
virtual host. This can be achieved by the machine having several physical network connections, or by use of virtual
interfaces which are supported by most modern operating systems (see system documentation for details, these are
frequently called "ip aliases", and the "ifconfig" command is most commonly used to set them up), and/or using
multiple port numbers.

In the terminology of Apache HTTP Server, using a single IP address but multiple TCP ports, is also IP-based virtual
hosting.

How to set up Apache

There are two ways of configuring apache to support multiple hosts. Either by running a separate httpd daemon for
each hostname, or by running a single daemon which supports all the virtual hosts.

Use multiple daemons when:

• There are security partitioning issues, such as company1 does not want anyone at company2 to be able to read
their data except via the web. In this case you would need two daemons, each running with different USER,
GROUP, LISTEN, and SERVERROOT settings.

• You can afford the memory and file descriptor requirements of listening to every IP alias on the machine. It’s
only possible to LISTEN to the "wildcard" address, or to specific addresses. So if you have a need to listen
to a specific address for whatever reason, then you will need to listen to all specific addresses. (Although one
httpd could listen to N-1 of the addresses, and another could listen to the remaining address.)

Use a single daemon when:

• Sharing of the httpd configuration between virtual hosts is acceptable.

• The machine services a large number of requests, and so the performance loss in running separate daemons may
be significant.

Setting up multiple daemons

Create a separate httpd installation for each virtual host. For each installation, use the LISTEN directive in the
configuration file to select which IP address (or virtual host) that daemon services. e.g.

3.3. APACHE IP-BASED VIRTUAL HOST SUPPORT 119

Listen 192.0.2.100:80

It is recommended that you use an IP address instead of a hostname (see DNS caveats (p. 111)).

Setting up a single daemon with virtual hosts

For this case, a single httpd will service requests for the main server and all the virtual hosts. The VIRTUALHOST
directive in the configuration file is used to set the values of SERVERADMIN, SERVERNAME, DOCUMENTROOT,
ERRORLOG and TRANSFERLOG or CUSTOMLOG configuration directives to different values for each virtual host.
e.g.

<VirtualHost 172.20.30.40:80>
ServerAdmin webmaster@www1.example.com
DocumentRoot "/www/vhosts/www1"
ServerName www1.example.com
ErrorLog "/www/logs/www1/error_log"
CustomLog "/www/logs/www1/access_log" combined

</VirtualHost>

<VirtualHost 172.20.30.50:80>
ServerAdmin webmaster@www2.example.org
DocumentRoot "/www/vhosts/www2"
ServerName www2.example.org
ErrorLog "/www/logs/www2/error_log"
CustomLog "/www/logs/www2/access_log" combined

</VirtualHost>

It is recommended that you use an IP address instead of a hostname in the <VirtualHost> directive (see DNS caveats
(p. 111)).

Specific IP addresses or ports have precedence over their wildcard equivalents, and any virtual host that matches has
precedence over the servers base configuration.

Almost any configuration directive can be put in the VirtualHost directive, with the exception of directives that control
process creation and a few other directives. To find out if a directive can be used in the VirtualHost directive, check
the Context (p. 351) using the directive index (p. 1022) .

SUEXECUSERGROUP may be used inside a VirtualHost directive if the suEXEC wrapper (p. 105) is used.

SECURITY: When specifying where to write log files, be aware of some security risks which are present if anyone
other than the user that starts Apache has write access to the directory where they are written. See the security tips (p.
338) document for details.

120 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

3.4 Dynamically Configured Mass Virtual Hosting

This document describes how to efficiently serve an arbitrary number of virtual hosts with the Apache HTTP Server.
A separate document (p. 152) discusses using MOD REWRITE to create dynamic mass virtual hosts.

Motivation

The techniques described here are of interest if your httpd.conf contains many <VirtualHost> sections that
are substantially the same, for example:

<VirtualHost 111.22.33.44>
ServerName customer-1.example.com
DocumentRoot "/www/hosts/customer-1.example.com/docs"
ScriptAlias "/cgi-bin/" "/www/hosts/customer-1.example.com/cgi-bin"

</VirtualHost>

<VirtualHost 111.22.33.44>
ServerName customer-2.example.com
DocumentRoot "/www/hosts/customer-2.example.com/docs"
ScriptAlias "/cgi-bin/" "/www/hosts/customer-2.example.com/cgi-bin"

</VirtualHost>

<VirtualHost 111.22.33.44>
ServerName customer-N.example.com
DocumentRoot "/www/hosts/customer-N.example.com/docs"
ScriptAlias "/cgi-bin/" "/www/hosts/customer-N.example.com/cgi-bin"

</VirtualHost>

We wish to replace these multiple <VirtualHost> blocks with a mechanism that works them out dynamically.
This has a number of advantages:

1. Your configuration file is smaller, so Apache starts more quickly and uses less memory. Perhaps more impor-
tantly, the smaller configuration is easier to maintain, and leaves less room for errors.

2. Adding virtual hosts is simply a matter of creating the appropriate directories in the filesystem and entries in the
DNS - you don’t need to reconfigure or restart Apache.

The main disadvantage is that you cannot have a different log file for each virtual host; however, if you have many
virtual hosts, doing this can be a bad idea anyway, because of the number of file descriptors needed (p. 134) . It is
better to log to a pipe or a fifo (p. 53) , and arrange for the process at the other end to split up the log files into one per
virtual host. One example of such a process can be found in the split-logfile (p. 323) utility.

Overview

A virtual host is defined by two pieces of information: its IP address, and the contents of the Host: header in
the HTTP request. The dynamic mass virtual hosting technique used here is based on automatically inserting this
information into the pathname of the file that is used to satisfy the request. This can be most easily done by using
MOD VHOST ALIAS with Apache httpd. Alternatively, mod rewrite can be used (p. 152) .

Both of these modules are disabled by default; you must enable one of them when configuring and building Apache
httpd if you want to use this technique.

3.4. DYNAMICALLY CONFIGURED MASS VIRTUAL HOSTING 121

A couple of things need to be determined from the request in order to make the dynamic virtual host look like a normal
one. The most important is the server name, which is used by the server to generate self-referential URLs etc. It is
configured with the ServerName directive, and it is available to CGIs via the SERVER NAME environment variable.
The actual value used at run time is controlled by the USECANONICALNAME setting. With UseCanonicalName
Off, the server name is taken from the contents of the Host: header in the request. With UseCanonicalName
DNS, it is taken from a reverse DNS lookup of the virtual host’s IP address. The former setting is used for name-based
dynamic virtual hosting, and the latter is used for IP-based hosting. If httpd cannot work out the server name because
there is no Host: header, or the DNS lookup fails, then the value configured with ServerName is used instead.

The other thing to determine is the document root (configured with DocumentRoot and available to CGI scripts
via the DOCUMENT ROOT environment variable). In a normal configuration, this is used by the core module when
mapping URIs to filenames, but when the server is configured to do dynamic virtual hosting, that job must be taken over
by another module (either MOD VHOST ALIAS or MOD REWRITE), which has a different way of doing the mapping.
Neither of these modules is responsible for setting the DOCUMENT ROOT environment variable so if any CGIs or SSI
documents make use of it, they will get a misleading value.

Dynamic Virtual Hosts with mod vhost alias

This extract from httpd.conf implements the virtual host arrangement outlined in the Motivation section above
using MOD VHOST ALIAS.

get the server name from the Host: header
UseCanonicalName Off

this log format can be split per-virtual-host based on the first field
using the split-logfile utility.
LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon
CustomLog "logs/access_log" vcommon

include the server name in the filenames used to satisfy requests
VirtualDocumentRoot "/www/hosts/%0/docs"
VirtualScriptAlias "/www/hosts/%0/cgi-bin"

This configuration can be changed into an IP-based virtual hosting solution by just turning UseCanonicalName
Off into UseCanonicalName DNS. The server name that is inserted into the filename is then derived from the IP
address of the virtual host. The variable %0 references the requested servername, as indicated in the Host: header.

See the MOD VHOST ALIAS documentation for more usage examples.

Simplified Dynamic Virtual Hosts

This is an adjustment of the above system, tailored for an ISP’s web hosting server. Using %2, we can select substrings
of the server name to use in the filename so that, for example, the documents for www.user.example.com are
found in /home/user/www. It uses a single cgi-bin directory instead of one per virtual host.

UseCanonicalName Off

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon
CustomLog logs/access_log vcommon

include part of the server name in the filenames
VirtualDocumentRoot "/home/%2/www"

122 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

single cgi-bin directory
ScriptAlias "/cgi-bin/" "/www/std-cgi/"

There are examples of more complicated VirtualDocumentRoot settings in the MOD VHOST ALIAS documen-
tation.

Using Multiple Virtual Hosting Systems on the Same Server

With more complicated setups, you can use httpd’s normal <VirtualHost> directives to control the scope of the
various virtual hosting configurations. For example, you could have one IP address for general customers’ home-
pages, and another for commercial customers, with the following setup. This can be combined with conventional
<VirtualHost> configuration sections, as shown below.

UseCanonicalName Off

LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon

<Directory "/www/commercial">
Options FollowSymLinks
AllowOverride All

</Directory>

<Directory "/www/homepages">
Options FollowSymLinks
AllowOverride None

</Directory>

<VirtualHost 111.22.33.44>
ServerName www.commercial.example.com

CustomLog "logs/access_log.commercial" vcommon

VirtualDocumentRoot "/www/commercial/%0/docs"
VirtualScriptAlias "/www/commercial/%0/cgi-bin"

</VirtualHost>

<VirtualHost 111.22.33.45>
ServerName www.homepages.example.com

CustomLog "logs/access_log.homepages" vcommon

VirtualDocumentRoot "/www/homepages/%0/docs"
ScriptAlias "/cgi-bin/" "/www/std-cgi/"

</VirtualHost>

=⇒Note

If the first VirtualHost block does not include a SERVERNAME directive, the reverse DNS of
the relevant IP will be used instead. If this is not the server name you wish to use, a bogus
entry (eg. ServerName none.example.com) can be added to get around this behaviour.

3.4. DYNAMICALLY CONFIGURED MASS VIRTUAL HOSTING 123

More Efficient IP-Based Virtual Hosting

The configuration changes suggested to turn the first example into an IP-based virtual hosting setup result in a rather
inefficient setup. A new DNS lookup is required for every request. To avoid this overhead, the filesystem can be
arranged to correspond to the IP addresses, instead of to the host names, thereby negating the need for a DNS lookup.
Logging will also have to be adjusted to fit this system.

get the server name from the reverse DNS of the IP address
UseCanonicalName DNS

include the IP address in the logs so they may be split
LogFormat "%A %h %l %u %t \"%r\" %s %b" vcommon
CustomLog "logs/access_log" vcommon

include the IP address in the filenames
VirtualDocumentRootIP "/www/hosts/%0/docs"
VirtualScriptAliasIP "/www/hosts/%0/cgi-bin"

Mass virtual hosts with mod rewrite

Mass virtual hosting may also be accomplished using MOD REWRITE, either using simple REWRITERULE direc-
tives, or using more complicated techniques such as storing the vhost definitions externally and accessing them via
REWRITEMAP. These techniques are discussed in the rewrite documentation (p. 152) .

124 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

3.5 VirtualHost Examples

This document attempts to answer the commonly-asked questions about setting up virtual hosts (p. 114) . These
scenarios are those involving multiple web sites running on a single server, via name-based (p. 115) or IP-based (p.
118) virtual hosts.

Running several name-based web sites on a single IP address.

Your server has a single IP address, and multiple aliases (CNAMES) point to this machine in DNS. You want to run a
web server for www.example.com and www.example.org on this machine.

=⇒Note
Creating virtual host configurations on your Apache server does not magically cause DNS
entries to be created for those host names. You must have the names in DNS, resolving to your
IP address, or nobody else will be able to see your web site. You can put entries in your hosts
file for local testing, but that will work only from the machine with those hosts entries.

Ensure that Apache listens on port 80
Listen 80
<VirtualHost *:80>

DocumentRoot "/www/example1"
ServerName www.example.com

Other directives here
</VirtualHost>

<VirtualHost *:80>
DocumentRoot "/www/example2"
ServerName www.example.org

Other directives here
</VirtualHost>

The asterisks match all addresses, so the main server serves no requests. Due to the fact that the virtual host with
ServerName www.example.com is first in the configuration file, it has the highest priority and can be seen
as the default or primary server. That means that if a request is received that does not match one of the specified
ServerName directives, it will be served by this first VirtualHost.

=⇒Note

You can, if you wish, replace * with the actual IP address of the system, when you don’t care
to discriminate based on the IP address or port.
However, it is additionally useful to use * on systems where the IP address is not predictable
- for example if you have a dynamic IP address with your ISP, and you are using some variety
of dynamic DNS solution. Since * matches any IP address, this configuration would work
without changes whenever your IP address changes.

The above configuration is what you will want to use in almost all name-based virtual hosting situations. The only
thing that this configuration will not work for, in fact, is when you are serving different content based on differing IP
addresses or ports.

3.5. VIRTUALHOST EXAMPLES 125

Name-based hosts on more than one IP address.

=⇒Note

Any of the techniques discussed here can be extended to any number of IP addresses.

The server has two IP addresses. On one (172.20.30.40), we will serve the "main" server,
server.example.com and on the other (172.20.30.50), we will serve two or more virtual hosts.

Listen 80

This is the "main" server running on 172.20.30.40
ServerName server.example.com
DocumentRoot "/www/mainserver"

<VirtualHost 172.20.30.50>
DocumentRoot "/www/example1"
ServerName www.example.com

Other directives here ...
</VirtualHost>

<VirtualHost 172.20.30.50>
DocumentRoot "/www/example2"
ServerName www.example.org

Other directives here ...
</VirtualHost>

Any request to an address other than 172.20.30.50 will be served from the main server. A request to
172.20.30.50 with an unknown hostname, or no Host: header, will be served from www.example.com.

Serving the same content on different IP addresses (such as an internal and external address).

The server machine has two IP addresses (192.168.1.1 and 172.20.30.40). The machine is sitting be-
tween an internal (intranet) network and an external (internet) network. Outside of the network, the name
server.example.com resolves to the external address (172.20.30.40), but inside the network, that same
name resolves to the internal address (192.168.1.1).

The server can be made to respond to internal and external requests with the same content, with just one
VirtualHost section.

<VirtualHost 192.168.1.1 172.20.30.40>
DocumentRoot "/www/server1"
ServerName server.example.com
ServerAlias server

</VirtualHost>

Now requests from both networks will be served from the same VirtualHost.

=⇒Note:
On the internal network, one can just use the name server rather than the fully qualified host
name server.example.com.
Note also that, in the above example, you can replace the list of IP addresses with *, which
will cause the server to respond the same on all addresses.

126 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

Running different sites on different ports.

You have multiple domains going to the same IP and also want to serve multiple ports. The example below illustrates
that the name-matching takes place after the best matching IP address and port combination is determined.

Listen 80
Listen 8080

<VirtualHost 172.20.30.40:80>
ServerName www.example.com
DocumentRoot "/www/domain-80"

</VirtualHost>

<VirtualHost 172.20.30.40:8080>
ServerName www.example.com
DocumentRoot "/www/domain-8080"

</VirtualHost>

<VirtualHost 172.20.30.40:80>
ServerName www.example.org
DocumentRoot "/www/otherdomain-80"

</VirtualHost>

<VirtualHost 172.20.30.40:8080>
ServerName www.example.org
DocumentRoot "/www/otherdomain-8080"

</VirtualHost>

IP-based virtual hosting

The server has two IP addresses (172.20.30.40 and 172.20.30.50) which resolve to the names
www.example.com and www.example.org respectively.

Listen 80

<VirtualHost 172.20.30.40>
DocumentRoot "/www/example1"
ServerName www.example.com

</VirtualHost>

<VirtualHost 172.20.30.50>
DocumentRoot "/www/example2"
ServerName www.example.org

</VirtualHost>

Requests for any address not specified in one of the <VirtualHost> directives (such as localhost, for example)
will go to the main server, if there is one.

Mixed port-based and ip-based virtual hosts

The server machine has two IP addresses (172.20.30.40 and 172.20.30.50) which resolve to the names
www.example.com and www.example.org respectively. In each case, we want to run hosts on ports 80 and

3.5. VIRTUALHOST EXAMPLES 127

8080.

Listen 172.20.30.40:80
Listen 172.20.30.40:8080
Listen 172.20.30.50:80
Listen 172.20.30.50:8080

<VirtualHost 172.20.30.40:80>
DocumentRoot "/www/example1-80"
ServerName www.example.com

</VirtualHost>

<VirtualHost 172.20.30.40:8080>
DocumentRoot "/www/example1-8080"
ServerName www.example.com

</VirtualHost>

<VirtualHost 172.20.30.50:80>
DocumentRoot "/www/example2-80"
ServerName www.example.org

</VirtualHost>

<VirtualHost 172.20.30.50:8080>
DocumentRoot "/www/example2-8080"
ServerName www.example.org

</VirtualHost>

Mixed name-based and IP-based vhosts

Any address mentioned in the argument to a virtualhost that never appears in another virtual host is a strictly IP-based
virtual host.

Listen 80
<VirtualHost 172.20.30.40>

DocumentRoot "/www/example1"
ServerName www.example.com

</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/example2"
ServerName www.example.org

</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/example3"
ServerName www.example.net

</VirtualHost>

IP-based
<VirtualHost 172.20.30.50>

DocumentRoot "/www/example4"
ServerName www.example.edu

128 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

</VirtualHost>

<VirtualHost 172.20.30.60>
DocumentRoot "/www/example5"
ServerName www.example.gov

</VirtualHost>

Using Virtual host and mod proxy together

The following example allows a front-end machine to proxy a virtual host through to a server running on another
machine. In the example, a virtual host of the same name is configured on a machine at 192.168.111.2. The
PROXYPRESERVEHOST ON directive is used so that the desired hostname is passed through, in case we are proxying
multiple hostnames to a single machine.

<VirtualHost *:*>
ProxyPreserveHost On
ProxyPass "/" "http://192.168.111.2/"
ProxyPassReverse "/" "http://192.168.111.2/"
ServerName hostname.example.com

</VirtualHost>

Using default vhosts

default vhosts for all ports

Catching every request to any unspecified IP address and port, i.e., an address/port combination that is not used for
any other virtual host.

<VirtualHost _default_:*>
DocumentRoot "/www/default"

</VirtualHost>

Using such a default vhost with a wildcard port effectively prevents any request going to the main server.

A default vhost never serves a request that was sent to an address/port that is used for name-based vhosts. If the request
contained an unknown or no Host: header it is always served from the primary name-based vhost (the vhost for that
address/port appearing first in the configuration file).

You can use ALIASMATCH or REWRITERULE to rewrite any request to a single information page (or script).

default vhosts for different ports

Same as setup 1, but the server listens on several ports and we want to use a second default vhost for port 80.

<VirtualHost _default_:80>
DocumentRoot "/www/default80"
...

</VirtualHost>

<VirtualHost _default_:*>
DocumentRoot "/www/default"
...

</VirtualHost>

3.5. VIRTUALHOST EXAMPLES 129

The default vhost for port 80 (which must appear before any default vhost with a wildcard port) catches all requests
that were sent to an unspecified IP address. The main server is never used to serve a request.

default vhosts for one port

We want to have a default vhost for port 80, but no other default vhosts.

<VirtualHost _default_:80>
DocumentRoot "/www/default"
...
</VirtualHost>

A request to an unspecified address on port 80 is served from the default vhost. Any other request to an unspecified
address and port is served from the main server.

Any use of * in a virtual host declaration will have higher precedence than default .

Migrating a name-based vhost to an IP-based vhost

The name-based vhost with the hostname www.example.org (from our name-based example, setup 2) should get
its own IP address. To avoid problems with name servers or proxies who cached the old IP address for the name-based
vhost we want to provide both variants during a migration phase.

The solution is easy, because we can simply add the new IP address (172.20.30.50) to the VirtualHost direc-
tive.

Listen 80
ServerName www.example.com
DocumentRoot "/www/example1"

<VirtualHost 172.20.30.40 172.20.30.50>
DocumentRoot "/www/example2"
ServerName www.example.org
...

</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/example3"
ServerName www.example.net
ServerAlias *.example.net
...

</VirtualHost>

The vhost can now be accessed through the new address (as an IP-based vhost) and through the old address (as a
name-based vhost).

Using the ServerPath directive

We have a server with two name-based vhosts. In order to match the correct virtual host a client must send the correct
Host: header. Old HTTP/1.0 clients do not send such a header and Apache has no clue what vhost the client tried
to reach (and serves the request from the primary vhost). To provide as much backward compatibility as possible
we create a primary vhost which returns a single page containing links with an URL prefix to the name-based virtual
hosts.

130 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

<VirtualHost 172.20.30.40>
primary vhost
DocumentRoot "/www/subdomain"
RewriteEngine On
RewriteRule "." "/www/subdomain/index.html"
...

</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/subdomain/sub1"

ServerName www.sub1.domain.tld
ServerPath "/sub1/"
RewriteEngine On
RewriteRule "ˆ(/sub1/.*)" "/www/subdomain$1"
...

</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/subdomain/sub2"
ServerName www.sub2.domain.tld
ServerPath "/sub2/"
RewriteEngine On
RewriteRule "ˆ(/sub2/.*)" "/www/subdomain$1"
...

</VirtualHost>

Due to the SERVERPATH directive a request to the URL http://www.sub1.domain.tld/sub1/ is always
served from the sub1-vhost.
A request to the URL http://www.sub1.domain.tld/ is only served from the sub1-vhost if the client sent a
correct Host: header. If no Host: header is sent the client gets the information page from the primary host.

Please note that there is one oddity: A request to http://www.sub2.domain.tld/sub1/ is also served from
the sub1-vhost if the client sent no Host: header.

The REWRITERULE directives are used to make sure that a client which sent a correct Host: header can use both
URL variants, i.e., with or without URL prefix.

3.6. AN IN-DEPTH DISCUSSION OF VIRTUAL HOST MATCHING 131

3.6 An In-Depth Discussion of Virtual Host Matching

This document attempts to explain exactly what Apache HTTP Server does when deciding what virtual host to serve
a request from.

Most users should read about Name-based vs. IP-based Virtual Hosts (p. 115) to decide which type they want to use,
then read more about name-based (p. 115) or IP-based (p. 118) virtualhosts, and then see some examples (p. 124) .

If you want to understand all the details, then you can come back to this page.

See also

• IP-based Virtual Host Support (p. 118)

• Name-based Virtual Hosts Support (p. 115)

• Virtual Host examples for common setups (p. 124)

• Dynamically configured mass virtual hosting (p. 120)

Configuration File

There is a main server which consists of all the definitions appearing outside of <VirtualHost> sections.

There are virtual servers, called vhosts, which are defined by <VIRTUALHOST> sections.

Each VirtualHost directive includes one or more addresses and optional ports.

Hostnames can be used in place of IP addresses in a virtual host definition, but they are resolved at startup and if any
name resolutions fail, those virtual host definitions are ignored. This is, therefore, not recommended.

The address can be specified as *, which will match a request if no other vhost has the explicit address on which the
request was received.

The address appearing in the VirtualHost directive can have an optional port. If the port is unspecified, it is treated
as a wildcard port, which can also be indicated explicitly using *. The wildcard port matches any port.

(Port numbers specified in the VirtualHost directive do not influence what port numbers Apache will listen on,
they only control which VirtualHost will be selected to handle a request. Use the LISTEN directive to control the
addresses and ports on which the server listens.)

Collectively the entire set of addresses (including multiple results from DNS lookups) are called the vhost’s address
set.

Apache automatically discriminates on the basis of the HTTP Host header supplied by the client whenever the most
specific match for an IP address and port combination is listed in multiple virtual hosts.

The SERVERNAME directive may appear anywhere within the definition of a server. However, each appearance
overrides the previous appearance (within that server). If no ServerName is specified, the server attempts to deduce
it from the server’s IP address.

The first name-based vhost in the configuration file for a given IP:port pair is significant because it is used for all
requests received on that address and port for which no other vhost for that IP:port pair has a matching ServerName or
ServerAlias. It is also used for all SSL connections if the server does not support Server Name Indication.

The complete list of names in the VirtualHost directive are treated just like a (non wildcard) ServerAlias (but
are not overridden by any ServerAlias statement).

For every vhost various default values are set. In particular:

1. If a vhost has no SERVERADMIN, TIMEOUT, KEEPALIVETIMEOUT, KEEPALIVE, MAXKEEPALIV-
EREQUESTS, RECEIVEBUFFERSIZE, or SENDBUFFERSIZE directive then the respective value is inherited from
the main server. (That is, inherited from whatever the final setting of that value is in the main server.)

132 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

2. The "lookup defaults" that define the default directory permissions for a vhost are merged with those of the
main server. This includes any per-directory configuration information for any module.

3. The per-server configs for each module from the main server are merged into the vhost server.

Essentially, the main server is treated as "defaults" or a "base" on which to build each vhost. But the positioning
of these main server definitions in the config file is largely irrelevant – the entire config of the main server has been
parsed when this final merging occurs. So even if a main server definition appears after a vhost definition it might
affect the vhost definition.

If the main server has no ServerName at this point, then the hostname of the machine that httpd is running
on is used instead. We will call the main server address set those IP addresses returned by a DNS lookup on the
ServerName of the main server.

For any undefined ServerName fields, a name-based vhost defaults to the address given first in the VirtualHost
statement defining the vhost.

Any vhost that includes the magic default wildcard is given the same ServerName as the main server.

Virtual Host Matching

The server determines which vhost to use for a request as follows:

IP address lookup

When the connection is first received on some address and port, the server looks for all the VirtualHost definitions
that have the same IP address and port.

If there are no exact matches for the address and port, then wildcard (*) matches are considered.

If no matches are found, the request is served by the main server.

If there are VirtualHost definitions for the IP address, the next step is to decide if we have to deal with an IP-based
or a name-based vhost.

IP-based vhost

If there is exactly one VirtualHost directive listing the IP address and port combination that was determined to be
the best match, no further actions are performed and the request is served from the matching vhost.

Name-based vhost

If there are multiple VirtualHost directives listing the IP address and port combination that was determined to be
the best match, the "list" in the remaining steps refers to the list of vhosts that matched, in the order they were in the
configuration file.

If the connection is using SSL, the server supports Server Name Indication, and the SSL client handshake includes
the TLS extension with the requested hostname, then that hostname is used below just like the Host: header would
be used on a non-SSL connection. Otherwise, the first name-based vhost whose address matched is used for SSL
connections. This is significant because the vhost determines which certificate the server will use for the connection.

If the request contains a Host: header field, the list is searched for the first vhost with a matching ServerName
or ServerAlias, and the request is served from that vhost. A Host: header field can contain a port number, but
Apache always ignores it and matches against the real port to which the client sent the request.

The first vhost in the config file with the specified IP address has the highest priority and catches any request to an
unknown server name, or a request without a Host: header field (such as a HTTP/1.0 request).

3.6. AN IN-DEPTH DISCUSSION OF VIRTUAL HOST MATCHING 133

Persistent connections

The IP lookup described above is only done once for a particular TCP/IP session while the name lookup is done on
every request during a KeepAlive/persistent connection. In other words, a client may request pages from different
name-based vhosts during a single persistent connection.

Absolute URI

If the URI from the request is an absolute URI, and its hostname and port match the main server or one of the configured
virtual hosts and match the address and port to which the client sent the request, then the scheme/hostname/port prefix
is stripped off and the remaining relative URI is served by the corresponding main server or virtual host. If it does not
match, then the URI remains untouched and the request is taken to be a proxy request.

Observations

• Name-based virtual hosting is a process applied after the server has selected the best matching IP-based virtual
host.

• If you don’t care what IP address the client has connected to, use a "*" as the address of every virtual host, and
name-based virtual hosting is applied across all configured virtual hosts.

• ServerName and ServerAlias checks are never performed for an IP-based vhost.

• Only the ordering of name-based vhosts for a specific address set is significant. The one name-based vhosts that
comes first in the configuration file has the highest priority for its corresponding address set.

• Any port in the Host: header field is never used during the matching process. Apache always uses the real
port to which the client sent the request.

• If two vhosts have an address in common, those common addresses act as name-based virtual hosts implicitly.
This is new behavior as of 2.3.11.

• The main server is only used to serve a request if the IP address and port number to which the client connected
does not match any vhost (including a * vhost). In other words, the main server only catches a request for an
unspecified address/port combination (unless there is a default vhost which matches that port).

• You should never specify DNS names in VirtualHost directives because it will force your server to rely on
DNS to boot. Furthermore it poses a security threat if you do not control the DNS for all the domains listed.
There’s more information (p. 111) available on this and the next two topics.

• ServerName should always be set for each vhost. Otherwise A DNS lookup is required for each vhost.

Tips

In addition to the tips on the DNS Issues (p. 111) page, here are some further tips:

• Place all main server definitions before any VirtualHost definitions. (This is to aid the readability of the
configuration – the post-config merging process makes it non-obvious that definitions mixed in around virtual
hosts might affect all virtual hosts.)

134 CHAPTER 3. APACHE VIRTUAL HOST DOCUMENTATION

3.7 File Descriptor Limits

When using a large number of Virtual Hosts, Apache may run out of available file descriptors (sometimes called file
handles) if each Virtual Host specifies different log files. The total number of file descriptors used by Apache is
one for each distinct error log file, one for every other log file directive, plus 10-20 for internal use. Unix operating
systems limit the number of file descriptors that may be used by a process; the limit is typically 64, and may usually
be increased up to a large hard-limit.

Although Apache attempts to increase the limit as required, this may not work if:

1. Your system does not provide the setrlimit() system call.

2. The setrlimit(RLIMIT NOFILE) call does not function on your system (such as Solaris 2.3)

3. The number of file descriptors required exceeds the hard limit.

4. Your system imposes other limits on file descriptors, such as a limit on stdio streams only using file descriptors
below 256. (Solaris 2)

In the event of problems you can:

• Reduce the number of log files; don’t specify log files in the <VIRTUALHOST> sections, but only log to the
main log files. (See Splitting up your log files, below, for more information on doing this.)

• If you system falls into 1 or 2 (above), then increase the file descriptor limit before starting Apache, using a
script like

#!/bin/sh
ulimit -S -n 100

exec httpd

Splitting up your log files

If you want to log multiple virtual hosts to the same log file, you may want to split up the log files afterwards in order
to run statistical analysis of the various virtual hosts. This can be accomplished in the following manner.

First, you will need to add the virtual host information to the log entries. This can be done using the LOGFORMAT
directive, and the %v variable. Add this to the beginning of your log format string:

LogFormat "%v %h %l %u %t \"%r\" %>s %b" vhost
CustomLog logs/multiple_vhost_log vhost

This will create a log file in the common log format, but with the canonical virtual host (whatever appears in the
SERVERNAME directive) prepended to each line. (See MOD LOG CONFIG for more about customizing your log files.)

When you wish to split your log file into its component parts (one file per virtual host) you can use the program
split-logfile (p. 323) to accomplish this. You’ll find this program in the support directory of the
Apache distribution.

Run this program with the command:

split-logfile < /logs/multiple vhost log

This program, when run with the name of your vhost log file, will generate one file for each virtual host that appears
in your log file. Each file will be called hostname.log.

Chapter 4

URL Rewriting Guide

135

136 CHAPTER 4. URL REWRITING GUIDE

4.1 Apache mod rewrite

MOD REWRITE provides a way to modify incoming URL requests, dynamically, based on regular expression (p. 137)
rules. This allows you to map arbitrary URLs onto your internal URL structure in any way you like.

It supports an unlimited number of rules and an unlimited number of attached rule conditions for each rule to provide
a really flexible and powerful URL manipulation mechanism. The URL manipulations can depend on various tests:
server variables, environment variables, HTTP headers, time stamps, external database lookups, and various other
external programs or handlers, can be used to achieve granular URL matching.

Rewrite rules can operate on the full URLs, including the path-info and query string portions, and may be used
in per-server context (httpd.conf), per-virtualhost context (<VIRTUALHOST> blocks), or per-directory context
(.htaccess files and <DIRECTORY> blocks). The rewritten result can lead to further rules, internal sub-processing,
external request redirection, or proxy passthrough, depending on what flags (p. 168) you attach to the rules.

Since mod rewrite is so powerful, it can indeed be rather complex. This document supplements the reference docu-
mentation (p. 798) , and attempts to allay some of that complexity, and provide highly annotated examples of com-
mon scenarios that you may handle with mod rewrite. But we also attempt to show you when you should not use
mod rewrite, and use other standard Apache features instead, thus avoiding this unnecessary complexity.

• mod rewrite reference documentation (p. 798)

• Introduction to regular expressions and mod rewrite (p. 137)

• Using mod rewrite for redirection and remapping of URLs (p. 142)

• Using mod rewrite to control access (p. 149)

• Dynamic virtual hosts with mod rewrite (p. 152)

• Dynamic proxying with mod rewrite (p. 155)

• Using RewriteMap (p. 156)

• Advanced techniques (p. 162)

• When NOT to use mod rewrite (p. 165)

• RewriteRule Flags (p. 168)

• Technical details (p. 177)

See also

• mod rewrite reference documentation (p. 798)

• Mapping URLs to the Filesystem (p. 61)

• mod rewrite wiki1

• Glossary (p. 1012)

1http://wiki.apache.org/httpd/Rewrite

http://wiki.apache.org/httpd/Rewrite

4.2. APACHE MOD REWRITE INTRODUCTION 137

4.2 Apache mod rewrite Introduction

This document supplements the MOD REWRITE reference documentation (p. 798) . It describes the basic concepts
necessary for use of MOD REWRITE. Other documents go into greater detail, but this doc should help the beginner get
their feet wet.

See also

• Module documentation (p. 798)

• Redirection and remapping (p. 142)

• Controlling access (p. 149)

• Virtual hosts (p. 152)

• Proxying (p. 155)

• Using RewriteMap (p. 156)

• Advanced techniques (p. 162)

• When not to use mod rewrite (p. 165)

Introduction

The Apache module MOD REWRITE is a very powerful and sophisticated module which provides a way to do URL
manipulations. With it, you can do nearly all types of URL rewriting that you may need. It is, however, somewhat
complex, and may be intimidating to the beginner. There is also a tendency to treat rewrite rules as magic incantation,
using them without actually understanding what they do.

This document attempts to give sufficient background so that what follows is understood, rather than just copied
blindly.

Remember that many common URL-manipulation tasks don’t require the full power and complexity of
MOD REWRITE. For simple tasks, see MOD ALIAS and the documentation on mapping URLs to the filesystem (p.
61) .

Finally, before proceeding, be sure to configure MOD REWRITE’s log level to one of the trace levels using the
LOGLEVEL directive. Although this can give an overwhelming amount of information, it is indispensable in de-
bugging problems with MOD REWRITE configuration, since it will tell you exactly how each rule is processed.

Regular Expressions

mod rewrite uses the Perl Compatible Regular Expression2 vocabulary. In this document, we do not attempt to provide
a detailed reference to regular expressions. For that, we recommend the PCRE man pages3, the Perl regular expression
man page4, and Mastering Regular Expressions, by Jeffrey Friedl5.

In this document, we attempt to provide enough of a regex vocabulary to get you started, without being overwhelming,
in the hope that REWRITERULEs will be scientific formulae, rather than magical incantations.

2http://pcre.org/
3http://pcre.org/pcre.txt
4http://perldoc.perl.org/perlre.html
5http://shop.oreilly.com/product/9780596528126.do

http://pcre.org/
http://pcre.org/pcre.txt
http://perldoc.perl.org/perlre.html
http://shop.oreilly.com/product/9780596528126.do

138 CHAPTER 4. URL REWRITING GUIDE

Regex vocabulary

The following are the minimal building blocks you will need, in order to write regular expressions and
REWRITERULEs. They certainly do not represent a complete regular expression vocabulary, but they are a good
place to start, and should help you read basic regular expressions, as well as write your own.

Character Meaning Example
. Matches any single character c.t will match cat, cot, cut, etc.
+ Repeats the previous match one or more

times
a+ matches a, aa, aaa, etc

* Repeats the previous match zero or more
times.

a* matches all the same things a+
matches, but will also match an empty
string.

? Makes the match optional. colou?r will match color and
colour.

ˆ Called an anchor, matches the beginning
of the string

ˆa matches a string that begins with a

$ The other anchor, this matches the end of
the string.

a$ matches a string that ends with a.

() Groups several characters into a single
unit, and captures a match for use in a
backreference.

(ab)+ matches ababab - that is, the +
applies to the group. For more on back-
references see below.

[] A character class - matches one of the
characters

c[uoa]t matches cut, cot or cat.

[ˆ] Negative character class - matches any
character not specified

c[ˆ/]t matches cat or c=t but not
c/t

In MOD REWRITE the ! character can be used before a regular expression to negate it. This is, a string will be
considered to have matched only if it does not match the rest of the expression.

Regex Back-Reference Availability

One important thing here has to be remembered: Whenever you use parentheses in Pattern or in one of the Cond-
Pattern, back-references are internally created which can be used with the strings $N and %N (see below). These are
available for creating the Substitution parameter of a REWRITERULE or the TestString parameter of a REWRITECOND.

Captures in the REWRITERULE patterns are (counterintuitively) available to all preceding REWRITECOND directives,
because the REWRITERULE expression is evaluated before the individual conditions.

Figure 1 shows to which locations the back-references are transferred for expansion as well as illustrating the flow of
the RewriteRule, RewriteCond matching. In the next chapters, we will be exploring how to use these back-references,
so do not fret if it seems a bit alien to you at first.

Figure 1: The back-reference flow through a rule.
In this example, a request for /test/1234 would be transformed into
/admin.foo?page=test&id=1234&host=admin.example.com.

4.2. APACHE MOD REWRITE INTRODUCTION 139

RewriteRule Basics

A REWRITERULE consists of three arguments separated by spaces. The arguments are

1. Pattern: which incoming URLs should be affected by the rule;

2. Substitution: where should the matching requests be sent;

3. [flags]: options affecting the rewritten request.

The Pattern is a regular expression. It is initially (for the first rewrite rule or until a substitution occurs) matched
against the URL-path of the incoming request (the part after the hostname but before any question mark indicating the
beginning of a query string) or, in per-directory context, against the request’s path relative to the directory for which
the rule is defined. Once a substitution has occurred, the rules that follow are matched against the substituted value.

Figure 2: Syntax of the RewriteRule directive.

The Substitution can itself be one of three things:

A full filesystem path to a resource RewriteRule "ˆ/games" "/usr/local/games/web"

This maps a request to an arbitrary location on your filesystem, much like the ALIAS directive.

A web-path to a resource RewriteRule "ˆ/foo$" "/bar"

If DOCUMENTROOT is set to /usr/local/apache2/htdocs, then this directive would map requests for
http://example.com/foo to the path /usr/local/apache2/htdocs/bar.

An absolute URL RewriteRule "ˆ/product/view$" "http://site2.example.com/seeproduct.html" [R]

This tells the client to make a new request for the specified URL.

140 CHAPTER 4. URL REWRITING GUIDE

The Substitution can also contain back-references to parts of the incoming URL-path matched by the Pattern. Consider
the following:

RewriteRule "ˆ/product/(.*)/view$" "/var/web/productdb/$1"

The variable $1 will be replaced with whatever text was matched by the expression inside the parenthesis in the
Pattern. For example, a request for http://example.com/product/r14df/view will be mapped to the
path /var/web/productdb/r14df.

If there is more than one expression in parenthesis, they are available in order in the variables $1, $2, $3, and so on.

Rewrite Flags

The behavior of a REWRITERULE can be modified by the application of one or more flags to the end of the rule. For
example, the matching behavior of a rule can be made case-insensitive by the application of the [NC] flag:

RewriteRule "ˆpuppy.html" "smalldog.html" [NC]

For more details on the available flags, their meanings, and examples, see the Rewrite Flags (p. 168) document.

Rewrite Conditions

One or more REWRITECOND directives can be used to restrict the types of requests that will be subject to the following
REWRITERULE. The first argument is a variable describing a characteristic of the request, the second argument is a
regular expression that must match the variable, and a third optional argument is a list of flags that modify how the
match is evaluated.

Figure 3: Syntax of the RewriteCond directive

4.2. APACHE MOD REWRITE INTRODUCTION 141

For example, to send all requests from a particular IP range to a different server, you could use:

RewriteCond "%{REMOTE_ADDR}" "ˆ10\.2\."
RewriteRule "(.*)" "http://intranet.example.com$1"

When more than one REWRITECOND is specified, they must all match for the REWRITERULE to be applied. For
example, to deny requests that contain the word "hack" in their query string, unless they also contain a cookie
containing the word "go", you could use:

RewriteCond "%{QUERY_STRING}" "hack"
RewriteCond "%{HTTP_COOKIE}" "!go"
RewriteRule "." "-" [F]

Notice that the exclamation mark specifies a negative match, so the rule is only applied if the cookie does not contain
"go".

Matches in the regular expressions contained in the REWRITECONDs can be used as part of the Substitution in the
REWRITERULE using the variables %1, %2, etc. For example, this will direct the request to a different directory
depending on the hostname used to access the site:

RewriteCond "%{HTTP_HOST}" "(.*)"
RewriteRule "ˆ/(.*)" "/sites/%1/$1"

If the request was for http://example.com/foo/bar, then %1 would contain example.com and $1 would
contain foo/bar.

Rewrite maps

The REWRITEMAP directive provides a way to call an external function, so to speak, to do your rewriting for you.
This is discussed in greater detail in the RewriteMap supplementary documentation (p. 156) .

.htaccess files

Rewriting is typically configured in the main server configuration setting (outside any <DIRECTORY> section) or
inside <VIRTUALHOST> containers. This is the easiest way to do rewriting and is recommended. It is possible, how-
ever, to do rewriting inside <DIRECTORY> sections or .htaccess files (p. 239) at the expense of some additional
complexity. This technique is called per-directory rewrites.

The main difference with per-server rewrites is that the path prefix of the directory containing the .htaccess file is
stripped before matching in the REWRITERULE. In addition, the REWRITEBASE should be used to assure the request
is properly mapped.

142 CHAPTER 4. URL REWRITING GUIDE

4.3 Redirecting and Remapping with mod rewrite

This document supplements the MOD REWRITE reference documentation (p. 798) . It describes how you can use
MOD REWRITE to redirect and remap request. This includes many examples of common uses of mod rewrite, includ-
ing detailed descriptions of how each works.

! Note that many of these examples won’t work unchanged in your particular server configu-
ration, so it’s important that you understand them, rather than merely cutting and pasting the
examples into your configuration.

See also

• Module documentation (p. 798)

• mod rewrite introduction (p. 137)

• Controlling access (p. 149)

• Virtual hosts (p. 152)

• Proxying (p. 155)

• Using RewriteMap (p. 156)

• Advanced techniques (p. 162)

• When not to use mod rewrite (p. 165)

From Old to New (internal)

Description: Assume we have recently renamed the page foo.html to bar.html and now want to provide the
old URL for backward compatibility. However, we want that users of the old URL even not recognize that the
pages was renamed - that is, we don’t want the address to change in their browser.

Solution: We rewrite the old URL to the new one internally via the following rule:

RewriteEngine on
RewriteRule "ˆ/foo\.html$" "/bar.html" [PT]

Rewriting From Old to New (external)

Description: Assume again that we have recently renamed the page foo.html to bar.html and now want to
provide the old URL for backward compatibility. But this time we want that the users of the old URL get hinted
to the new one, i.e. their browsers Location field should change, too.

Solution: We force a HTTP redirect to the new URL which leads to a change of the browsers and thus the users view:

RewriteEngine on
RewriteRule "ˆ/foo\.html$" "bar.html" [R]

Discussion In this example, as contrasted to the internal example above, we can simply use the Redirect directive.
mod rewrite was used in that earlier example in order to hide the redirect from the client:

Redirect "/foo.html" "/bar.html"

4.3. REDIRECTING AND REMAPPING WITH MOD REWRITE 143

Resource Moved to Another Server

Description: If a resource has moved to another server, you may wish to have URLs continue to work for a time on
the old server while people update their bookmarks.

Solution: You can use MOD REWRITE to redirect these URLs to the new server, but you might also consider using
the Redirect or RedirectMatch directive.

#With mod_rewrite
RewriteEngine on
RewriteRule "ˆ/docs/(.+)" "http://new.example.com/docs/$1" [R,L]

#With RedirectMatch
RedirectMatch "ˆ/docs/(.*)" "http://new.example.com/docs/$1"

#With Redirect
Redirect "/docs/" "http://new.example.com/docs/"

From Static to Dynamic

Description: How can we transform a static page foo.html into a dynamic variant foo.cgi in a seamless way,
i.e. without notice by the browser/user.

Solution: We just rewrite the URL to the CGI-script and force the handler to be cgi-script so that it is exe-
cuted as a CGI program. This way a request to /˜quux/foo.html internally leads to the invocation of
/˜quux/foo.cgi.

RewriteEngine on
RewriteBase "/˜quux/"
RewriteRule "ˆfoo\.html$" "foo.cgi" [H=cgi-script]

Backward Compatibility for file extension change

Description: How can we make URLs backward compatible (still existing virtually) after migrating
document.YYYY to document.XXXX, e.g. after translating a bunch of .html files to .php?

Solution: We rewrite the name to its basename and test for existence of the new extension. If it exists, we take that
name, else we rewrite the URL to its original state.

backward compatibility ruleset for
rewriting document.html to document.php
when and only when document.php exists
<Directory "/var/www/htdocs">

RewriteEngine on
RewriteBase "/var/www/htdocs"

RewriteCond "$1.php" -f
RewriteCond "$1.html" !-f
RewriteRule "ˆ(.*).html$" "$1.php"

</Directory>

144 CHAPTER 4. URL REWRITING GUIDE

Discussion This example uses an often-overlooked feature of mod rewrite, by taking advantage of the order of execu-
tion of the ruleset. In particular, mod rewrite evaluates the left-hand-side of the RewriteRule before it evaluates
the RewriteCond directives. Consequently, $1 is already defined by the time the RewriteCond directives are eval-
uated. This allows us to test for the existence of the original (document.html) and target (document.php)
files using the same base filename.

This ruleset is designed to use in a per-directory context (In a <Directory> block or in a .htaccess file), so that
the -f checks are looking at the correct directory path. You may need to set a REWRITEBASE directive to
specify the directory base that you’re working in.

Canonical Hostnames

Description: The goal of this rule is to force the use of a particular hostname, in preference to other hostnames which
may be used to reach the same site. For example, if you wish to force the use of www.example.com instead of
example.com, you might use a variant of the following recipe.

Solution: The very best way to solve this doesn’t involve mod rewrite at all, but rather uses the REDIRECT directive
placed in a virtual host for the non-canonical hostname(s).

<VirtualHost *:80>
ServerName undesired.example.com
ServerAlias example.com notthis.example.com

Redirect "/" "http://www.example.com/"
</VirtualHost>

<VirtualHost *:80>
ServerName www.example.com

</VirtualHost>

You can alternatively accomplish this using the <IF> directive:

<If "%{HTTP_HOST} != ’www.example.com’">
Redirect "/" "http://www.example.com/"
</If>

Or, for example, to redirect a portion of your site to HTTPS, you might do the following:

<If "%{SERVER_PROTOCOL} != ’HTTPS’">
Redirect "/admin/" "https://www.example.com/admin/"
</If>

If, for whatever reason, you still want to use mod rewrite - if, for example, you need this to work with a
larger set of RewriteRules - you might use one of the recipes below.

For sites running on a port other than 80:

RewriteCond "%{HTTP_HOST}" "!ˆwww\.example\.com" [NC]
RewriteCond "%{HTTP_HOST}" "!ˆ$"
RewriteCond "%{SERVER_PORT}" "!ˆ80$"
RewriteRule "ˆ/?(.*) "http://www.example.com:%{SERVER_PORT}/$1" [L,R,NE]

And for a site running on port 80

4.3. REDIRECTING AND REMAPPING WITH MOD REWRITE 145

RewriteCond "%{HTTP_HOST}" "!ˆwww\.example\.com" [NC]
RewriteCond "%{HTTP_HOST}" "!ˆ$"
RewriteRule "ˆ/?(.*)" "http://www.example.com/$1" [L,R,NE]

If you wanted to do this generically for all domain names - that is, if you want to redirect example.com to
www.example.com for all possible values of example.com, you could use the following recipe:

RewriteCond "%{HTTP_HOST}" "!ˆwww\." [NC]
RewriteCond "%{HTTP_HOST}" "!ˆ$"
RewriteRule "ˆ/?(.*)" "http://www.%{HTTP_HOST}/$1" [L,R,NE]

These rulesets will work either in your main server configuration file, or in a .htaccess file placed in the
DOCUMENTROOT of the server.

Search for pages in more than one directory

Description: A particular resource might exist in one of several places, and we want to look in those places for the
resource when it is requested. Perhaps we’ve recently rearranged our directory structure, dividing content into
several locations.

Solution: The following ruleset searches in two directories to find the resource, and, if not finding it in either place,
will attempt to just serve it out of the location requested.

RewriteEngine on

first try to find it in dir1/...
...and if found stop and be happy:
RewriteCond "%{DOCUMENT_ROOT}/dir1/%{REQUEST_URI}" -f
RewriteRule "ˆ(.+)" "%{DOCUMENT_ROOT}/dir1/$1" [L]

second try to find it in dir2/...
...and if found stop and be happy:
RewriteCond "%{DOCUMENT_ROOT}/dir2/%{REQUEST_URI}" -f
RewriteRule "ˆ(.+)" "%{DOCUMENT_ROOT}/dir2/$1" [L]

else go on for other Alias or ScriptAlias directives,
etc.
RewriteRule "ˆ" "-" [PT]

Redirecting to Geographically Distributed Servers

Description: We have numerous mirrors of our website, and want to redirect people to the one that is located in the
country where they are located.

Solution: Looking at the hostname of the requesting client, we determine which country they are coming from. If we
can’t do a lookup on their IP address, we fall back to a default server.

We’ll use a REWRITEMAP directive to build a list of servers that we wish to use.

HostnameLookups on
RewriteEngine on
RewriteMap multiplex "txt:/path/to/map.mirrors"
RewriteCond "%{REMOTE_HOST}" "([a-z]+)$" [NC]
RewriteRule "ˆ/(.*)$" "${multiplex:%1|http://www.example.com/}$1" [R,L]

146 CHAPTER 4. URL REWRITING GUIDE

map.mirrors -- Multiplexing Map

de http://www.example.de/
uk http://www.example.uk/
com http://www.example.com/

##EOF##

Discussion ! This ruleset relies on HOSTNAMELOOKUPS being set on, which can be a significant perfor-
mance hit.

The REWRITECOND directive captures the last portion of the hostname of the requesting client - the country
code - and the following RewriteRule uses that value to look up the appropriate mirror host in the map file.

Browser Dependent Content

Description: We wish to provide different content based on the browser, or user-agent, which is requesting the con-
tent.

Solution: We have to decide, based on the HTTP header "User-Agent", which content to serve. The following config
does the following: If the HTTP header "User-Agent" contains "Mozilla/3", the page foo.html is rewritten
to foo.NS.html and the rewriting stops. If the browser is "Lynx" or "Mozilla" of version 1 or 2, the URL
becomes foo.20.html. All other browsers receive page foo.32.html. This is done with the following
ruleset:

RewriteCond "%{HTTP_USER_AGENT}" "ˆMozilla/3.*"
RewriteRule "ˆfoo\.html$" "foo.NS.html" [L]

RewriteCond "%{HTTP_USER_AGENT}" "ˆLynx/" [OR]
RewriteCond "%{HTTP_USER_AGENT}" "ˆMozilla/[12]"
RewriteRule "ˆfoo\.html$" "foo.20.html" [L]

RewriteRule "ˆfoo\.html$" "foo.32.html" [L]

Canonical URLs

Description: On some webservers there is more than one URL for a resource. Usually there are canonical URLs
(which are be actually used and distributed) and those which are just shortcuts, internal ones, and so on. In-
dependent of which URL the user supplied with the request, they should finally see the canonical one in their
browser address bar.

Solution: We do an external HTTP redirect for all non-canonical URLs to fix them in the location view of the Browser
and for all subsequent requests. In the example ruleset below we replace /puppies and /canines by the
canonical /dogs.

RewriteRule "ˆ/(puppies|canines)/(.*)" "/dogs/$2" [R]

Discussion: This should really be accomplished with Redirect or RedirectMatch directives:

RedirectMatch "ˆ/(puppies|canines)/(.*)" "/dogs/$2"

4.3. REDIRECTING AND REMAPPING WITH MOD REWRITE 147

Moved DocumentRoot

Description: Usually the DOCUMENTROOT of the webserver directly relates to the URL "/". But often this data
is not really of top-level priority. For example, you may wish for visitors, on first entering a site, to go to a
particular subdirectory /about/. This may be accomplished using the following ruleset:

Solution: We redirect the URL / to /about/:

RewriteEngine on
RewriteRule "ˆ/$" "/about/" [R]

Note that this can also be handled using the REDIRECTMATCH directive:

RedirectMatch "ˆ/$" "http://example.com/about/"

Note also that the example rewrites only the root URL. That is, it rewrites a request for
http://example.com/, but not a request for http://example.com/page.html. If you have in
fact changed your document root - that is, if all of your content is in fact in that subdirectory, it is greatly prefer-
able to simply change your DOCUMENTROOT directive, or move all of the content up one directory, rather than
rewriting URLs.

Fallback Resource

Description: You want a single resource (say, a certain file, like index.php) to handle all requests that come to a
particular directory, except those that should go to an existing resource such as an image, or a css file.

Solution: As of version 2.2.16, you should use the FALLBACKRESOURCE directive for this:

<Directory "/var/www/my_blog">
FallbackResource "index.php"

</Directory>

However, in earlier versions of Apache, or if your needs are more complicated than this, you can use a variation
of the following rewrite set to accomplish the same thing:

<Directory "/var/www/my_blog">
RewriteBase "/my_blog"

RewriteCond "/var/www/my_blog/%{REQUEST_FILENAME}" !-f
RewriteCond "/var/www/my_blog/%{REQUEST_FILENAME}" !-d
RewriteRule "ˆ" "index.php" [PT]

</Directory>

If, on the other hand, you wish to pass the requested URI as a query string argument to index.php, you can
replace that RewriteRule with:

RewriteRule "(.*)" "index.php?$1" [PT,QSA]

Note that these rulesets can be used in a .htaccess file, as well as in a <Directory> block.

148 CHAPTER 4. URL REWRITING GUIDE

Rewrite query string

Description: You want to capture a particular value from a query string and either replace it or incorporate it into
another component of the URL.

Solutions: Many of the solutions in this section will all use the same condition, which leaves the matched value in the
%2 backreference. %1 is the beginining of the query string (up to the key of intererest), and %3 is the remainder.
This condition is a bit complex for flexibility and to avoid double ’&&’ in the substitutions.

• This solution removes the matching key and value:

Remove mykey=???
RewriteCond "%{QUERY_STRING}" "(.*(?:ˆ|&))mykey=([ˆ&]*)&?(.*)&?$"
RewriteRule "(.*)" "$1?%1%3"

• This solution uses the captured value in the URL subsitution, discarding the rest of the original query by
appending a ’?’:

Copy from query string to PATH_INFO
RewriteCond "%{QUERY_STRING}" "(.*(?:ˆ|&))mykey=([ˆ&]*)&?(.*)&?$"
RewriteRule "(.*)" "$1/products/%2/?" [PT]

• This solution checks the captured value in a subsequent condition:

Capture the value of mykey in the query string
RewriteCond "%{QUERY_STRING}" "(.*(?:ˆ|&))mykey=([ˆ&]*)&?(.*)&?$"
RewriteCond "%2" !=not-so-secret-value
RewriteRule "(.*)" - [F]

• This solution shows the reverse of the previous ones, copying path components (perhaps PATH INFO)
from the URL into the query string.

The desired URL might be /products/kitchen-sink, and the script expects
/path?products=kitchen-sink.
RewriteRule "ˆ/?path/([ˆ/]+)/([ˆ/]+)" "/path?$1=$2" [PT]

4.4. USING MOD REWRITE TO CONTROL ACCESS 149

4.4 Using mod rewrite to control access

This document supplements the MOD REWRITE reference documentation (p. 798) . It describes how you can use
MOD REWRITE to control access to various resources, and other related techniques. This includes many examples of
common uses of mod rewrite, including detailed descriptions of how each works.

! Note that many of these examples won’t work unchanged in your particular server configu-
ration, so it’s important that you understand them, rather than merely cutting and pasting the
examples into your configuration.

See also

• Module documentation (p. 798)

• mod rewrite introduction (p. 137)

• Redirection and remapping (p. 142)

• Virtual hosts (p. 152)

• Proxying (p. 155)

• Using RewriteMap (p. 156)

• Advanced techniques (p. 162)

• When not to use mod rewrite (p. 165)

Forbidding Image "Hotlinking"

Description: The following technique forbids the practice of other sites including your images inline in their pages.
This practice is often referred to as "hotlinking", and results in your bandwidth being used to serve content for
someone else’s site.

Solution: This technique relies on the value of the HTTP REFERER variable, which is optional. As such, it’s possible
for some people to circumvent this limitation. However, most users will experience the failed request, which
should, over time, result in the image being removed from that other site.

There are several ways that you can handle this situation.

In this first example, we simply deny the request, if it didn’t initiate from a page on our site. For the purpose of
this example, we assume that our site is www.example.com.

RewriteCond "%{HTTP_REFERER}" "!ˆ$"
RewriteCond "%{HTTP_REFERER}" "!www.example.com" [NC]
RewriteRule "\.(gif|jpg|png)$" "-" [F,NC]

In this second example, instead of failing the request, we display an alternate image instead.

RewriteCond "%{HTTP_REFERER}" "!ˆ$"
RewriteCond "%{HTTP_REFERER}" "!www.example.com" [NC]
RewriteRule "\.(gif|jpg|png)$" "/images/go-away.png" [R,NC]

In the third example, we redirect the request to an image on some other site.

RewriteCond "%{HTTP_REFERER}" "!ˆ$"
RewriteCond "%{HTTP_REFERER}" "!www.example.com" [NC]
RewriteRule "\.(gif|jpg|png)$" "http://other.example.com/image.gif" [R,NC]

150 CHAPTER 4. URL REWRITING GUIDE

Of these techniques, the last two tend to be the most effective in getting people to stop hotlinking your images,
because they will simply not see the image that they expected to see.

Discussion: If all you wish to do is deny access to the resource, rather than redirecting that request elsewhere, this
can be accomplished without the use of mod rewrite:

SetEnvIf Referer "example\.com" localreferer
<FilesMatch "\.(jpg|png|gif)$">

Require env localreferer
</FilesMatch>

Blocking of Robots

Description: In this recipe, we discuss how to block persistent requests from a particular robot, or user agent.

The standard for robot exclusion defines a file, /robots.txt that specifies those portions of your website
where you wish to exclude robots. However, some robots do not honor these files.

Note that there are methods of accomplishing this which do not use mod rewrite. Note also that any technique
that relies on the clients USER AGENT string can be circumvented very easily, since that string can be changed.

Solution: We use a ruleset that specifies the directory to be protected, and the client USER AGENT that identifies the
malicious or persistent robot.

In this example, we are blocking a robot called NameOfBadRobot from a location /secret/files. You
may also specify an IP address range, if you are trying to block that user agent only from the particular source.

RewriteCond "%{HTTP_USER_AGENT}" "ˆNameOfBadRobot"
RewriteCond "%{REMOTE_ADDR}" "=123\.45\.67\.[8-9]"
RewriteRule "ˆ/secret/files/" "-" [F]

Discussion: Rather than using mod rewrite for this, you can accomplish the same end using alternate means, as
illustrated here:

SetEnvIfNoCase User-Agent "ˆNameOfBadRobot" goaway
<Location "/secret/files">

<RequireAll>
Require all granted
Require not env goaway

</RequireAll>
</Location>

As noted above, this technique is trivial to circumvent, by simply modifying the USER AGENT request header.
If you are experiencing a sustained attack, you should consider blocking it at a higher level, such as at your
firewall.

Denying Hosts in a Blacklist

Description: We wish to maintain a blacklist of hosts, rather like hosts.deny, and have those hosts blocked from
accessing our server.

Solution: RewriteEngine on
RewriteMap hosts-deny "txt:/path/to/hosts.deny"
RewriteCond "${hosts-deny:%{REMOTE_ADDR}|NOT-FOUND}" "!=NOT-FOUND" [OR]
RewriteCond "${hosts-deny:%{REMOTE_HOST}|NOT-FOUND}" "!=NOT-FOUND"
RewriteRule "ˆ" "-" [F]

4.4. USING MOD REWRITE TO CONTROL ACCESS 151

##
hosts.deny
##
ATTENTION! This is a map, not a list, even when we treat it as
such.
mod rewrite parses it for key/value pairs, so at least a
dummy value "-" must be present for each entry.
##

193.102.180.41 -
bsdti1.sdm.de -

192.76.162.40 -

Discussion: The second RewriteCond assumes that you have HostNameLookups turned on, so that client IP addresses
will be resolved. If that’s not the case, you should drop the second RewriteCond, and drop the [OR] flag from
the first RewriteCond.

Referer-based Deflector

Description: Redirect requests based on the Referer from which the request came, with different targets per Referer.

Solution: The following ruleset uses a map file to associate each Referer with a redirection target.

RewriteMap deflector "txt:/path/to/deflector.map"

RewriteCond "%{HTTP_REFERER}" !=""
RewriteCond "${deflector:%{HTTP_REFERER}}" "=-"
RewriteRule "ˆ" "%{HTTP_REFERER}" [R,L]

RewriteCond "%{HTTP_REFERER}" !=""
RewriteCond "${deflector:%{HTTP_REFERER}|NOT-FOUND}" "!=NOT-FOUND"
RewriteRule "ˆ" "${deflector:%{HTTP_REFERER}}" [R,L]

The map file lists redirection targets for each referer, or, if we just wish to redirect back to where they came
from, a "-" is placed in the map:

##
deflector.map
##

http://badguys.example.com/bad/index.html -
http://badguys.example.com/bad/index2.html -
http://badguys.example.com/bad/index3.html http://somewhere.example.com/

152 CHAPTER 4. URL REWRITING GUIDE

4.5 Dynamic mass virtual hosts with mod rewrite

This document supplements the MOD REWRITE reference documentation (p. 798) . It describes how you can use
MOD REWRITE to create dynamically configured virtual hosts.

! mod rewrite is not the best way to configure virtual hosts. You should first consider the alter-
natives (p. 120) before resorting to mod rewrite. See also the "how to avoid mod rewrite (p.
165) document.

See also

• Module documentation (p. 798)

• mod rewrite introduction (p. 137)

• Redirection and remapping (p. 142)

• Controlling access (p. 149)

• Proxying (p. 155)

• RewriteMap (p. 156)

• Advanced techniques (p. 162)

• When not to use mod rewrite (p. 165)

Virtual Hosts For Arbitrary Hostnames

Description: We want to automatically create a virtual host for every hostname which resolves in our domain, without
having to create new VirtualHost sections.

In this recipe, we assume that we’ll be using the hostname www.SITE.example.com for each user, and
serve their content out of /home/SITE/www.

Solution: RewriteEngine on

RewriteMap lowercase int:tolower

RewriteCond "${lowercase:%{HTTP_HOST}}" "ˆwww\.([ˆ.]+)\.example\.com$"
RewriteRule "ˆ(.*)" "/home/%1/www$1"

Discussion ! You will need to take care of the DNS resolution - Apache does not handle name resolution.
You’ll need either to create CNAME records for each hostname, or a DNS wildcard record.
Creating DNS records is beyond the scope of this document.

The internal tolower RewriteMap directive is used to ensure that the hostnames being used are all lowercase,
so that there is no ambiguity in the directory structure which must be created.

Parentheses used in a REWRITECOND are captured into the backreferences %1, %2, etc, while parentheses used
in REWRITERULE are captured into the backreferences $1, $2, etc.

As with many techniques discussed in this document, mod rewrite really isn’t the best way to accomplish this
task. You should, instead, consider using MOD VHOST ALIAS instead, as it will much more gracefully handle
anything beyond serving static files, such as any dynamic content, and Alias resolution.

4.5. DYNAMIC MASS VIRTUAL HOSTS WITH MOD REWRITE 153

Dynamic Virtual Hosts Using MOD REWRITE

This extract from httpd.conf does the same thing as the first example. The first half is very similar to the corre-
sponding part above, except for some changes, required for backward compatibility and to make the mod rewrite
part work properly; the second half configures mod rewrite to do the actual work.

Because mod rewrite runs before other URI translation modules (e.g., mod alias), mod rewrite must be
told to explicitly ignore any URLs that would have been handled by those modules. And, because these rules would
otherwise bypass any ScriptAlias directives, we must have mod rewrite explicitly enact those mappings.

get the server name from the Host: header
UseCanonicalName Off

splittable logs
LogFormat "%{Host}i %h %l %u %t \"%r\" %s %b" vcommon
CustomLog "logs/access_log" vcommon

<Directory "/www/hosts">
ExecCGI is needed here because we can’t force
CGI execution in the way that ScriptAlias does
Options FollowSymLinks ExecCGI

</Directory>

RewriteEngine On

a ServerName derived from a Host: header may be any case at all
RewriteMap lowercase int:tolower

deal with normal documents first:
allow Alias "/icons/" to work - repeat for other aliases
RewriteCond "%{REQUEST_URI}" "!ˆ/icons/"
allow CGIs to work
RewriteCond "%{REQUEST_URI}" "!ˆ/cgi-bin/"
do the magic
RewriteRule "ˆ/(.*)$" "/www/hosts/${lowercase:%{SERVER_NAME}}/docs/$1"

and now deal with CGIs - we have to force a handler
RewriteCond "%{REQUEST_URI}" "ˆ/cgi-bin/"
RewriteRule "ˆ/(.*)$" "/www/hosts/${lowercase:%{SERVER_NAME}}/cgi-bin/$1" [H=cgi-script]

Using a Separate Virtual Host Configuration File

This arrangement uses more advanced MOD REWRITE features to work out the translation from virtual host to docu-
ment root, from a separate configuration file. This provides more flexibility, but requires more complicated configura-
tion.

The vhost.map file should look something like this:

customer-1.example.com /www/customers/1
customer-2.example.com /www/customers/2
...

customer-N.example.com /www/customers/N

The httpd.conf should contain the following:

154 CHAPTER 4. URL REWRITING GUIDE

RewriteEngine on

RewriteMap lowercase int:tolower

define the map file
RewriteMap vhost "txt:/www/conf/vhost.map"

deal with aliases as above
RewriteCond "%{REQUEST_URI}" "!ˆ/icons/"
RewriteCond "%{REQUEST_URI}" "!ˆ/cgi-bin/"
RewriteCond "${lowercase:%{SERVER_NAME}}" "ˆ(.+)$"
this does the file-based remap
RewriteCond "${vhost:%1}" "ˆ(/.*)$"
RewriteRule "ˆ/(.*)$" "%1/docs/$1"

RewriteCond "%{REQUEST_URI}" "ˆ/cgi-bin/"
RewriteCond "${lowercase:%{SERVER_NAME}}" "ˆ(.+)$"
RewriteCond "${vhost:%1}" "ˆ(/.*)$"
RewriteRule "ˆ/(.*)$" "%1/cgi-bin/$1" [H=cgi-script]

4.6. USING MOD REWRITE FOR PROXYING 155

4.6 Using mod rewrite for Proxying

This document supplements the MOD REWRITE reference documentation (p. 798) . It describes how to use the
RewriteRule’s [P] flag to proxy content to another server. A number of recipes are provided that describe common
scenarios.

See also

• Module documentation (p. 798)

• mod rewrite introduction (p. 137)

• Redirection and remapping (p. 142)

• Controlling access (p. 149)

• Virtual hosts (p. 152)

• Using RewriteMap (p. 156)

• Advanced techniques (p. 162)

• When not to use mod rewrite (p. 165)

Proxying Content with mod rewrite

Description: mod rewrite provides the [P] flag, which allows URLs to be passed, via mod proxy, to another server.
Two examples are given here. In one example, a URL is passed directly to another server, and served as though
it were a local URL. In the other example, we proxy missing content to a back-end server.

Solution: To simply map a URL to another server, we use the [P] flag, as follows:

RewriteEngine on
RewriteBase "/products/"
RewriteRule "ˆwidget/(.*)$" "http://product.example.com/widget/$1" [P]
ProxyPassReverse "/products/widget/" "http://product.example.com/widget/"

In the second example, we proxy the request only if we can’t find the resource locally. This can be very useful
when you’re migrating from one server to another, and you’re not sure if all the content has been migrated yet.

RewriteCond "%{REQUEST_FILENAME}" !-f
RewriteCond "%{REQUEST_FILENAME}" !-d
RewriteRule "ˆ/(.*)" "http://old.example.com/$1" [P]
ProxyPassReverse "/" "http://old.example.com/"

Discussion: In each case, we add a PROXYPASSREVERSE directive to ensure that any redirects issued by the backend
are correctly passed on to the client.

Consider using either PROXYPASS or PROXYPASSMATCH whenever possible in preference to mod rewrite.

156 CHAPTER 4. URL REWRITING GUIDE

4.7 Using RewriteMap

This document supplements the MOD REWRITE reference documentation (p. 798) . It describes the use of the
REWRITEMAP directive, and provides examples of each of the various RewriteMap types.

! Note that many of these examples won’t work unchanged in your particular server configu-
ration, so it’s important that you understand them, rather than merely cutting and pasting the
examples into your configuration.

See also

• Module documentation (p. 798)

• mod rewrite introduction (p. 137)

• Redirection and remapping (p. 142)

• Controlling access (p. 149)

• Virtual hosts (p. 152)

• Proxying (p. 155)

• Advanced techniques (p. 162)

• When not to use mod rewrite (p. 165)

Introduction

The REWRITEMAP directive defines an external function which can be called in the context of REWRITERULE or
REWRITECOND directives to perform rewriting that is too complicated, or too specialized to be performed just by
regular expressions. The source of this lookup can be any of the types listed in the sections below, and enumerated in
the REWRITEMAP reference documentation.

The syntax of the RewriteMap directive is as follows:

RewriteMap MapName MapType:MapSource

The MapName is an arbitray name that you assign to the map, and which you will use in directives later on. Arguments
are passed to the map via the following syntax:

${MapName : LookupKey }
${MapName : LookupKey | DefaultValue }

When such a construct occurs, the map MapName is consulted and the key LookupKey is looked-up. If the key is found,
the map-function construct is substituted by SubstValue. If the key is not found then it is substituted by DefaultValue
or by the empty string if no DefaultValue was specified.

For example, you might define a REWRITEMAP as:

RewriteMap examplemap "txt:/path/to/file/map.txt"

You would then be able to use this map in a REWRITERULE as follows:

RewriteRule "ˆ/ex/(.*)" "${examplemap:$1}"

A default value can be specified in the event that nothing is found in the map:

4.7. USING REWRITEMAP 157

RewriteRule "ˆ/ex/(.*)" "${examplemap:$1|/not_found.html}"

=⇒Per-directory and .htaccess context

The RewriteMap directive may not be used in <Directory> sections or .htaccess files.
You must declare the map in server or virtualhost context. You may use the map, once created,
in your RewriteRule and RewriteCond directives in those scopes. You just can’t declare
it in those scopes.

The sections that follow describe the various MapTypes that may be used, and give examples of each.

txt: Plain text maps

When a MapType of txt is used, the MapSource is a filesystem path to a plain-text mapping file, containing space-
separated key/value pair per line. Optionally, a line may be contain a comment, starting with a ’#’ character.

For example, the following might be valid entries in a map file.

Comment line
MatchingKey SubstValue
MatchingKey SubstValue # comment

When the RewriteMap is invoked the argument is looked for in the first argument of a line, and, if found, the substitu-
tion value is returned.

For example, we might use a mapfile to translate product names to product IDs for easier-to-remember URLs, using
the following recipe:

Product to ID configuration

RewriteMap product2id "txt:/etc/apache2/productmap.txt"
RewriteRule "ˆ/product/(.*)" "/prods.php?id=${product2id:$1|NOTFOUND}" [PT]

We assume here that the prods.php script knows what to do when it received an argument of id=NOTFOUND when
a product is not found in the lookup map.

The file /etc/apache2/productmap.txt then contains the following:

Product to ID map
##
productmap.txt - Product to ID map file
##

television 993
stereo 198
fishingrod 043
basketball 418

telephone 328

Thus, when http://example.com/product/television is requested, the RewriteRule is applied, and
the request is internally mapped to /prods.php?id=993.

=⇒Note: .htaccess files
The example given is crafted to be used in server or virtualhost scope. If you’re planning to
use this in a .htaccess file, you’ll need to remove the leading slash from the rewrite pattern
in order for it to match anything:

RewriteRule "ˆproduct/(.*)" "/prods.php?id=${product2id:$1|NOTFOUND}" [PT]

158 CHAPTER 4. URL REWRITING GUIDE

=⇒Cached lookups

The looked-up keys are cached by httpd until the mtime (modified time) of the mapfile
changes, or the httpd server is restarted. This ensures better performance on maps that are
called by many requests.

rnd: Randomized Plain Text

When a MapType of rnd is used, the MapSource is a filesystem path to a plain-text mapping file, each line of which
contains a key, and one or more values separated by |. One of these values will be chosen at random if the key is
matched.

For example, you might use the following map file and directives to provide a random load balancing between several
back-end servers, via a reverse-proxy. Images are sent to one of the servers in the ’static’ pool, while everything else
is sent to one of the ’dynamic’ pool.

Rewrite map file
##
map.txt -- rewriting map
##

static www1|www2|www3|www4

dynamic www5|www6

Configuration directives

RewriteMap servers "rnd:/path/to/file/map.txt"

RewriteRule "ˆ/(.*\.(png|gif|jpg))" "http://${servers:static}/$1" [NC,P,L]
RewriteRule "ˆ/(.*)" "http://${servers:dynamic}/$1" [P,L]

So, when an image is requested and the first of these rules is matched, RewriteMap looks up the string static in
the map file, which returns one of the specified hostnames at random, which is then used in the RewriteRule target.

If you wanted to have one of the servers more likely to be chosen (for example, if one of the server has more memory
than the others, and so can handle more requests) simply list it more times in the map file.

static www1|www1|www2|www3|www4

dbm: DBM Hash File

When a MapType of dbm is used, the MapSource is a filesystem path to a DBM database file containing key/value
pairs to be used in the mapping. This works exactly the same way as the txt map, but is much faster, because a DBM
is indexed, whereas a text file is not. This allows more rapid access to the desired key.

You may optionally specify a particular dbm type:

RewriteMap examplemap "dbm=sdbm:/etc/apache/mapfile.dbm"

4.7. USING REWRITEMAP 159

The type can be sdbm, gdbm, ndbm or db. However, it is recommended that you just use the httxt2dbm (p. 315) utility
that is provided with Apache HTTP Server, as it will use the correct DBM library, matching the one that was used
when httpd itself was built.

To create a dbm file, first create a text map file as described in the txt section. Then run httxt2dbm:

$ httxt2dbm -i mapfile.txt -o mapfile.map

You can then reference the resulting file in your RewriteMap directive:

RewriteMap mapname "dbm:/etc/apache/mapfile.map"

=⇒Note that with some dbm types, more than one file is generated, with a common base name. For
example, you may have two files named mapfile.map.dir and mapfiile.map.pag.
This is normal, and you need only use the base name mapfile.map in your RewriteMap
directive.

=⇒Cached lookups

The looked-up keys are cached by httpd until the mtime (modified time) of the mapfile
changes, or the httpd server is restarted. This ensures better performance on maps that are
called by many requests.

int: Internal Function

When a MapType of int is used, the MapSource is one of the available internal RewriteMap functions. Module
authors can provide additional internal functions by registering them with the ap register rewrite mapfunc
API. The functions that are provided by default are:

• toupper:
Converts the key to all upper case.

• tolower:
Converts the key to all lower case.

• escape:
Translates special characters in the key to hex-encodings.

• unescape:
Translates hex-encodings in the key back to special characters.

To use one of these functions, create a RewriteMap referencing the int function, and then use that in your
RewriteRule:

Redirect a URI to an all-lowercase version of itself

RewriteMap lc int:tolower
RewriteRule "(.*?[A-Z]+.*)" "${lc:$1}" [R]

=⇒Please note that the example offered here is for illustration purposes only, and is not a recom-
mendation. If you want to make URLs case-insensitive, consider using MOD SPELING instead.

160 CHAPTER 4. URL REWRITING GUIDE

prg: External Rewriting Program

When a MapType of prg is used, the MapSource is a filesystem path to an executable program which will providing
the mapping behavior. This can be a compiled binary file, or a program in an interpreted language such as Perl or
Python.

This program is started once, when the Apache HTTP Server is started, and then communicates with the rewriting
engine via STDIN and STDOUT. That is, for each map function lookup, it expects one argument via STDIN, and
should return one new-line terminated response string on STDOUT. If there is no corresponding lookup value, the map
program should return the four-character string "NULL" to indicate this.

External rewriting programs are not started if they’re defined in a context that does not have REWRITEENGINE set to
on.

This feature utilizes the rewrite-map mutex, which is required for reliable communication with the program. The
mutex mechanism and lock file can be configured with the MUTEX directive.

A simple example is shown here which will replace all dashes with underscores in a request URI.

Rewrite configuration

RewriteMap d2u "prg:/www/bin/dash2under.pl"
RewriteRule "-" "${d2u:%{REQUEST_URI}}"

dash2under.pl

#!/usr/bin/perl
$| = 1; # Turn off I/O buffering
while (<STDIN>) {

s/-/_/g; # Replace dashes with underscores
print $_;

}

=⇒Caution!

• Keep your rewrite map program as simple as possible. If the program hangs, it will cause
httpd to wait indefinitely for a response from the map, which will, in turn, cause httpd to
stop responding to requests.

• Be sure to turn off buffering in your program. In Perl this is done by the second line in
the example script: $| = 1; This will of course vary in other languages. Buffered I/O
will cause httpd to wait for the output, and so it will hang.

• Remember that there is only one copy of the program, started at server startup. All re-
quests will need to go through this one bottleneck. This can cause significant slowdowns
if many requests must go through this process, or if the script itself is very slow.

dbd or fastdbd: SQL Query

When a MapType of dbd or fastdbd is used, the MapSource is a SQL SELECT statement that takes a single
argument and returns a single value.

MOD DBD will need to be configured to point at the right database for this statement to be executed.

There are two forms of this MapType. Using a MapType of dbd causes the query to be executed with each map
request, while using fastdbd caches the database lookups internally. So, while fastdbd is more efficient, and
therefore faster, it won’t pick up on changes to the database until the server is restarted.

4.7. USING REWRITEMAP 161

If a query returns more than one row, a random row from the result set is used.

Example

RewriteMap myquery "fastdbd:SELECT destination FROM rewrite WHERE source = %s"

Summary

The REWRITEMAP directive can occur more than once. For each mapping-function use one REWRITEMAP directive
to declare its rewriting mapfile.

While you cannot declare a map in per-directory context (.htaccess files or <Directory> blocks) it is possible to
use this map in per-directory context.

162 CHAPTER 4. URL REWRITING GUIDE

4.8 Advanced Techniques with mod rewrite

This document supplements the MOD REWRITE reference documentation (p. 798) . It provides a few advanced tech-
niques using mod rewrite.

! Note that many of these examples won’t work unchanged in your particular server configu-
ration, so it’s important that you understand them, rather than merely cutting and pasting the
examples into your configuration.

See also

• Module documentation (p. 798)

• mod rewrite introduction (p. 137)

• Redirection and remapping (p. 142)

• Controlling access (p. 149)

• Virtual hosts (p. 152)

• Proxying (p. 155)

• Using RewriteMap (p. 156)

• When not to use mod rewrite (p. 165)

URL-based sharding across multiple backends

Description: A common technique for distributing the burden of server load or storage space is called "sharding".
When using this method, a front-end server will use the url to consistently "shard" users or objects to separate
backend servers.

Solution: A mapping is maintained, from users to target servers, in external map files. They look like:

user1 physical host of user1
user2 physical host of user2

: :

We put this into a map.users-to-hosts file. The aim is to map;

/u/user1/anypath

to

http://physical host of user1/u/user/anypath

thus every URL path need not be valid on every backend physical host. The following ruleset does this for us
with the help of the map files assuming that server0 is a default server which will be used if a user has no entry
in the map:

RewriteEngine on
RewriteMap users-to-hosts "txt:/path/to/map.users-to-hosts"
RewriteRule "ˆ/u/([ˆ/]+)/?(.*)" "http://${users-to-hosts:$1|server0}/u/$1/$2"

See the REWRITEMAP documentation for more discussion of the syntax of this directive.

4.8. ADVANCED TECHNIQUES WITH MOD REWRITE 163

On-the-fly Content-Regeneration

Description: We wish to dynamically generate content, but store it statically once it is generated. This rule will check
for the existence of the static file, and if it’s not there, generate it. The static files can be removed periodically,
if desired (say, via cron) and will be regenerated on demand.

Solution: This is done via the following ruleset:

This example is valid in per-directory context only
RewriteCond "%{REQUEST_URI}" "!-U"
RewriteRule "ˆ(.+)\.html$" "/regenerate_page.cgi" [PT,L]

The -U operator determines whether the test string (in this case, REQUEST URI) is a valid URL. It does this
via a subrequest. In the event that this subrequest fails - that is, the requested resource doesn’t exist - this rule
invokes the CGI program /regenerate page.cgi, which generates the requested resource and saves it into
the document directory, so that the next time it is requested, a static copy can be served.

In this way, documents that are infrequently updated can be served in static form. if documents need to be
refreshed, they can be deleted from the document directory, and they will then be regenerated the next time they
are requested.

Load Balancing

Description: We wish to randomly distribute load across several servers using mod rewrite.

Solution: We’ll use REWRITEMAP and a list of servers to accomplish this.

RewriteEngine on
RewriteMap lb "rnd:/path/to/serverlist.txt"
RewriteRule "ˆ/(.*)" "http://${lb:servers}/$1" [P,L]

serverlist.txt will contain a list of the servers:

serverlist.txt

servers one.example.com|two.example.com|three.example.com

If you want one particular server to get more of the load than the others, add it more times to the list.

Discussion Apache comes with a load-balancing module - MOD PROXY BALANCER - which is far more flexible and
featureful than anything you can cobble together using mod rewrite.

Structured Userdirs

Description: Some sites with thousands of users use a structured homedir layout, i.e. each home-
dir is in a subdirectory which begins (for instance) with the first character of the username. So,
/˜larry/anypath is /home/l/larry/public html/anypath while /˜waldo/anypath is
/home/w/waldo/public html/anypath.

Solution: We use the following ruleset to expand the tilde URLs into the above layout.

RewriteEngine on
RewriteRule "ˆ/˜(([a-z])[a-z0-9]+)(.*)" "/home/$2/$1/public_html$3"

164 CHAPTER 4. URL REWRITING GUIDE

Redirecting Anchors

Description: By default, redirecting to an HTML anchor doesn’t work, because mod rewrite escapes the # character,
turning it into %23. This, in turn, breaks the redirection.

Solution: Use the [NE] flag on the RewriteRule. NE stands for No Escape.

Discussion: This technique will of course also work with other special characters that mod rewrite, by default, URL-
encodes.

Time-Dependent Rewriting

Description: We wish to use mod rewrite to serve different content based on the time of day.

Solution: There are a lot of variables named TIME xxx for rewrite conditions. In conjunction with the special
lexicographic comparison patterns <STRING, >STRING and =STRING we can do time-dependent redirects:

RewriteEngine on
RewriteCond "%{TIME_HOUR}%{TIME_MIN}" ">0700"
RewriteCond "%{TIME_HOUR}%{TIME_MIN}" "<1900"
RewriteRule "ˆfoo\.html$" "foo.day.html" [L]
RewriteRule "ˆfoo\.html$" "foo.night.html"

This provides the content of foo.day.html under the URL foo.html from 07:01-18:59 and at the
remaining time the contents of foo.night.html.

! MOD CACHE, intermediate proxies and browsers may each cache responses and cause the ei-
ther page to be shown outside of the time-window configured. MOD EXPIRES may be used to
control this effect. You are, of course, much better off simply serving the content dynamically,
and customizing it based on the time of day.

Set Environment Variables Based On URL Parts

Description: At time, we want to maintain some kind of status when we perform a rewrite. For example, you want
to make a note that you’ve done that rewrite, so that you can check later to see if a request can via that rewrite.
One way to do this is by setting an environment variable.

Solution: Use the [E] flag to set an environment variable.

RewriteEngine on
RewriteRule "ˆ/horse/(.*)" "/pony/$1" [E=rewritten:1]

Later in your ruleset you might check for this environment variable using a RewriteCond:

RewriteCond "%{ENV:rewritten}" "=1"

Note that environment variables do not survive an external redirect. You might consider using the [CO] flag to
set a cookie.

4.9. WHEN NOT TO USE MOD REWRITE 165

4.9 When not to use mod rewrite

This document supplements the MOD REWRITE reference documentation (p. 798) . It describes perhaps one of the
most important concepts about mod rewrite - namely, when to avoid using it.

mod rewrite should be considered a last resort, when other alternatives are found wanting. Using it when there are
simpler alternatives leads to configurations which are confusing, fragile, and hard to maintain. Understanding what
other alternatives are available is a very important step towards mod rewrite mastery.

Note that many of these examples won’t work unchanged in your particular server configuration, so it’s important that
you understand them, rather than merely cutting and pasting the examples into your configuration.

The most common situation in which MOD REWRITE is the right tool is when the very best solution requires access
to the server configuration files, and you don’t have that access. Some configuration directives are only available in
the server configuration file. So if you are in a hosting situation where you only have .htaccess files to work with, you
may need to resort to MOD REWRITE.

See also

• Module documentation (p. 798)

• mod rewrite introduction (p. 137)

• Redirection and remapping (p. 142)

• Controlling access (p. 149)

• Virtual hosts (p. 152)

• Proxying (p. 155)

• Using RewriteMap (p. 156)

• Advanced techniques (p. 162)

Simple Redirection

MOD ALIAS provides the REDIRECT and REDIRECTMATCH directives, which provide a means to redirect one URL to
another. This kind of simple redirection of one URL, or a class of URLs, to somewhere else, should be accomplished
using these directives rather than REWRITERULE. RedirectMatch allows you to include a regular expression in
your redirection criteria, providing many of the benefits of using RewriteRule.

A common use for RewriteRule is to redirect an entire class of URLs. For example, all URLs in the /one directory
must be redirected to http://one.example.com/, or perhaps all http requests must be redirected to https.

These situations are better handled by the Redirect directive. Remember that Redirect preserves path informa-
tion. That is to say, a redirect for a URL /one will also redirect all URLs under that, such as /one/two.html and
/one/three/four.html.

To redirect URLs under /one to http://one.example.com, do the following:

Redirect /one/ http://one.example.com/

To redirect one hostname to another, for example example.com to www.example.com, see the Canonical Host-
names (p. 142) recipe.

To redirect http URLs to https, do the following:

<VirtualHost *:80>
ServerName www.example.com
Redirect "/" "https://www.example.com/"

166 CHAPTER 4. URL REWRITING GUIDE

</VirtualHost >

<VirtualHost *:443>
ServerName www.example.com
... SSL configuration goes here

</VirtualHost >

The use of RewriteRule to perform this task may be appropriate if there are other RewriteRule directives in
the same scope. This is because, when there are Redirect and RewriteRule directives in the same scope, the
RewriteRule directives will run first, regardless of the order of appearance in the configuration file.

In the case of the http-to-https redirection, the use of RewriteRule would be appropriate if you don’t have access
to the main server configuration file, and are obliged to perform this task in a .htaccess file instead.

URL Aliasing

The ALIAS directive provides mapping from a URI to a directory - usually a directory outside of your DOCUMEN-
TROOT. Although it is possible to perform this mapping with mod rewrite, Alias is the preferred method, for
reasons of simplicity and performance.

Using Alias

Alias "/cats" "/var/www/virtualhosts/felines/htdocs"

The use of mod rewrite to perform this mapping may be appropriate when you do not have access to the server
configuration files. Alias may only be used in server or virtualhost context, and not in a .htaccess file.

Symbolic links would be another way to accomplish the same thing, if you have Options FollowSymLinks
enabled on your server.

Virtual Hosting

Although it is possible to handle virtual hosts with mod rewrite (p. 152) , it is seldom the right way. Creating individual
<VirtualHost> blocks is almost always the right way to go. In the event that you have an enormous number of virtual
hosts, consider using MOD VHOST ALIAS to create these hosts automatically.

Modules such as MOD MACRO are also useful for creating a large number of virtual hosts dynamically.

Using MOD REWRITE for vitualhost creation may be appropriate if you are using a hosting service that does not pro-
vide you access to the server configuration files, and you are therefore restricted to configuration using .htaccess
files.

See the virtual hosts with mod rewrite (p. 152) document for more details on how you might accomplish this if it still
seems like the right approach.

Simple Proxying

RewriteRule provides the [P] (p. 168) flag to pass rewritten URIs through MOD PROXY.

RewriteRule "ˆ/?images(.*)" "http://imageserver.local/images$1" [P]

However, in many cases, when there is no actual pattern matching needed, as in the example shown above, the PROX-
YPASS directive is a better choice. The example here could be rendered as:

4.9. WHEN NOT TO USE MOD REWRITE 167

ProxyPass "/images/" "http://imageserver.local/images/"

Note that whether you use REWRITERULE or PROXYPASS, you’ll still need to use the PROXYPASSREVERSE directive
to catch redirects issued from the back-end server:

ProxyPassReverse "/images/" "http://imageserver.local/images/"

You may need to use RewriteRule instead when there are other RewriteRules in effect in the same scope, as a
RewriteRule will usually take effect before a ProxyPass, and so may preempt what you’re trying to accomplish.

Environment Variable Testing

MOD REWRITE is frequently used to take a particular action based on the presence or absence of a particular environ-
ment variable or request header. This can be done more efficiently using the <IF>.

Consider, for example, the common scenario where REWRITERULE is used to enforce a canonical hostname, such as
www.example.com instead of example.com. This can be done using the <IF> directive, as shown here:

<If "req(’Host’) != ’www.example.com’">
Redirect "/" "http://www.example.com/"

</If>

This technique can be used to take actions based on any request header, response header, or environment variable,
replacing MOD REWRITE in many common scenarios.

See especially the expression evaluation documentation (p. 89) for a overview of what types of expressions you can
use in <If> sections, and in certain other directives.

168 CHAPTER 4. URL REWRITING GUIDE

4.10 RewriteRule Flags

This document discusses the flags which are available to the REWRITERULE directive, providing detailed explanations
and examples.

See also

• Module documentation (p. 798)

• mod rewrite introduction (p. 137)

• Redirection and remapping (p. 142)

• Controlling access (p. 149)

• Virtual hosts (p. 152)

• Proxying (p. 155)

• Using RewriteMap (p. 156)

• Advanced techniques (p. 162)

• When not to use mod rewrite (p. 165)

Introduction

A REWRITERULE can have its behavior modified by one or more flags. Flags are included in square brackets at the
end of the rule, and multiple flags are separated by commas.

RewriteRule pattern target [Flag1,Flag2,Flag3]

Each flag (with a few exceptions) has a short form, such as CO, as well as a longer form, such as cookie. While it is
most common to use the short form, it is recommended that you familiarize yourself with the long form, so that you
remember what each flag is supposed to do. Some flags take one or more arguments. Flags are not case sensitive.

Flags that alter metadata associated with the request (T=, H=, E=) have no affect in per-directory and htaccess context,
when a substitution (other than ’-’) is performed during the same round of rewrite processing.

Presented here are each of the available flags, along with an example of how you might use them.

B (escape backreferences)

The [B] flag instructs REWRITERULE to escape non-alphanumeric characters before applying the transformation.

mod rewrite has to unescape URLs before mapping them, so backreferences are unescaped at the time they are
applied. Using the B flag, non-alphanumeric characters in backreferences will be escaped. For example, consider the
rule:

RewriteRule "ˆsearch/(.*)$" "/search.php?term=$1"

Given a search term of ’x & y/z’, a browser will encode it as ’x%20%26%20y%2Fz’, making the request
’search/x%20%26%20y%2Fz’. Without the B flag, this rewrite rule will map to ’search.php?term=x & y/z’, which
isn’t a valid URL, and so would be encoded as search.php?term=x%20&y%2Fz=, which is not what was in-
tended.

With the B flag set on this same rule, the parameters are re-encoded before being passed on to the output URL, resulting
in a correct mapping to /search.php?term=x%20%26%20y%2Fz.

4.10. REWRITERULE FLAGS 169

Note that you may also need to set ALLOWENCODEDSLASHES to On to get this particular example to work, as httpd
does not allow encoded slashes in URLs, and returns a 404 if it sees one.

This escaping is particularly necessary in a proxy situation, when the backend may break if presented with an un-
escaped URL.

C—chain

The [C] or [chain] flag indicates that the REWRITERULE is chained to the next rule. That is, if the rule matches, then
it is processed as usual and control moves on to the next rule. However, if it does not match, then the next rule, and
any other rules that are chained together, are skipped.

CO—cookie

The [CO], or [cookie] flag, allows you to set a cookie when a particular REWRITERULE matches. The argument
consists of three required fields and four optional fields.

The full syntax for the flag, including all attributes, is as follows:

[CO=NAME:VALUE:DOMAIN:lifetime:path:secure:httponly]

You must declare a name, a value, and a domain for the cookie to be set.

Domain The domain for which you want the cookie to be valid. This may be a hostname, such as
www.example.com, or it may be a domain, such as .example.com. It must be at least two parts sep-
arated by a dot. That is, it may not be merely .com or .net. Cookies of that kind are forbidden by the cookie
security model.

You may optionally also set the following values:

Lifetime The time for which the cookie will persist, in minutes. A value of 0 indicates that the cookie will persist
only for the current browser session. This is the default value if none is specified.

Path The path, on the current website, for which the cookie is valid, such as /customers/ or
/files/download/. By default, this is set to / - that is, the entire website.

Secure If set to secure, true, or 1, the cookie will only be permitted to be translated via secure (https) connections.

httponly If set to HttpOnly, true, or 1, the cookie will have the HttpOnly flag set, which means that the cookie
is inaccessible to JavaScript code on browsers that support this feature.

Consider this example:

RewriteEngine On
RewriteRule "ˆ/index\.html" "-" [CO=frontdoor:yes:.example.com:1440:/]

In the example give, the rule doesn’t rewrite the request. The "-" rewrite target tells mod rewrite to pass the request
through unchanged. Instead, it sets a cookie called ’frontdoor’ to a value of ’yes’. The cookie is valid for any host in
the .example.com domain. It is set to expire in 1440 minutes (24 hours) and is returned for all URIs.

170 CHAPTER 4. URL REWRITING GUIDE

DPI—discardpath

The DPI flag causes the PATH INFO portion of the rewritten URI to be discarded.

This flag is available in version 2.2.12 and later.

In per-directory context, the URI each REWRITERULE compares against is the concatenation of the current values of
the URI and PATH INFO.

The current URI can be the initial URI as requested by the client, the result of a previous round of mod rewrite
processing, or the result of a prior rule in the current round of mod rewrite processing.

In contrast, the PATH INFO that is appended to the URI before each rule reflects only the value of PATH INFO before
this round of mod rewrite processing. As a consequence, if large portions of the URI are matched and copied into a
substitution in multiple REWRITERULE directives, without regard for which parts of the URI came from the current
PATH INFO, the final URI may have multiple copies of PATH INFO appended to it.

Use this flag on any substitution where the PATH INFO that resulted from the previous mapping of this request
to the filesystem is not of interest. This flag permanently forgets the PATH INFO established before this round of
mod rewrite processing began. PATH INFO will not be recalculated until the current round of mod rewrite processing
completes. Subsequent rules during this round of processing will see only the direct result of substitutions, without
any PATH INFO appended.

E—env

With the [E], or [env] flag, you can set the value of an environment variable. Note that some environment variables
may be set after the rule is run, thus unsetting what you have set. See the Environment Variables document (p. 82) for
more details on how Environment variables work.

The full syntax for this flag is:

[E=VAR:VAL] [E=!VAR]

VAL may contain backreferences ($N or %N) which are expanded.

Using the short form

[E=VAR]

you can set the environment variable named VAR to an empty value.

The form

[E=!VAR]

allows to unset a previously set environment variable named VAR.

Environment variables can then be used in a variety of contexts, including CGI programs, other RewriteRule directives,
or CustomLog directives.

The following example sets an environment variable called ’image’ to a value of ’1’ if the requested URI is an image
file. Then, that environment variable is used to exclude those requests from the access log.

RewriteRule "\.(png|gif|jpg)$" "-" [E=image:1]
CustomLog "logs/access_log" combined env=!image

Note that this same effect can be obtained using SETENVIF. This technique is offered as an example, not as a
recommendation.

4.10. REWRITERULE FLAGS 171

END

Using the [END] flag terminates not only the current round of rewrite processing (like [L]) but also prevents any
subsequent rewrite processing from occurring in per-directory (htaccess) context.

This does not apply to new requests resulting from external redirects.

F—forbidden

Using the [F] flag causes the server to return a 403 Forbidden status code to the client. While the same behavior can
be accomplished using the DENY directive, this allows more flexibility in assigning a Forbidden status.

The following rule will forbid .exe files from being downloaded from your server.

RewriteRule "\.exe" "-" [F]

This example uses the "-" syntax for the rewrite target, which means that the requested URI is not modified. There’s
no reason to rewrite to another URI, if you’re going to forbid the request.

When using [F], an [L] is implied - that is, the response is returned immediately, and no further rules are evaluated.

G—gone

The [G] flag forces the server to return a 410 Gone status with the response. This indicates that a resource used to be
available, but is no longer available.

As with the [F] flag, you will typically use the "-" syntax for the rewrite target when using the [G] flag:

RewriteRule "oldproduct" "-" [G,NC]

When using [G], an [L] is implied - that is, the response is returned immediately, and no further rules are evaluated.

H—handler

Forces the resulting request to be handled with the specified handler. For example, one might use this to force all files
without a file extension to be parsed by the php handler:

RewriteRule "!\." "-" [H=application/x-httpd-php]

The regular expression above - !\. - will match any request that does not contain the literal . character.

This can be also used to force the handler based on some conditions. For example, the following snippet used in
per-server context allows .php files to be displayed by mod php if they are requested with the .phps extension:

RewriteRule "ˆ(/source/.+\.php)s$" "$1" [H=application/x-httpd-php-source]

The regular expression above - ˆ(/source/.+\.php)s$ - will match any request that starts with /source/
followed by 1 or n characters followed by .phps literally. The backreference $1 referrers to the captured match
within parenthesis of the regular expression.

172 CHAPTER 4. URL REWRITING GUIDE

L—last

The [L] flag causes MOD REWRITE to stop processing the rule set. In most contexts, this means that if the rule matches,
no further rules will be processed. This corresponds to the last command in Perl, or the break command in C. Use
this flag to indicate that the current rule should be applied immediately without considering further rules.

If you are using REWRITERULE in either .htaccess files or in <DIRECTORY> sections, it is important to have
some understanding of how the rules are processed. The simplified form of this is that once the rules have been
processed, the rewritten request is handed back to the URL parsing engine to do what it may with it. It is possible that
as the rewritten request is handled, the .htaccess file or <DIRECTORY> section may be encountered again, and
thus the ruleset may be run again from the start. Most commonly this will happen if one of the rules causes a redirect
- either internal or external - causing the request process to start over.

It is therefore important, if you are using REWRITERULE directives in one of these contexts, that you take explicit
steps to avoid rules looping, and not count solely on the [L] flag to terminate execution of a series of rules, as shown
below.

An alternative flag, [END], can be used to terminate not only the current round of rewrite processing but prevent any
subsequent rewrite processing from occurring in per-directory (htaccess) context. This does not apply to new requests
resulting from external redirects.

The example given here will rewrite any request to index.php, giving the original request as a query string ar-
gument to index.php, however, the REWRITECOND ensures that if the request is already for index.php, the
REWRITERULE will be skipped.

RewriteBase "/"
RewriteCond "%{REQUEST_URI}" "!=/index.php"
RewriteRule "ˆ(.*)" "/index.php?req=$1" [L,PT]

N—next

The [N] flag causes the ruleset to start over again from the top, using the result of the ruleset so far as a starting point.
Use with extreme caution, as it may result in loop.

The [Next] flag could be used, for example, if you wished to replace a certain string or letter repeatedly in a request.
The example shown here will replace A with B everywhere in a request, and will continue doing so until there are no
more As to be replaced.

RewriteRule "(.*)A(.*)" "$1B$2" [N]

You can think of this as a while loop: While this pattern still matches (i.e., while the URI still contains an A), perform
this substitution (i.e., replace the A with a B).

In 2.4.8 and later, this module returns an error after 32,000 iterations to protect against unintended looping. An
alternative maximum number of iterations can be specified by adding to the N flag.

Be willing to replace 1 character in each pass of the loop
RewriteRule "(.+)[><;]$" "$1" [N=64000]
... or, give up if after 10 loops
RewriteRule "(.+)[><;]$" "$1" [N=10]

NC—nocase

Use of the [NC] flag causes the REWRITERULE to be matched in a case-insensitive manner. That is, it doesn’t care
whether letters appear as upper-case or lower-case in the matched URI.

4.10. REWRITERULE FLAGS 173

In the example below, any request for an image file will be proxied to your dedicated image server. The match is
case-insensitive, so that .jpg and .JPG files are both acceptable, for example.

RewriteRule "(.*\.(jpg|gif|png))$" "http://images.example.com$1" [P,NC]

NE—noescape

By default, special characters, such as & and ?, for example, will be converted to their hexcode equivalent. Using the
[NE] flag prevents that from happening.

RewriteRule "ˆ/anchor/(.+)" "/bigpage.html#$1" [NE,R]

The above example will redirect /anchor/xyz to /bigpage.html#xyz. Omitting the [NE] will result in the #
being converted to its hexcode equivalent, %23, which will then result in a 404 Not Found error condition.

NS—nosubreq

Use of the [NS] flag prevents the rule from being used on subrequests. For example, a page which is included using an
SSI (Server Side Include) is a subrequest, and you may want to avoid rewrites happening on those subrequests. Also,
when MOD DIR tries to find out information about possible directory default files (such as index.html files), this
is an internal subrequest, and you often want to avoid rewrites on such subrequests. On subrequests, it is not always
useful, and can even cause errors, if the complete set of rules are applied. Use this flag to exclude problematic rules.

To decide whether or not to use this rule: if you prefix URLs with CGI-scripts, to force them to be processed by the
CGI-script, it’s likely that you will run into problems (or significant overhead) on sub-requests. In these cases, use this
flag.

Images, javascript files, or css files, loaded as part of an HTML page, are not subrequests - the browser requests them
as separate HTTP requests.

P—proxy

Use of the [P] flag causes the request to be handled by MOD PROXY, and handled via a proxy request. For example, if
you wanted all image requests to be handled by a back-end image server, you might do something like the following:

RewriteRule "/(.*)\.(jpg|gif|png)$" "http://images.example.com/$1.$2" [P]

Use of the [P] flag implies [L] - that is, the request is immediately pushed through the proxy, and any following rules
will not be considered.

You must make sure that the substitution string is a valid URI (typically starting with http://hostname) which can
be handled by the MOD PROXY. If not, you will get an error from the proxy module. Use this flag to achieve a more
powerful implementation of the PROXYPASS directive, to map remote content into the namespace of the local server.

! Security Warning

Take care when constructing the target URL of the rule, considering the security impact from
allowing the client influence over the set of URLs to which your server will act as a proxy.
Ensure that the scheme and hostname part of the URL is either fixed, or does not allow the
client undue influence.

174 CHAPTER 4. URL REWRITING GUIDE

! Performance warning

Using this flag triggers the use of MOD PROXY, without handling of persistent connections.
This means the performance of your proxy will be better if you set it up with PROXYPASS or
PROXYPASSMATCH
This is because this flag triggers the use of the default worker, which does not handle connec-
tion pooling.
Avoid using this flag and prefer those directives, whenever you can.

Note: MOD PROXY must be enabled in order to use this flag.

PT—passthrough

The target (or substitution string) in a RewriteRule is assumed to be a file path, by default. The use of the [PT] flag
causes it to be treated as a URI instead. That is to say, the use of the [PT] flag causes the result of the REWRITERULE to
be passed back through URL mapping, so that location-based mappings, such as ALIAS, REDIRECT, or SCRIPTALIAS,
for example, might have a chance to take effect.

If, for example, you have an ALIAS for /icons, and have a REWRITERULE pointing there, you should use the [PT] flag
to ensure that the ALIAS is evaluated.

Alias "/icons" "/usr/local/apache/icons"
RewriteRule "/pics/(.+)\.jpg$" "/icons/$1.gif" [PT]

Omission of the [PT] flag in this case will cause the Alias to be ignored, resulting in a ’File not found’ error being
returned.

The PT flag implies the L flag: rewriting will be stopped in order to pass the request to the next phase of processing.

Note that the PT flag is implied in per-directory contexts such as <DIRECTORY> sections or in .htaccess files.
The only way to circumvent that is to rewrite to -.

QSA—qsappend

When the replacement URI contains a query string, the default behavior of REWRITERULE is to discard the exist-
ing query string, and replace it with the newly generated one. Using the [QSA] flag causes the query strings to be
combined.

Consider the following rule:

RewriteRule "/pages/(.+)" "/page.php?page=$1" [QSA]

With the [QSA] flag, a request for /pages/123?one=two will be mapped to
/page.php?page=123&one=two. Without the [QSA] flag, that same request will be mapped to
/page.php?page=123 - that is, the existing query string will be discarded.

QSD—qsdiscard

When the requested URI contains a query string, and the target URI does not, the default behavior of REWRITERULE
is to copy that query string to the target URI. Using the [QSD] flag causes the query string to be discarded.

This flag is available in version 2.4.0 and later.

4.10. REWRITERULE FLAGS 175

Using [QSD] and [QSA] together will result in [QSD] taking precedence.

If the target URI has a query string, the default behavior will be observed - that is, the original query string will be
discarded and replaced with the query string in the RewriteRule target URI.

R—redirect

Use of the [R] flag causes a HTTP redirect to be issued to the browser. If a fully-qualified URL is specified (that is,
including http://servername/) then a redirect will be issued to that location. Otherwise, the current protocol,
servername, and port number will be used to generate the URL sent with the redirect.

Any valid HTTP response status code may be specified, using the syntax [R=305], with a 302 status code being used
by default if none is specified. The status code specified need not necessarily be a redirect (3xx) status code. However,
if a status code is outside the redirect range (300-399) then the substitution string is dropped entirely, and rewriting is
stopped as if the L were used.

In addition to response status codes, you may also specify redirect status using their symbolic names: temp (default),
permanent, or seeother.

You will almost always want to use [R] in conjunction with [L] (that is, use [R,L]) because on its own, the [R] flag
prepends http://thishost[:thisport] to the URI, but then passes this on to the next rule in the ruleset,
which can often result in ’Invalid URI in request’ warnings.

S—skip

The [S] flag is used to skip rules that you don’t want to run. The syntax of the skip flag is [S=N], where N signifies
the number of rules to skip (provided the REWRITERULE matches). This can be thought of as a goto statement in
your rewrite ruleset. In the following example, we only want to run the REWRITERULE if the requested URI doesn’t
correspond with an actual file.

Is the request for a non-existent file?
RewriteCond "%{REQUEST_FILENAME}" "!-f"
RewriteCond "%{REQUEST_FILENAME}" "!-d"
If so, skip these two RewriteRules
RewriteRule ".?" "-" [S=2]

RewriteRule "(.*\.gif)" "images.php?$1"
RewriteRule "(.*\.html)" "docs.php?$1"

This technique is useful because a REWRITECOND only applies to the REWRITERULE immediately following it.
Thus, if you want to make a RewriteCond apply to several RewriteRules, one possible technique is to negate
those conditions and add a RewriteRulewith a [Skip] flag. You can use this to make pseudo if-then-else constructs:
The last rule of the then-clause becomes skip=N, where N is the number of rules in the else-clause:

Does the file exist?
RewriteCond "%{REQUEST_FILENAME}" "!-f"
RewriteCond "%{REQUEST_FILENAME}" "!-d"
Create an if-then-else construct by skipping 3 lines if we meant to go to the "else" stanza.
RewriteRule ".?" "-" [S=3]

IF the file exists, then:
RewriteRule "(.*\.gif)" "images.php?$1"
RewriteRule "(.*\.html)" "docs.php?$1"

176 CHAPTER 4. URL REWRITING GUIDE

Skip past the "else" stanza.
RewriteRule ".?" "-" [S=1]

ELSE...
RewriteRule "(.*)" "404.php?file=$1"

END

It is probably easier to accomplish this kind of configuration using the <IF>, <ELSEIF>, and <ELSE> directives
instead.

T—type

Sets the MIME type with which the resulting response will be sent. This has the same effect as the ADDTYPE directive.

For example, you might use the following technique to serve Perl source code as plain text, if requested in a particular
way:

Serve .pl files as plain text
RewriteRule "\.pl$" "-" [T=text/plain]

Or, perhaps, if you have a camera that produces jpeg images without file extensions, you could force those images to
be served with the correct MIME type by virtue of their file names:

Files with ’IMG’ in the name are jpg images.
RewriteRule "IMG" "-" [T=image/jpg]

Please note that this is a trivial example, and could be better done using <FILESMATCH> instead. Always consider
the alternate solutions to a problem before resorting to rewrite, which will invariably be a less efficient solution than
the alternatives.

If used in per-directory context, use only - (dash) as the substitution for the entire round of mod rewrite processing,
otherwise the MIME-type set with this flag is lost due to an internal re-processing (including subsequent rounds of
mod rewrite processing). The L flag can be useful in this context to end the current round of mod rewrite processing.

4.11. APACHE MOD REWRITE TECHNICAL DETAILS 177

4.11 Apache mod rewrite Technical Details

This document discusses some of the technical details of mod rewrite and URL matching.

See also

• Module documentation (p. 798)

• mod rewrite introduction (p. 137)

• Redirection and remapping (p. 142)

• Controlling access (p. 149)

• Virtual hosts (p. 152)

• Proxying (p. 155)

• Using RewriteMap (p. 156)

• Advanced techniques (p. 162)

• When not to use mod rewrite (p. 165)

API Phases

The Apache HTTP Server handles requests in several phases. At each of these phases, one or more modules may be
called upon to handle that portion of the request lifecycle. Phases include things like URL-to-filename translation,
authentication, authorization, content, and logging. (This is not an exhaustive list.)

mod rewrite acts in two of these phases (or "hooks", as they are often called) to influence how URLs may be rewritten.

First, it uses the URL-to-filename translation hook, which occurs after the HTTP request has been read, but before any
authorization starts. Secondly, it uses the Fixup hook, which is after the authorization phases, and after per-directory
configuration files (.htaccess files) have been read, but before the content handler is called.

So, after a request comes in and a corresponding server or virtual host has been determined, the rewriting engine
starts processing any mod rewrite directives appearing in the per-server configuration. (i.e., in the main server
configuration file and <VIRTUALHOST> sections.) This happens in the URL-to-filename phase.

A few steps later, once the final data directories have been found, the per-directory configuration directives
(.htaccess files and <DIRECTORY> blocks) are applied. This happens in the Fixup phase.

In each of these cases, mod rewrite rewrites the REQUEST URI either to a new URL, or to a filename.

In per-directory context (i.e., within .htaccess files and Directory blocks), these rules are being applied after
a URL has already been translated to a filename. Because of this, the URL-path that mod rewrite initially compares
REWRITERULE directives against is the full filesystem path to the translated filename with the current directories path
(including a trailing slash) removed from the front.

To illustrate: If rules are in /var/www/foo/.htaccess and a request for /foo/bar/baz is being processed, an expression
like ˆbar/baz$ would match.

If a substitution is made in per-directory context, a new internal subrequest is issued with the new URL, which restarts
processing of the request phases. If the substitution is a relative path, the REWRITEBASE directive determines the
URL-path prefix prepended to the substitution. In per-directory context, care must be taken to create rules which will
eventually (in some future "round" of per-directory rewrite processing) not perform a substitution to avoid looping.
(See RewriteLooping6 for further discussion of this problem.)

Because of this further manipulation of the URL in per-directory context, you’ll need to take care to craft your rewrite
rules differently in that context. In particular, remember that the leading directory path will be stripped off of the URL
that your rewrite rules will see. Consider the examples below for further clarification.

6http://wiki.apache.org/httpd/RewriteLooping

http://wiki.apache.org/httpd/RewriteLooping

178 CHAPTER 4. URL REWRITING GUIDE

Location of rule Rule
VirtualHost section RewriteRule "ˆ/images/(.+)\.jpg" "/images/$1.gif"
.htaccess file in document root RewriteRule "ˆimages/(.+)\.jpg" "images/$1.gif"
.htaccess file in images directory RewriteRule "ˆ(.+)\.jpg" "$1.gif"

For even more insight into how mod rewrite manipulates URLs in different contexts, you should consult the log entries
(p. 798) made during rewriting.

Ruleset Processing

Now when mod rewrite is triggered in these two API phases, it reads the configured rulesets from its configuration
structure (which itself was either created on startup for per-server context or during the directory walk of the Apache
kernel for per-directory context). Then the URL rewriting engine is started with the contained ruleset (one or more
rules together with their conditions). The operation of the URL rewriting engine itself is exactly the same for both
configuration contexts. Only the final result processing is different.

The order of rules in the ruleset is important because the rewriting engine processes them in a special (and not very
obvious) order. The rule is this: The rewriting engine loops through the ruleset rule by rule (REWRITERULE directives)
and when a particular rule matches it optionally loops through existing corresponding conditions (RewriteCond
directives). For historical reasons the conditions are given first, and so the control flow is a little bit long-winded. See
Figure 1 for more details.

4.11. APACHE MOD REWRITE TECHNICAL DETAILS 179

Figure 1:The control flow through the rewriting ruleset

First the URL is matched against the Pattern of each rule. If it fails, mod rewrite immediately stops processing this
rule, and continues with the next rule. If the Pattern matches, mod rewrite looks for corresponding rule conditions
(RewriteCond directives, appearing immediately above the RewriteRule in the configuration). If none are present, it
substitutes the URL with a new value, which is constructed from the string Substitution, and goes on with its rule-
looping. But if conditions exist, it starts an inner loop for processing them in the order that they are listed. For
conditions, the logic is different: we don’t match a pattern against the current URL. Instead we first create a string
TestString by expanding variables, back-references, map lookups, etc. and then we try to match CondPattern against
it. If the pattern doesn’t match, the complete set of conditions and the corresponding rule fails. If the pattern matches,
then the next condition is processed until no more conditions are available. If all conditions match, processing is
continued with the substitution of the URL with Substitution.

180 CHAPTER 4. URL REWRITING GUIDE

Chapter 5

Apache SSL/TLS Encryption

181

182 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

5.1 Apache SSL/TLS Encryption

The Apache HTTP Server module MOD SSL provides an interface to the OpenSSL1 library, which provides Strong
Encryption using the Secure Sockets Layer and Transport Layer Security protocols.

Documentation

• mod ssl Configuration How-To (p. 196)

• Introduction To SSL (p. 183)

• Compatibility (p. 192)

• Frequently Asked Questions (p. 202)

• Glossary (p. 1012)

mod ssl

Extensive documentation on the directives and environment variables provided by this module is provided in the
mod ssl reference documentation (p. 847) .

1http://www.openssl.org/

http://www.openssl.org/

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 183

5.2 SSL/TLS Strong Encryption: An Introduction

As an introduction this chapter is aimed at readers who are familiar with the Web, HTTP, and Apache, but are not
security experts. It is not intended to be a definitive guide to the SSL protocol, nor does it discuss specific techniques
for managing certificates in an organization, or the important legal issues of patents and import and export restrictions.
Rather, it is intended to provide a common background to MOD SSL users by pulling together various concepts,
definitions, and examples as a starting point for further exploration.

Cryptographic Techniques

Understanding SSL requires an understanding of cryptographic algorithms, message digest functions (aka. one-way
or hash functions), and digital signatures. These techniques are the subject of entire books (see for instance [AC96])
and provide the basis for privacy, integrity, and authentication.

Cryptographic Algorithms

Suppose Alice wants to send a message to her bank to transfer some money. Alice would like the message to be
private, since it will include information such as her account number and transfer amount. One solution is to use a
cryptographic algorithm, a technique that would transform her message into an encrypted form, unreadable until it is
decrypted. Once in this form, the message can only be decrypted by using a secret key. Without the key the message is
useless: good cryptographic algorithms make it so difficult for intruders to decode the original text that it isn’t worth
their effort.

There are two categories of cryptographic algorithms: conventional and public key.

Conventional cryptography also known as symmetric cryptography, requires the sender and receiver to share a key:
a secret piece of information that may be used to encrypt or decrypt a message. As long as this key is kept
secret, nobody other than the sender or recipient can read the message. If Alice and the bank know a secret key,
then they can send each other private messages. The task of sharing a key between sender and recipient before
communicating, while also keeping it secret from others, can be problematic.

Public key cryptography also known as asymmetric cryptography, solves the key exchange problem by defining an
algorithm which uses two keys, each of which may be used to encrypt a message. If one key is used to encrypt a
message then the other must be used to decrypt it. This makes it possible to receive secure messages by simply
publishing one key (the public key) and keeping the other secret (the private key).

Anyone can encrypt a message using the public key, but only the owner of the private key will be able to read it. In
this way, Alice can send private messages to the owner of a key-pair (the bank), by encrypting them using their public
key. Only the bank will be able to decrypt them.

Message Digests

Although Alice may encrypt her message to make it private, there is still a concern that someone might modify her
original message or substitute it with a different one, in order to transfer the money to themselves, for instance. One
way of guaranteeing the integrity of Alice’s message is for her to create a concise summary of her message and send
this to the bank as well. Upon receipt of the message, the bank creates its own summary and compares it with the one
Alice sent. If the summaries are the same then the message has been received intact.

A summary such as this is called a message digest, one-way function or hash function. Message digests are used to
create a short, fixed-length representation of a longer, variable-length message. Digest algorithms are designed to
produce a unique digest for each message. Message digests are designed to make it impractically difficult to determine

184 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

the message from the digest and (in theory) impossible to find two different messages which create the same digest –
thus eliminating the possibility of substituting one message for another while maintaining the same digest.

Another challenge that Alice faces is finding a way to send the digest to the bank securely; if the digest is not sent
securely, its integrity may be compromised and with it the possibility for the bank to determine the integrity of the
original message. Only if the digest is sent securely can the integrity of the associated message be determined.

One way to send the digest securely is to include it in a digital signature.

Digital Signatures

When Alice sends a message to the bank, the bank needs to ensure that the message is really from her, so an in-
truder cannot request a transaction involving her account. A digital signature, created by Alice and included with the
message, serves this purpose.

Digital signatures are created by encrypting a digest of the message and other information (such as a sequence number)
with the sender’s private key. Though anyone can decrypt the signature using the public key, only the sender knows
the private key. This means that only the sender can have signed the message. Including the digest in the signature
means the signature is only good for that message; it also ensures the integrity of the message since no one can change
the digest and still sign it.

To guard against interception and reuse of the signature by an intruder at a later date, the signature contains a unique
sequence number. This protects the bank from a fraudulent claim from Alice that she did not send the message – only
she could have signed it (non-repudiation).

Certificates

Although Alice could have sent a private message to the bank, signed it and ensured the integrity of the message, she
still needs to be sure that she is really communicating with the bank. This means that she needs to be sure that the
public key she is using is part of the bank’s key-pair, and not an intruder’s. Similarly, the bank needs to verify that the
message signature really was signed by the private key that belongs to Alice.

If each party has a certificate which validates the other’s identity, confirms the public key and is signed by a trusted
agency, then both can be assured that they are communicating with whom they think they are. Such a trusted agency
is called a Certificate Authority and certificates are used for authentication.

Certificate Contents

A certificate associates a public key with the real identity of an individual, server, or other entity, known as the subject.
As shown in Table 1, information about the subject includes identifying information (the distinguished name) and the
public key. It also includes the identification and signature of the Certificate Authority that issued the certificate and
the period of time during which the certificate is valid. It may have additional information (or extensions) as well as
administrative information for the Certificate Authority’s use, such as a serial number.

Table 1: Certificate Information

Subject Distinguished Name, Public Key
Issuer Distinguished Name, Signature
Period of Validity Not Before Date, Not After Date
Administrative Information Version, Serial Number
Extended Information Basic Constraints, Netscape Flags, etc.

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 185

A distinguished name is used to provide an identity in a specific context – for instance, an individual might have a
personal certificate as well as one for their identity as an employee. Distinguished names are defined by the X.509
standard [X509], which defines the fields, field names and abbreviations used to refer to the fields (see Table 2).

Table 2: Distinguished Name Information

DN Field Abbrev. Description Example
Common Name CN Name being certified CN=Joe Average
Organization or Company O Name is associated with this

organization
O=Snake Oil, Ltd.

Organizational Unit OU Name is associated with this
organization unit, such as a department

OU=Research Institute

City/Locality L Name is located in this City L=Snake City
State/Province ST Name is located in this State/Province ST=Desert
Country C Name is located in this Country (ISO

code)
C=XZ

A Certificate Authority may define a policy specifying which distinguished field names are optional and which are
required. It may also place requirements upon the field contents, as may users of certificates. For example, a Netscape
browser requires that the Common Name for a certificate representing a server matches a wildcard pattern for the
domain name of that server, such as *.snakeoil.com.

The binary format of a certificate is defined using the ASN.1 notation [ASN1] [PKCS]. This notation defines how to
specify the contents and encoding rules define how this information is translated into binary form. The binary encoding
of the certificate is defined using Distinguished Encoding Rules (DER), which are based on the more general Basic
Encoding Rules (BER). For those transmissions which cannot handle binary, the binary form may be translated into
an ASCII form by using Base64 encoding [MIME]. When placed between begin and end delimiter lines (as below),
this encoded version is called a PEM ("Privacy Enhanced Mail") encoded certificate.

Example of a PEM-encoded certificate (snakeoil.crt)

-----BEGIN CERTIFICATE-----
MIIC7jCCAlegAwIBAgIBATANBgkqhkiG9w0BAQQFADCBqTELMAkGA1UEBhMCWFkx
FTATBgNVBAgTDFNuYWtlIERlc2VydDETMBEGA1UEBxMKU25ha2UgVG93bjEXMBUG
A1UEChMOU25ha2UgT2lsLCBMdGQxHjAcBgNVBAsTFUNlcnRpZmljYXRlIEF1dGhv
cml0eTEVMBMGA1UEAxMMU25ha2UgT2lsIENBMR4wHAYJKoZIhvcNAQkBFg9jYUBz
bmFrZW9pbC5kb20wHhcNOTgxMDIxMDg1ODM2WhcNOTkxMDIxMDg1ODM2WjCBpzEL
MAkGA1UEBhMCWFkxFTATBgNVBAgTDFNuYWtlIERlc2VydDETMBEGA1UEBxMKU25h
a2UgVG93bjEXMBUGA1UEChMOU25ha2UgT2lsLCBMdGQxFzAVBgNVBAsTDldlYnNl
cnZlciBUZWFtMRkwFwYDVQQDExB3d3cuc25ha2VvaWwuZG9tMR8wHQYJKoZIhvcN
AQkBFhB3d3dAc25ha2VvaWwuZG9tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB
gQDH9Ge/s2zcH+da+rPTx/DPRp3xGjHZ4GG6pCmvADIEtBtKBFAcZ64n+Dy7Np8b
vKR+yy5DGQiijsH1D/j8HlGE+q4TZ8OFk7BNBFazHxFbYI4OKMiCxdKzdif1yfaa
lWoANFlAzlSdbxeGVHoT0K+gT5w3UxwZKv2DLbCTzLZyPwIDAQABoyYwJDAPBgNV
HRMECDAGAQH/AgEAMBEGCWCGSAGG+EIBAQQEAwIAQDANBgkqhkiG9w0BAQQFAAOB
gQAZUIHAL4D09oE6Lv2k56Gp38OBDuILvwLg1v1KL8mQR+KFjghCrtpqaztZqcDt
2q2QoyulCgSzHbEGmi0EsdkPfg6mp0penssIFePYNI+/8u9HT4LuKMJX15hxBam7
dUHzICxBVC1lnHyYGjDuAMhe396lYAn8bCld1/L4NMGBCQ==
-----END CERTIFICATE-----

Certificate Authorities

By verifying the information in a certificate request before granting the certificate, the Certificate Authority assures
itself of the identity of the private key owner of a key-pair. For instance, if Alice requests a personal certificate, the
Certificate Authority must first make sure that Alice really is the person the certificate request claims she is.

186 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Certificate Chains

A Certificate Authority may also issue a certificate for another Certificate Authority. When examining a certificate,
Alice may need to examine the certificate of the issuer, for each parent Certificate Authority, until reaching one which
she has confidence in. She may decide to trust only certificates with a limited chain of issuers, to reduce her risk of a
"bad" certificate in the chain.

Creating a Root-Level CA

As noted earlier, each certificate requires an issuer to assert the validity of the identity of the certificate subject, up to
the top-level Certificate Authority (CA). This presents a problem: who can vouch for the certificate of the top-level
authority, which has no issuer? In this unique case, the certificate is "self-signed", so the issuer of the certificate
is the same as the subject. Browsers are preconfigured to trust well-known certificate authorities, but it is important
to exercise extra care in trusting a self-signed certificate. The wide publication of a public key by the root authority
reduces the risk in trusting this key – it would be obvious if someone else publicized a key claiming to be the authority.

A number of companies, such as Thawte2 and VeriSign3 have established themselves as Certificate Authorities. These
companies provide the following services:

• Verifying certificate requests

• Processing certificate requests

• Issuing and managing certificates

It is also possible to create your own Certificate Authority. Although risky in the Internet environment, it may be
useful within an Intranet where the organization can easily verify the identities of individuals and servers.

Certificate Management

Establishing a Certificate Authority is a responsibility which requires a solid administrative, technical and management
framework. Certificate Authorities not only issue certificates, they also manage them – that is, they determine for how
long certificates remain valid, they renew them and keep lists of certificates that were issued in the past but are no
longer valid (Certificate Revocation Lists, or CRLs).

For example, if Alice is entitled to a certificate as an employee of a company but has now left that company, her
certificate may need to be revoked. Because certificates are only issued after the subject’s identity has been verified
and can then be passed around to all those with whom the subject may communicate, it is impossible to tell from the
certificate alone that it has been revoked. Therefore when examining certificates for validity it is necessary to contact
the issuing Certificate Authority to check CRLs – this is usually not an automated part of the process.

=⇒Note
If you use a Certificate Authority that browsers are not configured to trust by default, it is
necessary to load the Certificate Authority certificate into the browser, enabling the browser to
validate server certificates signed by that Certificate Authority. Doing so may be dangerous,
since once loaded, the browser will accept all certificates signed by that Certificate Authority.

Secure Sockets Layer (SSL)

The Secure Sockets Layer protocol is a protocol layer which may be placed between a reliable connection-oriented
network layer protocol (e.g. TCP/IP) and the application protocol layer (e.g. HTTP). SSL provides for secure com-
munication between client and server by allowing mutual authentication, the use of digital signatures for integrity and
encryption for privacy.

2http://www.thawte.com/
3http://www.verisign.com/

http://www.thawte.com/
http://www.verisign.com/

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 187

The protocol is designed to support a range of choices for specific algorithms used for cryptography, digests and
signatures. This allows algorithm selection for specific servers to be made based on legal, export or other concerns
and also enables the protocol to take advantage of new algorithms. Choices are negotiated between client and server
when establishing a protocol session.

Table 4: Versions of the SSL protocol

Version Source Description
SSL v2.0 Vendor Standard (from

Netscape Corp.)
First SSL protocol for which imple-
mentations exist

SSL v3.0 Expired Internet Draft
(from Netscape Corp.)
[SSL3]

Revisions to prevent specific security
attacks, add non-RSA ciphers and sup-
port for certificate chains

TLS v1.0 Proposed Internet Stan-
dard (from IETF) [TLS1]

Revision of SSL 3.0 to update the MAC
layer to HMAC, add block padding for
block ciphers, message order standard-
ization and more alert messages.

TLS v1.1 Proposed Internet
Standard (from IETF)
[TLS11]

Update of TLS 1.0 to add protection
against Cipher block chaining (CBC)
attacks.

TLS v1.2 Proposed Internet
Standard (from IETF)
[TLS12]

Update of TLS 1.2 deprecating MD5
as hash, and adding incompatibility to
SSL so it will never negotiate the use
of SSLv2.

There are a number of versions of the SSL protocol, as shown in Table 4. As noted there, one of the benefits in SSL
3.0 is that it adds support of certificate chain loading. This feature allows a server to pass a server certificate along
with issuer certificates to the browser. Chain loading also permits the browser to validate the server certificate, even if
Certificate Authority certificates are not installed for the intermediate issuers, since they are included in the certificate
chain. SSL 3.0 is the basis for the Transport Layer Security [TLS] protocol standard, currently in development by the
Internet Engineering Task Force (IETF).

Establishing a Session

The SSL session is established by following a handshake sequence between client and server, as shown in Figure 1.
This sequence may vary, depending on whether the server is configured to provide a server certificate or request a client
certificate. Although cases exist where additional handshake steps are required for management of cipher information,
this article summarizes one common scenario. See the SSL specification for the full range of possibilities.

=⇒Note
Once an SSL session has been established, it may be reused. This avoids the performance
penalty of repeating the many steps needed to start a session. To do this, the server assigns
each SSL session a unique session identifier which is cached in the server and which the client
can use in future connections to reduce the handshake time (until the session identifier expires
from the cache of the server).

188 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Figure 1: Simplified SSL Handshake Sequence

The elements of the handshake sequence, as used by the client and server, are listed below:

1. Negotiate the Cipher Suite to be used during data transfer

2. Establish and share a session key between client and server

3. Optionally authenticate the server to the client

4. Optionally authenticate the client to the server

The first step, Cipher Suite Negotiation, allows the client and server to choose a Cipher Suite supported by both
of them. The SSL3.0 protocol specification defines 31 Cipher Suites. A Cipher Suite is defined by the following
components:

• Key Exchange Method

• Cipher for Data Transfer

• Message Digest for creating the Message Authentication Code (MAC)

These three elements are described in the sections that follow.

Key Exchange Method

The key exchange method defines how the shared secret symmetric cryptography key used for application data transfer
will be agreed upon by client and server. SSL 2.0 uses RSA key exchange only, while SSL 3.0 supports a choice of
key exchange algorithms including RSA key exchange (when certificates are used), and Diffie-Hellman key exchange
(for exchanging keys without certificates, or without prior communication between client and server).

One variable in the choice of key exchange methods is digital signatures – whether or not to use them, and if so, what
kind of signatures to use. Signing with a private key provides protection against a man-in-the-middle-attack during
the information exchange used to generating the shared key [AC96, p516].

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 189

Cipher for Data Transfer

SSL uses conventional symmetric cryptography, as described earlier, for encrypting messages in a session. There are
nine choices of how to encrypt, including the option not to encrypt:

• No encryption

• Stream Ciphers

– RC4 with 40-bit keys
– RC4 with 128-bit keys

• CBC Block Ciphers

– RC2 with 40 bit key
– DES with 40 bit key
– DES with 56 bit key
– Triple-DES with 168 bit key
– Idea (128 bit key)
– Fortezza (96 bit key)

"CBC" refers to Cipher Block Chaining, which means that a portion of the previously encrypted cipher text is used in
the encryption of the current block. "DES" refers to the Data Encryption Standard [AC96, ch12], which has a number
of variants (including DES40 and 3DES EDE). "Idea" is currently one of the best and cryptographically strongest
algorithms available, and "RC2" is a proprietary algorithm from RSA DSI [AC96, ch13].

Digest Function

The choice of digest function determines how a digest is created from a record unit. SSL supports the following:

• No digest (Null choice)

• MD5, a 128-bit hash

• Secure Hash Algorithm (SHA-1), a 160-bit hash

The message digest is used to create a Message Authentication Code (MAC) which is encrypted with the message to
verify integrity and to protect against replay attacks.

Handshake Sequence Protocol

The handshake sequence uses three protocols:

• The SSL Handshake Protocol for performing the client and server SSL session establishment.

• The SSL Change Cipher Spec Protocol for actually establishing agreement on the Cipher Suite for the session.

• The SSL Alert Protocol for conveying SSL error messages between client and server.

These protocols, as well as application protocol data, are encapsulated in the SSL Record Protocol, as shown in Figure
2. An encapsulated protocol is transferred as data by the lower layer protocol, which does not examine the data. The
encapsulated protocol has no knowledge of the underlying protocol.

190 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Figure 2: SSL Protocol Stack

The encapsulation of SSL control protocols by the record protocol means that if an active session is renegotiated the
control protocols will be transmitted securely. If there was no previous session, the Null cipher suite is used, which
means there will be no encryption and messages will have no integrity digests, until the session has been established.

Data Transfer

The SSL Record Protocol, shown in Figure 3, is used to transfer application and SSL Control data between the client
and server, where necessary fragmenting this data into smaller units, or combining multiple higher level protocol data
messages into single units. It may compress, attach digest signatures, and encrypt these units before transmitting them
using the underlying reliable transport protocol (Note: currently, no major SSL implementations include support for
compression).

Figure 3: SSL Record Protocol

5.2. SSL/TLS STRONG ENCRYPTION: AN INTRODUCTION 191

Securing HTTP Communication

One common use of SSL is to secure Web HTTP communication between a browser and a webserver. This does not
preclude the use of non-secured HTTP - the secure version (called HTTPS) is the same as plain HTTP over SSL, but
uses the URL scheme https rather than http, and a different server port (by default, port 443). This functionality
is a large part of what MOD SSL provides for the Apache webserver.

References

[AC96] Bruce Schneier, Applied Cryptography, 2nd Edition, Wiley, 1996. See http://www.counterpane.com/ for
various other materials by Bruce Schneier.

[ASN1] ITU-T Recommendation X.208, Specification of Abstract Syntax Notation One (ASN.1), last updated 2008.
See http://www.itu.int/ITU-T/asn1/.

[X509] ITU-T Recommendation X.509, The Directory - Authentication Framework. For references, see
http://en.wikipedia.org/wiki/X.509.

[PKCS] Public Key Cryptography Standards (PKCS), RSA Laboratories Technical Notes, See
http://www.rsasecurity.com/rsalabs/pkcs/.

[MIME] N. Freed, N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, RFC2045. See for instance http://tools.ietf.org/html/rfc2045.

[SSL3] Alan O. Freier, Philip Karlton, Paul C. Kocher, The SSL Protocol Version 3.0, 1996. See
http://www.netscape.com/eng/ssl3/draft302.txt.

[TLS1] Tim Dierks, Christopher Allen, The TLS Protocol Version 1.0, 1999. See http://ietf.org/rfc/rfc2246.txt.

[TLS11] The TLS Protocol Version 1.1, 2006. See http://tools.ietf.org/html/rfc4346.

[TLS12] The TLS Protocol Version 1.2, 2008. See http://tools.ietf.org/html/rfc5246.

192 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

5.3 SSL/TLS Strong Encryption: Compatibility

This page covers backwards compatibility between mod ssl and other SSL solutions. mod ssl is not the only SSL
solution for Apache; four additional products are (or were) also available: Ben Laurie’s freely available Apache-SSL4

(from where mod ssl were originally derived in 1998), Red Hat’s commercial Secure Web Server (which was based
on mod ssl), Covalent’s commercial Raven SSL Module (also based on mod ssl) and finally C2Net’s (now Red Hat’s)
commercial product Stronghold5 (based on a different evolution branch, named Sioux up to Stronghold 2.x, and based
on mod ssl since Stronghold 3.x).

mod ssl mostly provides a superset of the functionality of all the other solutions, so it’s simple to migrate from one
of the older modules to mod ssl. The configuration directives and environment variable names used by the older SSL
solutions vary from those used in mod ssl; mapping tables are included here to give the equivalents used by mod ssl.

Configuration Directives

The mapping between configuration directives used by Apache-SSL 1.x and mod ssl 2.0.x is given in Table 1. The
mapping from Sioux 1.x and Stronghold 2.x is only partial because of special functionality in these interfaces which
mod ssl doesn’t provide.

Table 1: Configuration Directive Mapping

Old Directive mod ssl Directive Comment
Apache-SSL 1.x & mod ssl 2.0.x
compatibility:
SSLEnable SSLEngine on compactified
SSLDisable SSLEngine off compactified
SSLLogFile file Use per-module LOGLEVEL setting in-

stead.
SSLRequiredCiphers spec SSLCipherSuite spec renamed
SSLRequireCipher c1 ... SSLRequire %{SSL CIPHER} in

{"c1", ...}
generalized

SSLBanCipher c1 ... SSLRequire not
(%{SSL CIPHER} in {"c1",
...})

generalized

SSLFakeBasicAuth SSLOptions +FakeBasicAuth merged
SSLCacheServerPath dir - functionality removed
SSLCacheServerPort integer - functionality removed
Apache-SSL 1.x compatibility:
SSLExportClientCertificates SSLOptions +ExportCertData merged
SSLCacheServerRunDir dir - functionality not supported
Sioux 1.x compatibility:
SSL CertFile file SSLCertificateFile file renamed
SSL KeyFile file SSLCertificateKeyFile file renamed
SSL CipherSuite arg SSLCipherSuite arg renamed
SSL X509VerifyDir arg SSLCACertificatePath arg renamed
SSL Log file - Use per-module LOGLEVEL setting in-

stead.
SSL Connect flag SSLEngine flag renamed
SSL ClientAuth arg SSLVerifyClient arg renamed
SSL X509VerifyDepth arg SSLVerifyDepth arg renamed

4http://www.apache-ssl.org/
5http://www.redhat.com/explore/stronghold/

http://www.apache-ssl.org/
http://www.redhat.com/explore/stronghold/

5.3. SSL/TLS STRONG ENCRYPTION: COMPATIBILITY 193

SSL FetchKeyPhraseFrom arg - not directly mappable; use
SSLPassPhraseDialog

SSL SessionDir dir - not directly mappable; use SSLSession-
Cache

SSL Require expr - not directly mappable; use SSLRequire
SSL CertFileType arg - functionality not supported
SSL KeyFileType arg - functionality not supported
SSL X509VerifyPolicy arg - functionality not supported
SSL LogX509Attributes arg - functionality not supported
Stronghold 2.x compatibility:
StrongholdAccelerator engine SSLCryptoDevice engine renamed
StrongholdKey dir - functionality not needed
StrongholdLicenseFile dir - functionality not needed
SSLFlag flag SSLEngine flag renamed
SSLSessionLockFile file SSLMutex file renamed
SSLCipherList spec SSLCipherSuite spec renamed
RequireSSL SSLRequireSSL renamed
SSLErrorFile file - functionality not supported
SSLRoot dir - functionality not supported
SSL CertificateLogDir dir - functionality not supported
AuthCertDir dir - functionality not supported
SSL Group name - functionality not supported
SSLProxyMachineCertPath dir SSLProxyMachineCertificatePath

dir
renamed

SSLProxyMachineCertFile file SSLProxyMachineCertificateFile
file

renamed

SSLProxyCipherList spec SSLProxyCipherSpec spec renamed

Environment Variables

The mapping between environment variable names used by the older SSL solutions and the names used by mod ssl is
given in Table 2.

Table 2: Environment Variable Derivation

Old Variable mod ssl Variable Comment
SSL PROTOCOL VERSION SSL PROTOCOL renamed
SSLEAY VERSION SSL VERSION LIBRARY renamed
HTTPS SECRETKEYSIZE SSL CIPHER USEKEYSIZE renamed
HTTPS KEYSIZE SSL CIPHER ALGKEYSIZE renamed
HTTPS CIPHER SSL CIPHER renamed
HTTPS EXPORT SSL CIPHER EXPORT renamed
SSL SERVER KEY SIZE SSL CIPHER ALGKEYSIZE renamed
SSL SERVER CERTIFICATE SSL SERVER CERT renamed
SSL SERVER CERT START SSL SERVER V START renamed
SSL SERVER CERT END SSL SERVER V END renamed
SSL SERVER CERT SERIAL SSL SERVER M SERIAL renamed
SSL SERVER SIGNATURE ALGORITHM SSL SERVER A SIG renamed
SSL SERVER DN SSL SERVER S DN renamed
SSL SERVER CN SSL SERVER S DN CN renamed
SSL SERVER EMAIL SSL SERVER S DN Email renamed
SSL SERVER O SSL SERVER S DN O renamed
SSL SERVER OU SSL SERVER S DN OU renamed

194 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

SSL SERVER C SSL SERVER S DN C renamed
SSL SERVER SP SSL SERVER S DN SP renamed
SSL SERVER L SSL SERVER S DN L renamed
SSL SERVER IDN SSL SERVER I DN renamed
SSL SERVER ICN SSL SERVER I DN CN renamed
SSL SERVER IEMAIL SSL SERVER I DN Email renamed
SSL SERVER IO SSL SERVER I DN O renamed
SSL SERVER IOU SSL SERVER I DN OU renamed
SSL SERVER IC SSL SERVER I DN C renamed
SSL SERVER ISP SSL SERVER I DN SP renamed
SSL SERVER IL SSL SERVER I DN L renamed
SSL CLIENT CERTIFICATE SSL CLIENT CERT renamed
SSL CLIENT CERT START SSL CLIENT V START renamed
SSL CLIENT CERT END SSL CLIENT V END renamed
SSL CLIENT CERT SERIAL SSL CLIENT M SERIAL renamed
SSL CLIENT SIGNATURE ALGORITHM SSL CLIENT A SIG renamed
SSL CLIENT DN SSL CLIENT S DN renamed
SSL CLIENT CN SSL CLIENT S DN CN renamed
SSL CLIENT EMAIL SSL CLIENT S DN Email renamed
SSL CLIENT O SSL CLIENT S DN O renamed
SSL CLIENT OU SSL CLIENT S DN OU renamed
SSL CLIENT C SSL CLIENT S DN C renamed
SSL CLIENT SP SSL CLIENT S DN SP renamed
SSL CLIENT L SSL CLIENT S DN L renamed
SSL CLIENT IDN SSL CLIENT I DN renamed
SSL CLIENT ICN SSL CLIENT I DN CN renamed
SSL CLIENT IEMAIL SSL CLIENT I DN Email renamed
SSL CLIENT IO SSL CLIENT I DN O renamed
SSL CLIENT IOU SSL CLIENT I DN OU renamed
SSL CLIENT IC SSL CLIENT I DN C renamed
SSL CLIENT ISP SSL CLIENT I DN SP renamed
SSL CLIENT IL SSL CLIENT I DN L renamed
SSL EXPORT SSL CIPHER EXPORT renamed
SSL KEYSIZE SSL CIPHER ALGKEYSIZE renamed
SSL SECKEYSIZE SSL CIPHER USEKEYSIZE renamed
SSL SSLEAY VERSION SSL VERSION LIBRARY renamed
SSL STRONG CRYPTO - Not supported by mod ssl
SSL SERVER KEY EXP - Not supported by mod ssl
SSL SERVER KEY ALGORITHM - Not supported by mod ssl
SSL SERVER KEY SIZE - Not supported by mod ssl
SSL SERVER SESSIONDIR - Not supported by mod ssl
SSL SERVER CERTIFICATELOGDIR - Not supported by mod ssl
SSL SERVER CERTFILE - Not supported by mod ssl
SSL SERVER KEYFILE - Not supported by mod ssl
SSL SERVER KEYFILETYPE - Not supported by mod ssl
SSL CLIENT KEY EXP - Not supported by mod ssl
SSL CLIENT KEY ALGORITHM - Not supported by mod ssl
SSL CLIENT KEY SIZE - Not supported by mod ssl

Custom Log Functions

When mod ssl is enabled, additional functions exist for the Custom Log Format (p. 656) of MOD LOG CONFIG as
documented in the Reference Chapter. Beside the “%{varname}x” eXtension format function which can be used to

5.3. SSL/TLS STRONG ENCRYPTION: COMPATIBILITY 195

expand any variables provided by any module, an additional Cryptography “%{name}c” cryptography format function
exists for backward compatibility. The currently implemented function calls are listed in Table 3.

Table 3: Custom Log Cryptography Function

Function Call Description
%...{version}c SSL protocol version
%...{cipher}c SSL cipher
%...{subjectdn}c Client Certificate Subject Distinguished Name
%...{issuerdn}c Client Certificate Issuer Distinguished Name
%...{errcode}c Certificate Verification Error (numerical)
%...{errstr}c Certificate Verification Error (string)

196 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

5.4 SSL/TLS Strong Encryption: How-To

This document is intended to get you started, and get a few things working. You are strongly encouraged to read the
rest of the SSL documentation, and arrive at a deeper understanding of the material, before progressing to the advanced
techniques.

Basic Configuration Example

Your SSL configuration will need to contain, at minimum, the following directives.

LoadModule ssl_module modules/mod_ssl.so

Listen 443
<VirtualHost *:443>

ServerName www.example.com
SSLEngine on
SSLCertificateFile "/path/to/www.example.com.cert"
SSLCertificateKeyFile "/path/to/www.example.com.key"

</VirtualHost>

Cipher Suites and Enforcing Strong Security

• How can I create an SSL server which accepts strong encryption only?

• How can I create an SSL server which accepts all types of ciphers in general, but requires a strong cipher for
access to a particular URL?

How can I create an SSL server which accepts strong encryption only?

The following enables only the strongest ciphers:

SSLCipherSuite HIGH:!aNULL:!MD5

While with the following configuration you specify a preference for specific speed-optimized ciphers (which will be
selected by mod ssl, provided that they are supported by the client):

SSLCipherSuite RC4-SHA:AES128-SHA:HIGH:!aNULL:!MD5
SSLHonorCipherOrder on

How can I create an SSL server which accepts all types of ciphers in general, but requires a strong ciphers for
access to a particular URL?

Obviously, a server-wide SSLCIPHERSUITE which restricts ciphers to the strong variants, isn’t the answer here. How-
ever, MOD SSL can be reconfigured within Location blocks, to give a per-directory solution, and can automatically
force a renegotiation of the SSL parameters to meet the new configuration. This can be done as follows:

be liberal in general
SSLCipherSuite ALL:!aNULL:RC4+RSA:+HIGH:+MEDIUM:+LOW:+EXP:+eNULL

<Location "/strong/area">

5.4. SSL/TLS STRONG ENCRYPTION: HOW-TO 197

but https://hostname/strong/area/ and below
requires strong ciphers
SSLCipherSuite HIGH:!aNULL:!MD5
</Location>

OCSP Stapling

The Online Certificate Status Protocol (OCSP) is a mechanism for determining whether or not a server certificate has
been revoked, and OCSP Stapling is a special form of this in which the server, such as httpd and mod ssl, maintains
current OCSP responses for its certificates and sends them to clients which communicate with the server. Most
certificates contain the address of an OCSP responder maintained by the issuing Certificate Authority, and mod ssl
can communicate with that responder to obtain a signed response that can be sent to clients communicating with the
server.

Because the client can obtain the certificate revocation status from the server, without requiring an extra connection
from the client to the Certificate Authority, OCSP Stapling is the preferred way for the revocation status to be obtained.
Other benefits of eliminating the communication between clients and the Certificate Authority are that the client
browsing history is not exposed to the Certificate Authority and obtaining status is more reliable by not depending on
potentially heavily loaded Certificate Authority servers.

Because the response obtained by the server can be reused for all clients using the same certificate during the time that
the response is valid, the overhead for the server is minimal.

Once general SSL support has been configured properly, enabling OCSP Stapling generally requires only very minor
modifications to the httpd configuration - the addition of these two directives:

SSLUseStapling On
SSLStaplingCache "shmcb:logs/ssl_stapling(32768)"

These directives are placed at global scope (i.e., not within a virtual host definition) wherever other global SSL config-
uration directives are placed, such as in conf/extra/httpd-ssl.conf for normal open source builds of httpd,
/etc/apache2/mods-enabled/ssl.conf for the Ubuntu or Debian-bundled httpd, etc.

The path on the SSLSTAPLINGCACHE directive (e.g., logs/) should match the one on the SSLSESSIONCACHE
directive. This path is relative to SERVERROOT.

This particular SSLSTAPLINGCACHE directive requires MOD SOCACHE SHMCB (from the shmcb prefix on the di-
rective’s argument). This module is usually enabled already for SSLSESSIONCACHE or on behalf of some module
other than MOD SSL. If you enabled an SSL session cache using a mechanism other than MOD SOCACHE SHMCB,
use that alternative mechanism for SSLSTAPLINGCACHE as well. For example:

SSLSessionCache "dbm:logs/ssl_scache"
SSLStaplingCache "dbm:logs/ssl_stapling"

You can use the openssl command-line program to verify that an OCSP response is sent by your server:

$ openssl s_client -connect www.example.com:443 -status -servername www.example.com
...
OCSP response:
======================================
OCSP Response Data:

OCSP Response Status: successful (0x0)
Response Type: Basic OCSP Response

...
Cert Status: Good

...

198 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

The following sections highlight the most common situations which require further modification to the configuration.
Refer also to the MOD SSL reference manual.

If more than a few SSL certificates are used for the server

OCSP responses are stored in the SSL stapling cache. While the responses are typically a few hundred to a few
thousand bytes in size, mod ssl supports OCSP responses up to around 10K bytes in size. With more than a few
certificates, the stapling cache size (32768 bytes in the example above) may need to be increased. Error message
AH01929 will be logged in case of an error storing a response.

If the certificate does not point to an OCSP responder, or if a different address must be used

Refer to the SSLSTAPLINGFORCEURL directive.

You can confirm that a server certificate points to an OCSP responder using the openssl command-line program, as
follows:

$ openssl x509 -in ./www.example.com.crt -text | grep ’OCSP.*http’
OCSP - URI:http://ocsp.example.com

If the OCSP URI is provided and the web server can communicate to it directly without using a proxy, no configuration
is required. Note that firewall rules that control outbound connections from the web server may need to be adjusted.

If no OCSP URI is provided, contact your Certificate Authority to determine if one is available; if so, configure it with
SSLSTAPLINGFORCEURL in the virtual host that uses the certificate.

If multiple SSL-enabled virtual hosts are configured and OCSP Stapling should be disabled for some

Add SSLUseStapling Off to the virtual hosts for which OCSP Stapling should be disabled.

If the OCSP responder is slow or unreliable

Several directives are available to handle timeouts and errors. Refer to the documentation for the SSLSTAPLING-
FAKETRYLATER, SSLSTAPLINGRESPONDERTIMEOUT, and SSLSTAPLINGRETURNRESPONDERERRORS direc-
tives.

If mod ssl logs error AH02217

AH02217: ssl_stapling_init_cert: Can’t retrieve issuer certificate!

In order to support OCSP Stapling when a particular server certificate is used, the certificate chain for that certificate
must be configured. If it was not configured as part of enabling SSL, the AH02217 error will be issued when stapling
is enabled, and an OCSP response will not be provided for clients using the certificate.

Refer to the SSLCERTIFICATECHAINFILE and SSLCERTIFICATEFILE for instructions for configuring the certificate
chain.

5.4. SSL/TLS STRONG ENCRYPTION: HOW-TO 199

Client Authentication and Access Control

• How can I force clients to authenticate using certificates?

• How can I force clients to authenticate using certificates for a particular URL, but still allow arbitrary clients to
access the rest of the server?

• How can I allow only clients who have certificates to access a particular URL, but allow all clients to access the
rest of the server?

• How can I require HTTPS with strong ciphers, and either basic authentication or client certificates, for access to
part of the Intranet website, for clients coming from the Internet?

How can I force clients to authenticate using certificates?

When you know all of your users (eg, as is often the case on a corporate Intranet), you can require plain certificate
authentication. All you need to do is to create client certificates signed by your own CA certificate (ca.crt) and then
verify the clients against this certificate.

require a client certificate which has to be directly
signed by our CA certificate in ca.crt
SSLVerifyClient require
SSLVerifyDepth 1
SSLCACertificateFile "conf/ssl.crt/ca.crt"

How can I force clients to authenticate using certificates for a particular URL, but still allow arbitrary clients
to access the rest of the server?

To force clients to authenticate using certificates for a particular URL, you can use the per-directory reconfiguration
features of MOD SSL:

SSLVerifyClient none
SSLCACertificateFile "conf/ssl.crt/ca.crt"

<Location "/secure/area">
SSLVerifyClient require
SSLVerifyDepth 1
</Location>

How can I allow only clients who have certificates to access a particular URL, but allow all clients to access the
rest of the server?

The key to doing this is checking that part of the client certificate matches what you expect. Usually this means
checking all or part of the Distinguished Name (DN), to see if it contains some known string. There are two ways to
do this, using either MOD AUTH BASIC or SSLREQUIRE.

The MOD AUTH BASIC method is generally required when the certificates are completely arbitrary, or when their
DNs have no common fields (usually the organisation, etc.). In this case, you should establish a password database
containing all clients allowed, as follows:

SSLVerifyClient none
SSLCACertificateFile "conf/ssl.crt/ca.crt"
SSLCACertificatePath "conf/ssl.crt"

200 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

<Directory "/usr/local/apache2/htdocs/secure/area">
SSLVerifyClient require
SSLVerifyDepth 5
SSLOptions +FakeBasicAuth
SSLRequireSSL
AuthName "Snake Oil Authentication"
AuthType Basic
AuthBasicProvider file
AuthUserFile "/usr/local/apache2/conf/httpd.passwd"
Require valid-user

</Directory>

The password used in this example is the DES encrypted string "password". See the SSLOPTIONS docs for more
information.

httpd.passwd

/C=DE/L=Munich/O=Snake Oil, Ltd./OU=Staff/CN=Foo:xxj31ZMTZzkVA
/C=US/L=S.F./O=Snake Oil, Ltd./OU=CA/CN=Bar:xxj31ZMTZzkVA
/C=US/L=L.A./O=Snake Oil, Ltd./OU=Dev/CN=Quux:xxj31ZMTZzkVA

When your clients are all part of a common hierarchy, which is encoded into the DN, you can match them more easily
using SSLREQUIRE, as follows:

SSLVerifyClient none
SSLCACertificateFile "conf/ssl.crt/ca.crt"
SSLCACertificatePath "conf/ssl.crt"

<Directory "/usr/local/apache2/htdocs/secure/area">
SSLVerifyClient require
SSLVerifyDepth 5
SSLOptions +FakeBasicAuth
SSLRequireSSL
SSLRequire %{SSL_CLIENT_S_DN_O} eq "Snake Oil, Ltd." \

and %{SSL_CLIENT_S_DN_OU} in {"Staff", "CA", "Dev"}
</Directory>

How can I require HTTPS with strong ciphers, and either basic authentication or client certificates, for access
to part of the Intranet website, for clients coming from the Internet? I still want to allow plain HTTP access for
clients on the Intranet.

These examples presume that clients on the Intranet have IPs in the range 192.168.1.0/24, and that the part of the
Intranet website you want to allow internet access to is /usr/local/apache2/htdocs/subarea. This con-
figuration should remain outside of your HTTPS virtual host, so that it applies to both HTTPS and HTTP.

SSLCACertificateFile "conf/ssl.crt/company-ca.crt"

<Directory "/usr/local/apache2/htdocs">
Outside the subarea only Intranet access is granted
Require ip 192.168.1.0/24

</Directory>

<Directory "/usr/local/apache2/htdocs/subarea">

5.4. SSL/TLS STRONG ENCRYPTION: HOW-TO 201

Inside the subarea any Intranet access is allowed
but from the Internet only HTTPS + Strong-Cipher + Password
or the alternative HTTPS + Strong-Cipher + Client-Certificate

If HTTPS is used, make sure a strong cipher is used.
Additionally allow client certs as alternative to basic auth.
SSLVerifyClient optional
SSLVerifyDepth 1
SSLOptions +FakeBasicAuth +StrictRequire
SSLRequire %{SSL_CIPHER_USEKEYSIZE} >= 128

Force clients from the Internet to use HTTPS
RewriteEngine on
RewriteCond "%{REMOTE_ADDR}" "!ˆ192\.168\.1\.[0-9]+$"
RewriteCond "%{HTTPS}" "!=on"
RewriteRule "." "-" [F]

Allow Network Access and/or Basic Auth
Satisfy any

Network Access Control
Require ip 192.168.1.0/24

HTTP Basic Authentication
AuthType basic
AuthName "Protected Intranet Area"
AuthBasicProvider file
AuthUserFile "conf/protected.passwd"
Require valid-user

</Directory>

Logging

MOD SSL can log extremely verbose debugging information to the error log, when its LOGLEVEL is set to the higher
trace levels. On the other hand, on a very busy server, level info may already be too much. Remember that you can
configure the LOGLEVEL per module to suite your needs.

202 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

5.5 SSL/TLS Strong Encryption: FAQ

The wise man doesn’t give the right answers, he poses the right questions.
– Claude Levi-Strauss

Installation

• Why do I get permission errors related to SSLMutex when I start Apache?

• Why does mod ssl stop with the error "Failed to generate temporary 512 bit RSA private key" when I start
Apache?

Why do I get permission errors related to SSLMutex when I start Apache?

Errors such as “mod ssl: Child could not open SSLMutex lockfile
/opt/apache/logs/ssl mutex.18332 (System error follows) [...] System:
Permission denied (errno: 13)” are usually caused by overly restrictive permissions on the parent
directories. Make sure that all parent directories (here /opt, /opt/apache and /opt/apache/logs) have the
x-bit set for, at minimum, the UID under which Apache’s children are running (see the USER directive).

Why does mod ssl stop with the error "Failed to generate temporary 512 bit RSA private key" when I start
Apache?

Cryptographic software needs a source of unpredictable data to work correctly. Many open source operating sys-
tems provide a "randomness device" that serves this purpose (usually named /dev/random). On other systems,
applications have to seed the OpenSSL Pseudo Random Number Generator (PRNG) manually with appropriate data
before generating keys or performing public key encryption. As of version 0.9.5, the OpenSSL functions that need
randomness report an error if the PRNG has not been seeded with at least 128 bits of randomness.

To prevent this error, MOD SSL has to provide enough entropy to the PRNG to allow it to work correctly. This can be
done via the SSLRANDOMSEED directive.

Configuration

• Is it possible to provide HTTP and HTTPS from the same server?

• Which port does HTTPS use?

• How do I speak HTTPS manually for testing purposes?

• Why does the connection hang when I connect to my SSL-aware Apache server?

• Why do I get “Connection Refused” errors, when trying to access my newly installed Apache+mod ssl server
via HTTPS?

• Why are the SSL XXX variables not available to my CGI & SSI scripts?

• How can I switch between HTTP and HTTPS in relative hyperlinks?

Is it possible to provide HTTP and HTTPS from the same server?

Yes. HTTP and HTTPS use different server ports (HTTP binds to port 80, HTTPS to port 443), so there is no direct
conflict between them. You can either run two separate server instances bound to these ports, or use Apache’s elegant
virtual hosting facility to create two virtual servers, both served by the same instance of Apache - one responding over
HTTP to requests on port 80, and the other responding over HTTPS to requests on port 443.

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 203

Which port does HTTPS use?

You can run HTTPS on any port, but the standards specify port 443, which is where any HTTPS compliant browser will
look by default. You can force your browser to look on a different port by specifying it in the URL. For example, if your
server is set up to serve pages over HTTPS on port 8080, you can access them at https://example.com:8080/

How do I speak HTTPS manually for testing purposes?

While you usually just use

$ telnet localhost 80

GET / HTTP/1.0

for simple testing of Apache via HTTP, it’s not so easy for HTTPS because of the SSL protocol between TCP and
HTTP. With the help of OpenSSL’s s client command, however, you can do a similar check via HTTPS:

$ openssl s client -connect localhost:443 -state -debug

GET / HTTP/1.0

Before the actual HTTP response you will receive detailed information about the SSL handshake. For a more general
command line client which directly understands both HTTP and HTTPS, can perform GET and POST operations, can
use a proxy, supports byte ranges, etc. you should have a look at the nifty cURL6 tool. Using this, you can check that
Apache is responding correctly to requests via HTTP and HTTPS as follows:

$ curl http://localhost/

$ curl https://localhost/

Why does the connection hang when I connect to my SSL-aware Apache server?

This can happen when you try to connect to a HTTPS server (or virtual server) via HTTP (eg, using
http://example.com/ instead of https://example.com). It can also happen when trying to connect via
HTTPS to a HTTP server (eg, using https://example.com/ on a server which doesn’t support HTTPS, or which
supports it on a non-standard port). Make sure that you’re connecting to a (virtual) server that supports SSL.

Why do I get “Connection Refused” messages, when trying to access my newly installed Apache+mod ssl server
via HTTPS?

This error can be caused by an incorrect configuration. Please make sure that your LISTEN directives match your
<VIRTUALHOST> directives. If all else fails, please start afresh, using the default configuration provided by
MOD SSL.

Why are the SSL XXX variables not available to my CGI & SSI scripts?

Please make sure you have “SSLOptions +StdEnvVars” enabled for the context of your CGI/SSI requests.

6http://curl.haxx.se/

http://curl.haxx.se/

204 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

How can I switch between HTTP and HTTPS in relative hyperlinks?

Usually, to switch between HTTP and HTTPS, you have to use fully-qualified hyperlinks (because you have to change
the URL scheme). Using MOD REWRITE however, you can manipulate relative hyperlinks, to achieve the same effect.

RewriteEngine on
RewriteRule "ˆ/(.*)_SSL$" "https://%{SERVER_NAME}/$1" [R,L]
RewriteRule "ˆ/(.*)_NOSSL$" "http://%{SERVER_NAME}/$1" [R,L]

This rewrite ruleset lets you use hyperlinks of the form , to switch to HTTPS
in a relative link. (Replace SSL with NOSSL to switch to HTTP.)

Certificates

• What are RSA Private Keys, CSRs and Certificates?

• Is there a difference on startup between a non-SSL-aware Apache and an SSL-aware Apache?

• How do I create a self-signed SSL Certificate for testing purposes?

• How do I create a real SSL Certificate?

• How do I create and use my own Certificate Authority (CA)?

• How can I change the pass-phrase on my private key file?

• How can I get rid of the pass-phrase dialog at Apache startup time?

• How do I verify that a private key matches its Certificate?

• How can I convert a certificate from PEM to DER format?

• Why do browsers complain that they cannot verify my server certificate?

What are RSA Private Keys, CSRs and Certificates?

An RSA private key file is a digital file that you can use to decrypt messages sent to you. It has a public component
which you distribute (via your Certificate file) which allows people to encrypt those messages to you.

A Certificate Signing Request (CSR) is a digital file which contains your public key and your name. You send the
CSR to a Certifying Authority (CA), who will convert it into a real Certificate, by signing it.

A Certificate contains your RSA public key, your name, the name of the CA, and is digitally signed by the CA.
Browsers that know the CA can verify the signature on that Certificate, thereby obtaining your RSA public key. That
enables them to send messages which only you can decrypt.

See the Introduction (p. 183) chapter for a general description of the SSL protocol.

Is there a difference on startup between a non-SSL-aware Apache and an SSL-aware Apache?

Yes. In general, starting Apache with MOD SSL built-in is just like starting Apache without it. However, if you have a
passphrase on your SSL private key file, a startup dialog will pop up which asks you to enter the pass phrase.

Having to manually enter the passphrase when starting the server can be problematic - for example, when starting the
server from the system boot scripts. In this case, you can follow the steps below to remove the passphrase from your
private key. Bear in mind that doing so brings additional security risks - proceed with caution!

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 205

How do I create a self-signed SSL Certificate for testing purposes?

1. Make sure OpenSSL is installed and in your PATH.

2. Run the following command, to create server.key and server.crt files:
$ openssl req -new -x509 -nodes -out server.crt -keyout server.key
These can be used as follows in your httpd.conf file:

SSLCertificateFile "/path/to/this/server.crt"
SSLCertificateKeyFile "/path/to/this/server.key"

3. It is important that you are aware that this server.key does not have any passphrase. To add a passphrase to
the key, you should run the following command, and enter & verify the passphrase as requested.
$ openssl rsa -des3 -in server.key -out server.key.new
$ mv server.key.new server.key

Please backup the server.key file, and the passphrase you entered, in a secure location.

How do I create a real SSL Certificate?

Here is a step-by-step description:

1. Make sure OpenSSL is installed and in your PATH.

2. Create a RSA private key for your Apache server (will be Triple-DES encrypted and PEM formatted):
$ openssl genrsa -des3 -out server.key 2048

Please backup this server.key file and the pass-phrase you entered in a secure location. You can see the
details of this RSA private key by using the command:

$ openssl rsa -noout -text -in server.key
If necessary, you can also create a decrypted PEM version (not recommended) of this RSA private key with:
$ openssl rsa -in server.key -out server.key.unsecure

3. Create a Certificate Signing Request (CSR) with the server RSA private key (output will be PEM formatted):
$ openssl req -new -key server.key -out server.csr

Make sure you enter the FQDN ("Fully Qualified Domain Name") of the server when OpenSSL prompts
you for the "CommonName", i.e. when you generate a CSR for a website which will be later accessed via
https://www.foo.dom/, enter "www.foo.dom" here. You can see the details of this CSR by using

$ openssl req -noout -text -in server.csr

4. You now have to send this Certificate Signing Request (CSR) to a Certifying Authority (CA) to be signed.
Once the CSR has been signed, you will have a real Certificate, which can be used by Apache. You can have a
CSR signed by a commercial CA, or you can create your own CA to sign it.
Commercial CAs usually ask you to post the CSR into a web form, pay for the signing, and then send a signed
Certificate, which you can store in a server.crt file.

206 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

For details on how to create your own CA, and use this to sign a CSR, see below.

Once your CSR has been signed, you can see the details of the Certificate as follows:
$ openssl x509 -noout -text -in server.crt

5. You should now have two files: server.key and server.crt. These can be used as follows in your
httpd.conf file:

SSLCertificateFile "/path/to/this/server.crt"
SSLCertificateKeyFile "/path/to/this/server.key"

The server.csr file is no longer needed.

How do I create and use my own Certificate Authority (CA)?

The short answer is to use the CA.sh or CA.pl script provided by OpenSSL. Unless you have a good reason not to,
you should use these for preference. If you cannot, you can create a self-signed certificate as follows:

1. Create a RSA private key for your server (will be Triple-DES encrypted and PEM formatted):
$ openssl genrsa -des3 -out server.key 2048

Please backup this server.key file and the pass-phrase you entered in a secure location. You can see the

details of this RSA private key by using the command:
$ openssl rsa -noout -text -in server.key

If necessary, you can also create a decrypted PEM version (not recommended) of this RSA private key with:

$ openssl rsa -in server.key -out server.key.unsecure

2. Create a self-signed certificate (X509 structure) with the RSA key you just created (output will be PEM
formatted):
$ openssl req -new -x509 -nodes -sha1 -days 365 -key server.key -out

server.crt -extensions usr cert
This signs the server CSR and results in a server.crt file.

You can see the details of this Certificate using:
$ openssl x509 -noout -text -in server.crt

How can I change the pass-phrase on my private key file?

You simply have to read it with the old pass-phrase and write it again, specifying the new pass-phrase. You can
accomplish this with the following commands:

$ openssl rsa -des3 -in server.key -out server.key.new
$ mv server.key.new server.key

The first time you’re asked for a PEM pass-phrase, you should enter the old pass-phrase. After that, you’ll be asked
again to enter a pass-phrase - this time, use the new pass-phrase. If you are asked to verify the pass-phrase, you’ll need
to enter the new pass-phrase a second time.

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 207

How can I get rid of the pass-phrase dialog at Apache startup time?

The reason this dialog pops up at startup and every re-start is that the RSA private key inside your server.key file is
stored in encrypted format for security reasons. The pass-phrase is needed to decrypt this file, so it can be read and
parsed. Removing the pass-phrase removes a layer of security from your server - proceed with caution!

1. Remove the encryption from the RSA private key (while keeping a backup copy of the original file):
$ cp server.key server.key.org

$ openssl rsa -in server.key.org -out server.key

2. Make sure the server.key file is only readable by root:
$ chmod 400 server.key

Now server.key contains an unencrypted copy of the key. If you point your server at this file, it will not prompt
you for a pass-phrase. HOWEVER, if anyone gets this key they will be able to impersonate you on the net. PLEASE
make sure that the permissions on this file are such that only root or the web server user can read it (preferably get
your web server to start as root but run as another user, and have the key readable only by root).

As an alternative approach you can use the “SSLPassPhraseDialog exec:/path/to/program” facility.
Bear in mind that this is neither more nor less secure, of course.

How do I verify that a private key matches its Certificate?

A private key contains a series of numbers. Two of these numbers form the "public key", the others are part of the
"private key". The "public key" bits are included when you generate a CSR, and subsequently form part of the
associated Certificate.

To check that the public key in your Certificate matches the public portion of your private key, you simply need to
compare these numbers. To view the Certificate and the key run the commands:

$ openssl x509 -noout -text -in server.crt
$ openssl rsa -noout -text -in server.key

The ‘modulus’ and the ‘public exponent’ portions in the key and the Certificate must match. As the public exponent
is usually 65537 and it’s difficult to visually check that the long modulus numbers are the same, you can use the
following approach:

$ openssl x509 -noout -modulus -in server.crt | openssl md5
$ openssl rsa -noout -modulus -in server.key | openssl md5

This leaves you with two rather shorter numbers to compare. It is, in theory, possible that these numbers may be the
same, without the modulus numbers being the same, but the chances of this are overwhelmingly remote.

Should you wish to check to which key or certificate a particular CSR belongs you can perform the same calculation
on the CSR as follows:

$ openssl req -noout -modulus -in server.csr | openssl md5

How can I convert a certificate from PEM to DER format?

The default certificate format for OpenSSL is PEM, which is simply Base64 encoded DER, with header and footer
lines. For some applications (e.g. Microsoft Internet Explorer) you need the certificate in plain DER format. You
can convert a PEM file cert.pem into the corresponding DER file cert.der using the following command: $
openssl x509 -in cert.pem -out cert.der -outform DER

208 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Why do browsers complain that they cannot verify my server certificate?

One reason this might happen is because your server certificate is signed by an intermediate CA. Various CAs, such
as Verisign or Thawte, have started signing certificates not with their root certificate but with intermediate certificates.

Intermediate CA certificates lie between the root CA certificate (which is installed in the browsers) and the server
certificate (which you installed on the server). In order for the browser to be able to traverse and verify the trust chain
from the server certificate to the root certificate it needs need to be given the intermediate certificates. The CAs should
be able to provide you such intermediate certificate packages that can be installed on the server.

You need to include those intermediate certificates with the SSLCERTIFICATECHAINFILE directive.

The SSL Protocol

• Why do I get lots of random SSL protocol errors under heavy server load?

• Why does my webserver have a higher load, now that it serves SSL encrypted traffic?

• Why do HTTPS connections to my server sometimes take up to 30 seconds to establish a connection?

• What SSL Ciphers are supported by mod ssl?

• Why do I get “no shared cipher” errors, when trying to use Anonymous Diffie-Hellman (ADH) ciphers?

• Why do I get a ’no shared ciphers’ error when connecting to my newly installed server?

• Why can’t I use SSL with name-based/non-IP-based virtual hosts?

• Is it possible to use Name-Based Virtual Hosting to identify different SSL virtual hosts?

• How do I get SSL compression working?

• When I use Basic Authentication over HTTPS the lock icon in Netscape browsers stays unlocked when the
dialog pops up. Does this mean the username/password is being sent unencrypted?

• Why do I get I/O errors when connecting via HTTPS to an Apache+mod ssl server with Microsoft Internet
Explorer (MSIE)?

• How do I enable TLS-SRP?

• Why do I get handshake failures with Java-based clients when using a certificate with more than 1024 bits?

Why do I get lots of random SSL protocol errors under heavy server load?

There can be a number of reasons for this, but the main one is problems with the SSL session Cache specified by the
SSLSESSIONCACHE directive. The DBM session cache is the most likely source of the problem, so using the SHM
session cache (or no cache at all) may help.

Why does my webserver have a higher load, now that it serves SSL encrypted traffic?

SSL uses strong cryptographic encryption, which necessitates a lot of number crunching. When you request a webpage
via HTTPS, everything (even the images) is encrypted before it is transferred. So increased HTTPS traffic leads to
load increases.

Why do HTTPS connections to my server sometimes take up to 30 seconds to establish a connection?

This is usually caused by a /dev/random device for SSLRANDOMSEED which blocks the read(2) call until enough
entropy is available to service the request. More information is available in the reference manual for the SSLRAN-
DOMSEED directive.

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 209

What SSL Ciphers are supported by mod ssl?

Usually, any SSL ciphers supported by the version of OpenSSL in use, are also supported by MOD SSL. Which ciphers
are available can depend on the way you built OpenSSL. Typically, at least the following ciphers are supported:

1. RC4 with SHA1

2. AES with SHA1

3. Triple-DES with SHA1

To determine the actual list of ciphers available, you should run the following:

$ openssl ciphers -v

Why do I get “no shared cipher” errors, when trying to use Anonymous Diffie-Hellman (ADH) ciphers?

By default, OpenSSL does not allow ADH ciphers, for security reasons. Please be sure you are aware of the potential
side-effects if you choose to enable these ciphers.

In order to use Anonymous Diffie-Hellman (ADH) ciphers, you must build OpenSSL with “-DSSL ALLOW ADH”,
and then add “ADH” into your SSLCIPHERSUITE.

Why do I get a ’no shared ciphers’ error when connecting to my newly installed server?

Either you have made a mistake with your SSLCIPHERSUITE directive (compare it with the pre-configured example
in extra/httpd-ssl.conf) or you chose to use DSA/DH algorithms instead of RSA when you generated your
private key and ignored or overlooked the warnings. If you have chosen DSA/DH, then your server cannot communi-
cate using RSA-based SSL ciphers (at least until you configure an additional RSA-based certificate/key pair). Modern
browsers like NS or IE can only communicate over SSL using RSA ciphers. The result is the "no shared ciphers"
error. To fix this, regenerate your server certificate/key pair, using the RSA algorithm.

Why can’t I use SSL with name-based/non-IP-based virtual hosts?

The reason is very technical, and a somewhat "chicken and egg" problem. The SSL protocol layer stays below the
HTTP protocol layer and encapsulates HTTP. When an SSL connection (HTTPS) is established Apache/mod ssl has
to negotiate the SSL protocol parameters with the client. For this, mod ssl has to consult the configuration of the
virtual server (for instance it has to look for the cipher suite, the server certificate, etc.). But in order to go to the
correct virtual server Apache has to know the Host HTTP header field. To do this, the HTTP request header has to
be read. This cannot be done before the SSL handshake is finished, but the information is needed in order to complete
the SSL handshake phase. See the next question for how to circumvent this issue.

Note that if you have a wildcard SSL certificate, or a certificate that has multiple hostnames on it using subjectAltName
fields, you can use SSL on name-based virtual hosts without further workarounds.

Is it possible to use Name-Based Virtual Hosting to identify different SSL virtual hosts?

Name-Based Virtual Hosting is a very popular method of identifying different virtual hosts. It allows you to use the
same IP address and the same port number for many different sites. When people move on to SSL, it seems natural to
assume that the same method can be used to have lots of different SSL virtual hosts on the same server.

210 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

It is possible, but only if using a 2.2.12 or later web server, built with 0.9.8j or later OpenSSL. This is because it
requires a feature that only the most recent revisions of the SSL specification added, called Server Name Indication
(SNI).

Note that if you have a wildcard SSL certificate, or a certificate that has multiple hostnames on it using subjectAltName
fields, you can use SSL on name-based virtual hosts without further workarounds.

The reason is that the SSL protocol is a separate layer which encapsulates the HTTP protocol. So the SSL session is
a separate transaction, that takes place before the HTTP session has begun. The server receives an SSL request on IP
address X and port Y (usually 443). Since the SSL request did not contain any Host: field, the server had no way to
decide which SSL virtual host to use. Usually, it just used the first one it found which matched the port and IP address
specified.

If you are using a version of the web server and OpenSSL that support SNI, though, and the client’s browser also
supports SNI, then the hostname is included in the original SSL request, and the web server can select the correct SSL
virtual host.

You can, of course, use Name-Based Virtual Hosting to identify many non-SSL virtual hosts (all on port 80, for
example) and then have a single SSL virtual host (on port 443). But if you do this, you must make sure to put the
non-SSL port number on the NameVirtualHost directive, e.g.

NameVirtualHost 192.168.1.1:80

Other workaround solutions include:

Using separate IP addresses for different SSL hosts. Using different port numbers for different SSL hosts.

How do I get SSL compression working?

Although SSL compression negotiation was defined in the specification of SSLv2 and TLS, it took until May 2004 for
RFC 3749 to define DEFLATE as a negotiable standard compression method.

OpenSSL 0.9.8 started to support this by default when compiled with the zlib option. If both the client and the
server support compression, it will be used. However, most clients still try to initially connect with an SSLv2 Hello.
As SSLv2 did not include an array of preferred compression algorithms in its handshake, compression cannot be
negotiated with these clients. If the client disables support for SSLv2, either an SSLv3 or TLS Hello may be sent,
depending on which SSL library is used, and compression may be set up. You can verify whether clients make use of
SSL compression by logging the %{SSL COMPRESS METHOD}x variable.

When I use Basic Authentication over HTTPS the lock icon in Netscape browsers stays unlocked when the
dialog pops up. Does this mean the username/password is being sent unencrypted?

No, the username/password is transmitted encrypted. The icon in Netscape browsers is not actually synchronized with
the SSL/TLS layer. It only toggles to the locked state when the first part of the actual webpage data is transferred, which
may confuse people. The Basic Authentication facility is part of the HTTP layer, which is above the SSL/TLS layer
in HTTPS. Before any HTTP data communication takes place in HTTPS, the SSL/TLS layer has already completed
its handshake phase, and switched to encrypted communication. So don’t be confused by this icon.

Why do I get I/O errors when connecting via HTTPS to an Apache+mod ssl server with older versions of
Microsoft Internet Explorer (MSIE)?

The first reason is that the SSL implementation in some MSIE versions has some subtle bugs related to the HTTP
keep-alive facility and the SSL close notify alerts on socket connection close. Additionally the interaction between
SSL and HTTP/1.1 features are problematic in some MSIE versions. You can work around these problems by forcing

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 211

Apache not to use HTTP/1.1, keep-alive connections or send the SSL close notify messages to MSIE clients. This can
be done by using the following directive in your SSL-aware virtual host section:

SetEnvIf User-Agent "MSIE [2-5]" \
nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0

Further, some MSIE versions have problems with particular ciphers. Unfortunately, it is not possible to implement a
MSIE-specific workaround for this, because the ciphers are needed as early as the SSL handshake phase. So a MSIE-
specific SETENVIF won’t solve these problems. Instead, you will have to make more drastic adjustments to the global
parameters. Before you decide to do this, make sure your clients really have problems. If not, do not make these
changes - they will affect all your clients, MSIE or otherwise.

How do I enable TLS-SRP?

TLS-SRP (Secure Remote Password key exchange for TLS, specified in RFC 5054) can supplement or replace certifi-
cates in authenticating an SSL connection. To use TLS-SRP, set the SSLSRPVERIFIERFILE directive to point to an
OpenSSL SRP verifier file. To create the verifier file, use the openssl tool:

openssl srp -srpvfile passwd.srpv -add username

After creating this file, specify it in the SSL server configuration:

SSLSRPVerifierFile /path/to/passwd.srpv

To force clients to use non-certificate TLS-SRP cipher suites, use the following directive:

SSLCipherSuite "!DSS:!aRSA:SRP"

Why do I get handshake failures with Java-based clients when using a certificate with more than 1024 bits?

Beginning with version 2.4.7, MOD SSL will use DH parameters which include primes with lengths of more than 1024
bits. Java 7 and earlier limit their support for DH prime sizes to a maximum of 1024 bits, however.

If your Java-based client aborts with exceptions such as java.lang.RuntimeException: Could not
generate DH keypair and java.security.InvalidAlgorithmParameterException: Prime
size must be multiple of 64, and can only range from 512 to 1024 (inclusive),
and httpd logs tlsv1 alert internal error (SSL alert number 80) (at LOGLEVEL info or
higher), you can either rearrange mod ssl’s cipher list with SSLCIPHERSUITE (possibly in conjunction with
SSLHONORCIPHERORDER), or you can use custom DH parameters with a 1024-bit prime, which will always have
precedence over any of the built-in DH parameters.

To generate custom DH parameters, use the openssl dhparam 1024 command. Alternatively, you can use the
following standard 1024-bit DH parameters from RFC 24097, section 6.2:

-----BEGIN DH PARAMETERS-----
MIGHAoGBAP//////////yQ/aoiFowjTExmKLgNwc0SkCTgiKZ8x0Agu+pjsTmyJR
Sgh5jjQE3e+VGbPNOkMbMCsKbfJfFDdP4TVtbVHCReSFtXZiXn7G9ExC6aY37WsL
/1y29Aa37e44a/taiZ+lrp8kEXxLH+ZJKGZR7OZTgf//////////AgEC
-----END DH PARAMETERS-----

7http://www.ietf.org/rfc/rfc2409.txt

http://www.ietf.org/rfc/rfc2409.txt

212 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Add the custom parameters including the "BEGIN DH PARAMETERS" and "END DH PARAMETERS" lines to
the end of the first certificate file you have configured using the SSLCERTIFICATEFILE directive.

mod ssl Support

• What information resources are available in case of mod ssl problems?

• What support contacts are available in case of mod ssl problems?

• What information should I provide when writing a bug report?

• I had a core dump, can you help me?

• How do I get a backtrace, to help find the reason for my core dump?

What information resources are available in case of mod ssl problems?

The following information resources are available. In case of problems you should search here first.

Answers in the User Manual’s F.A.Q. List (this) http://httpd.apache.org/docs/2.4/ssl/ssl faq.html8

First check the F.A.Q. (this text). If your problem is a common one, it may have been answered several times
before, and been included in this doc.

What support contacts are available in case of mod ssl problems?

The following lists all support possibilities for mod ssl, in order of preference. Please go through these possibilities in
this order - don’t just pick the one you like the look of.

1. Send a Problem Report to the Apache httpd Users Support Mailing List

users@httpd.apache.org9

This is the second way of submitting your problem report. Again, you must subscribe to the list first, but you
can then easily discuss your problem with the whole Apache httpd user community.

2. Write a Problem Report in the Bug Database

http://httpd.apache.org/bug report.html10

This is the last way of submitting your problem report. You should only do this if you’ve already posted to the
mailing lists, and had no success. Please follow the instructions on the above page carefully.

What information should I provide when writing a bug report?

You should always provide at least the following information:

Apache httpd and OpenSSL version information The Apache version can be determined by running httpd -v.
The OpenSSL version can be determined by running openssl version. Alternatively, if you have Lynx
installed, you can run the command lynx -mime header http://localhost/ | grep Server
to gather this information in a single step.

8http://httpd.apache.org/docs/2.4/ssl/ssl faq.html
9mailto:users@httpd.apache.org

10http://httpd.apache.org/bug report.html

http://httpd.apache.org/docs/2.4/ssl/ssl_faq.html
mailto:users@httpd.apache.org
http://httpd.apache.org/bug_report.html

5.5. SSL/TLS STRONG ENCRYPTION: FAQ 213

The details on how you built and installed Apache httpd and OpenSSL For this you can provide a logfile of your
terminal session which shows the configuration and install steps. If this is not possible, you should at least
provide the configure command line you used.

In case of core dumps please include a Backtrace If your Apache httpd dumps its core, please attach a stack-frame
“backtrace” (see below for information on how to get this). This information is required in order to find a reason
for your core dump.

A detailed description of your problem Don’t laugh, we really mean it! Many problem reports don’t include a
description of what the actual problem is. Without this, it’s very difficult for anyone to help you. So, it’s in your
own interest (you want the problem be solved, don’t you?) to include as much detail as possible, please. Of
course, you should still include all the essentials above too.

I had a core dump, can you help me?

In general no, at least not unless you provide more details about the code location where Apache dumped core. What
is usually always required in order to help you is a backtrace (see next question). Without this information it is mostly
impossible to find the problem and help you in fixing it.

How do I get a backtrace, to help find the reason for my core dump?

Following are the steps you will need to complete, to get a backtrace:

1. Make sure you have debugging symbols available, at least in Apache. On platforms where you use GCC/GDB,
you will have to build Apache+mod ssl with “OPTIM="-g -ggdb3"” to get this. On other platforms at least
“OPTIM="-g"” is needed.

2. Start the server and try to reproduce the core-dump. For this you may want to use a directive like
“CoreDumpDirectory /tmp” to make sure that the core-dump file can be written. This should result
in a /tmp/core or /tmp/httpd.core file. If you don’t get one of these, try running your server under a
non-root UID. Many modern kernels do not allow a process to dump core after it has done a setuid() (unless
it does an exec()) for security reasons (there can be privileged information left over in memory). If necessary,
you can run /path/to/httpd -X manually to force Apache to not fork.

3. Analyze the core-dump. For this, run gdb /path/to/httpd /tmp/httpd.core or a similar command.
In GDB, all you have to do then is to enter bt, and voila, you get the backtrace. For other debuggers consult
your local debugger manual.

214 CHAPTER 5. APACHE SSL/TLS ENCRYPTION

Chapter 6

Guides, Tutorials, and HowTos

215

216 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

6.1 How-To / Tutorials

How-To / Tutorials

Authentication and Authorization Authentication is any process by which you verify that someone is who they
claim they are. Authorization is any process by which someone is allowed to be where they want to go, or to
have information that they want to have.

See: Authentication, Authorization (p. 217)

Access Control Access control refers to the process of restricting, or granting access to a resource based on arbitrary
criteria. There are a variety of different ways that this can be accomplished.

See: Access Control (p. 224)

Dynamic Content with CGI The CGI (Common Gateway Interface) defines a way for a web server to interact with
external content-generating programs, which are often referred to as CGI programs or CGI scripts. It is a simple
way to put dynamic content on your web site. This document will be an introduction to setting up CGI on your
Apache web server, and getting started writing CGI programs.

See: CGI: Dynamic Content (p. 226)

.htaccess files .htaccess files provide a way to make configuration changes on a per-directory basis. A file,
containing one or more configuration directives, is placed in a particular document directory, and the directives
apply to that directory, and all subdirectories thereof.

See: .htaccess files (p. 239)

Introduction to Server Side Includes SSI (Server Side Includes) are directives that are placed in HTML pages, and
evaluated on the server while the pages are being served. They let you add dynamically generated content to an
existing HTML page, without having to serve the entire page via a CGI program, or other dynamic technology.

See: Server Side Includes (SSI) (p. 233)

Per-user web directories On systems with multiple users, each user can be permitted to have a web site in their home
directory using the USERDIR directive. Visitors to a URL http://example.com/˜username/ will get
content out of the home directory of the user "username", out of the subdirectory specified by the USERDIR
directive.

See: User web directories (public html) (p. 245)

6.2. AUTHENTICATION AND AUTHORIZATION 217

6.2 Authentication and Authorization

Authentication is any process by which you verify that someone is who they claim they are. Authorization is any
process by which someone is allowed to be where they want to go, or to have information that they want to have.

For general access control, see the Access Control How-To (p. 224) .

Related Modules and Directives

There are three types of modules involved in the authentication and authorization process. You will usually need to
choose at least one module from each group.

• Authentication type (see the AUTHTYPE directive)

– MOD AUTH BASIC

– MOD AUTH DIGEST

• Authentication provider (see the AUTHBASICPROVIDER and AUTHDIGESTPROVIDER directives)

– MOD AUTHN ANON

– MOD AUTHN DBD

– MOD AUTHN DBM

– MOD AUTHN FILE

– MOD AUTHNZ LDAP

– MOD AUTHN SOCACHE

• Authorization (see the REQUIRE directive)

– MOD AUTHNZ LDAP

– MOD AUTHZ DBD

– MOD AUTHZ DBM

– MOD AUTHZ GROUPFILE

– MOD AUTHZ HOST

– MOD AUTHZ OWNER

– MOD AUTHZ USER

In addition to these modules, there are also MOD AUTHN CORE and MOD AUTHZ CORE. These modules implement
core directives that are core to all auth modules.

The module MOD AUTHNZ LDAP is both an authentication and authorization provider. The module
MOD AUTHZ HOST provides authorization and access control based on hostname, IP address or characteristics of
the request, but is not part of the authentication provider system. For backwards compatibility with the mod access,
there is a new module MOD ACCESS COMPAT.

You probably also want to take a look at the Access Control (p. 224) howto, which discusses the various ways to
control access to your server.

Introduction

If you have information on your web site that is sensitive or intended for only a small group of people, the techniques
in this article will help you make sure that the people that see those pages are the people that you wanted to see them.

This article covers the "standard" way of protecting parts of your web site that most of you are going to use.

218 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

=⇒Note:
If your data really needs to be secure, consider using MOD SSL in addition to any authentica-
tion.

The Prerequisites

The directives discussed in this article will need to go either in your main server configuration file (typically in a
<DIRECTORY> section), or in per-directory configuration files (.htaccess files).

If you plan to use .htaccess files, you will need to have a server configuration that permits putting authentication
directives in these files. This is done with the ALLOWOVERRIDE directive, which specifies which directives, if any,
may be put in per-directory configuration files.

Since we’re talking here about authentication, you will need an ALLOWOVERRIDE directive like the following:

AllowOverride AuthConfig

Or, if you are just going to put the directives directly in your main server configuration file, you will of course need to
have write permission to that file.

And you’ll need to know a little bit about the directory structure of your server, in order to know where some files are
kept. This should not be terribly difficult, and I’ll try to make this clear when we come to that point.

You will also need to make sure that the modules MOD AUTHN CORE and MOD AUTHZ CORE have either been built
into the httpd binary or loaded by the httpd.conf configuration file. Both of these modules provide core directives and
functionality that are critical to the configuration and use of authentication and authorization in the web server.

Getting it working

Here’s the basics of password protecting a directory on your server.

First, you need to create a password file. Exactly how you do this will vary depending on what authentication provider
you have chosen. More on that later. To start with, we’ll use a text password file.

This file should be placed somewhere not accessible from the web. This is so that folks cannot download the password
file. For example, if your documents are served out of /usr/local/apache/htdocs, you might want to put the
password file(s) in /usr/local/apache/passwd.

To create the file, use the htpasswd utility that came with Apache. This will be located in the bin directory of
wherever you installed Apache. If you have installed Apache from a third-party package, it may be in your execution
path.

To create the file, type:

htpasswd -c /usr/local/apache/passwd/passwords rbowen

htpasswd will ask you for the password, and then ask you to type it again to confirm it:

htpasswd -c /usr/local/apache/passwd/passwords rbowen
New password: mypassword
Re-type new password: mypassword

Adding password for user rbowen

6.2. AUTHENTICATION AND AUTHORIZATION 219

If htpasswd is not in your path, of course you’ll have to type the full path to the file to get it to run. With a default
installation, it’s located at /usr/local/apache2/bin/htpasswd

Next, you’ll need to configure the server to request a password and tell the server which users are allowed access.
You can do this either by editing the httpd.conf file or using an .htaccess file. For example, if you wish
to protect the directory /usr/local/apache/htdocs/secret, you can use the following directives, either
placed in the file /usr/local/apache/htdocs/secret/.htaccess, or placed in httpd.conf inside a
<Directory "/usr/local/apache/htdocs/secret"> section.

AuthType Basic
AuthName "Restricted Files"
(Following line optional)
AuthBasicProvider file
AuthUserFile "/usr/local/apache/passwd/passwords"
Require user rbowen

Let’s examine each of those directives individually. The AUTHTYPE directive selects that method that is used to au-
thenticate the user. The most common method is Basic, and this is the method implemented by MOD AUTH BASIC.
It is important to be aware, however, that Basic authentication sends the password from the client to the server un-
encrypted. This method should therefore not be used for highly sensitive data, unless accompanied by MOD SSL.
Apache supports one other authentication method: AuthType Digest. This method is implemented by
MOD AUTH DIGEST and was intended to be more secure. This is no longer the case and the connection should be
encrypted with MOD SSL instead.

The AUTHNAME directive sets the Realm to be used in the authentication. The realm serves two major functions.
First, the client often presents this information to the user as part of the password dialog box. Second, it is used by the
client to determine what password to send for a given authenticated area.

So, for example, once a client has authenticated in the "Restricted Files" area, it will automatically retry the
same password for any area on the same server that is marked with the "Restricted Files" Realm. Therefore,
you can prevent a user from being prompted more than once for a password by letting multiple restricted areas share
the same realm. Of course, for security reasons, the client will always need to ask again for the password whenever
the hostname of the server changes.

The AUTHBASICPROVIDER is, in this case, optional, since file is the default value for this directive. You’ll
need to use this directive if you are choosing a different source for authentication, such as MOD AUTHN DBM or
MOD AUTHN DBD.

The AUTHUSERFILE directive sets the path to the password file that we just created with htpasswd. If you have a
large number of users, it can be quite slow to search through a plain text file to authenticate the user on each request.
Apache also has the ability to store user information in fast database files. The MOD AUTHN DBM module provides
the AUTHDBMUSERFILE directive. These files can be created and manipulated with the dbmmanage and htdbm
programs. Many other types of authentication options are available from third party modules in the Apache Modules
Database1.

Finally, the REQUIRE directive provides the authorization part of the process by setting the user that is allowed to
access this region of the server. In the next section, we discuss various ways to use the REQUIRE directive.

Letting more than one person in

The directives above only let one person (specifically someone with a username of rbowen) into the directory. In
most cases, you’ll want to let more than one person in. This is where the AUTHGROUPFILE comes in.

1http://modules.apache.org/

http://modules.apache.org/

220 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

If you want to let more than one person in, you’ll need to create a group file that associates group names with a list of
users in that group. The format of this file is pretty simple, and you can create it with your favorite editor. The contents
of the file will look like this:

GroupName: rbowen dpitts sungo rshersey

That’s just a list of the members of the group in a long line separated by spaces.

To add a user to your already existing password file, type:

htpasswd /usr/local/apache/passwd/passwords dpitts

You’ll get the same response as before, but it will be appended to the existing file, rather than creating a new file. (It’s
the -c that makes it create a new password file).

Now, you need to modify your .htaccess file or <DIRECTORY> block to look like the following:

AuthType Basic
AuthName "By Invitation Only"
Optional line:
AuthBasicProvider file
AuthUserFile "/usr/local/apache/passwd/passwords"
AuthGroupFile "/usr/local/apache/passwd/groups"
Require group GroupName

Now, anyone that is listed in the group GroupName, and has an entry in the password file, will be let in, if they
type the correct password.

There’s another way to let multiple users in that is less specific. Rather than creating a group file, you can just use the
following directive:

Require valid-user

Using that rather than the Require user rbowen line will allow anyone in that is listed in the password file, and
who correctly enters their password.

Possible problems

Because of the way that Basic authentication is specified, your username and password must be verified every time
you request a document from the server. This is even if you’re reloading the same page, and for every image on the
page (if they come from a protected directory). As you can imagine, this slows things down a little. The amount that
it slows things down is proportional to the size of the password file, because it has to open up that file, and go down
the list of users until it gets to your name. And it has to do this every time a page is loaded.

A consequence of this is that there’s a practical limit to how many users you can put in one password file. This limit
will vary depending on the performance of your particular server machine, but you can expect to see slowdowns once
you get above a few hundred entries, and may wish to consider a different authentication method at that time.

6.2. AUTHENTICATION AND AUTHORIZATION 221

Alternate password storage

Because storing passwords in plain text files has the above problems, you may wish to store your passwords somewhere
else, such as in a database.

MOD AUTHN DBM and MOD AUTHN DBD are two modules which make this possible. Rather than selecting
AUTHBASICPROVIDER file, instead you can choose dbm or dbd as your storage format.

To select a dbm file rather than a text file, for example:

<Directory "/www/docs/private">
AuthName "Private"
AuthType Basic
AuthBasicProvider dbm
AuthDBMUserFile "/www/passwords/passwd.dbm"
Require valid-user

</Directory>

Other options are available. Consult the MOD AUTHN DBM documentation for more details.

Using multiple providers

With the introduction of the new provider based authentication and authorization architecture, you are no longer locked
into a single authentication or authorization method. In fact any number of the providers can be mixed and matched to
provide you with exactly the scheme that meets your needs. In the following example, both the file and LDAP based
authentication providers are being used.

<Directory "/www/docs/private">
AuthName "Private"
AuthType Basic
AuthBasicProvider file ldap
AuthUserFile "/usr/local/apache/passwd/passwords"
AuthLDAPURL ldap://ldaphost/o=yourorg
Require valid-user

</Directory>

In this example the file provider will attempt to authenticate the user first. If it is unable to authenticate the user, the
LDAP provider will be called. This allows the scope of authentication to be broadened if your organization implements
more than one type of authentication store. Other authentication and authorization scenarios may include mixing one
type of authentication with a different type of authorization. For example, authenticating against a password file yet
authorizing against an LDAP directory.

Just as multiple authentication providers can be implemented, multiple authorization methods can also be used. In this
example both file group authorization as well as LDAP group authorization is being used.

<Directory "/www/docs/private">
AuthName "Private"
AuthType Basic
AuthBasicProvider file
AuthUserFile "/usr/local/apache/passwd/passwords"
AuthLDAPURL ldap://ldaphost/o=yourorg
AuthGroupFile "/usr/local/apache/passwd/groups"
Require group GroupName
Require ldap-group cn=mygroup,o=yourorg

</Directory>

222 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

To take authorization a little further, authorization container directives such as <REQUIREALL> and <REQUIRE-
ANY> allow logic to be applied so that the order in which authorization is handled can be completely controlled
through the configuration. See Authorization Containers (p. 487) for an example of how they may be applied.

Beyond just authorization

The way that authorization can be applied is now much more flexible than just a single check against a single data
store. Ordering, logic and choosing how authorization will be done is now possible.

Applying logic and ordering

Controlling how and in what order authorization will be applied has been a bit of a mystery in the past. In Apache
2.2 a provider-based authentication mechanism was introduced to decouple the actual authentication process from
authorization and supporting functionality. One of the side benefits was that authentication providers could be con-
figured and called in a specific order which didn’t depend on the load order of the auth module itself. This same
provider based mechanism has been brought forward into authorization as well. What this means is that the REQUIRE
directive not only specifies which authorization methods should be used, it also specifies the order in which they are
called. Multiple authorization methods are called in the same order in which the REQUIRE directives appear in the
configuration.

With the introduction of authorization container directives such as <REQUIREALL> and <REQUIREANY>, the
configuration also has control over when the authorization methods are called and what criteria determines when
access is granted. See Authorization Containers (p. 487) for an example of how they may be used to express complex
authorization logic.

By default all REQUIRE directives are handled as though contained within a <REQUIREANY> container directive. In
other words, if any of the specified authorization methods succeed, then authorization is granted.

Using authorization providers for access control

Authentication by username and password is only part of the story. Frequently you want to let people in based on
something other than who they are. Something such as where they are coming from.

The authorization providers all, env, host and ip let you allow or deny access based on other host based criteria
such as host name or ip address of the machine requesting a document.

The usage of these providers is specified through the REQUIRE directive. This directive registers the authorization
providers that will be called during the authorization stage of the request processing. For example:

Require ip address

where address is an IP address (or a partial IP address) or:

Require host domain_name

where domain name is a fully qualified domain name (or a partial domain name); you may provide multiple addresses
or domain names, if desired.

For example, if you have someone spamming your message board, and you want to keep them out, you could do the
following:

<RequireAll>
Require all granted
Require not ip 10.252.46.165

</RequireAll>

6.2. AUTHENTICATION AND AUTHORIZATION 223

Visitors coming from that address will not be able to see the content covered by this directive. If, instead, you have a
machine name, rather than an IP address, you can use that.

<RequireAll>
Require all granted
Require not host host.example.com

</RequireAll>

And, if you’d like to block access from an entire domain, you can specify just part of an address or domain name:

<RequireAll>
Require all granted
Require not ip 192.168.205
Require not host phishers.example.com moreidiots.example
Require not host ke

</RequireAll>

Using <REQUIREALL> with multiple <REQUIRE> directives, each negated with not, will only allow access, if all
of negated conditions are true. In other words, access will be blocked, if any of the negated conditions fails.

Access Control backwards compatibility

One of the side effects of adopting a provider based mechanism for authentication is that the previous access control
directives ORDER, ALLOW, DENY and SATISFY are no longer needed. However to provide backwards compatibility
for older configurations, these directives have been moved to the MOD ACCESS COMPAT module.

Authentication Caching

There may be times when authentication puts an unacceptable load on a provider or on your network. This is most
likely to affect users of MOD AUTHN DBD (or third-party/custom providers). To deal with this, HTTPD 2.3/2.4
introduces a new caching provider MOD AUTHN SOCACHE to cache credentials and reduce the load on the origin
provider(s).

This may offer a substantial performance boost to some users.

More information

You should also read the documentation for MOD AUTH BASIC and MOD AUTHZ HOST which contain some more
information about how this all works. The directive <AUTHNPROVIDERALIAS> can also help in simplifying certain
authentication configurations.

The various ciphers supported by Apache for authentication data are explained in Password Encryptions (p. 345) .

And you may want to look at the Access Control (p. 224) howto, which discusses a number of related topics.

224 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

6.3 Access Control

Access control refers to any means of controlling access to any resource. This is separate from authentication and
authorization (p. 217) .

Related Modules and Directives

Access control can be done by several different modules. The most important of these are MOD AUTHZ CORE and
MOD AUTHZ HOST. Also discussed in this document is access control using MOD REWRITE.

Access control by host

If you wish to restrict access to portions of your site based on the host address of your visitors, this is most easily done
using MOD AUTHZ HOST.

The REQUIRE provides a variety of different ways to allow or deny access to resources. In conjunction with the
REQUIREALL, REQUIREANY, and REQUIRENONE directives, these requirements may be combined in arbitrarily
complex ways, to enforce whatever your access policy happens to be.

! The ALLOW, DENY, and ORDER directives, provided by MOD ACCESS COMPAT, are depre-
cated and will go away in a future version. You should avoid using them, and avoid outdated
tutorials recommending their use.

The usage of these directives is:

Require host address
Require ip ip.address

In the first form, address is a fully qualified domain name (or a partial domain name); you may provide multiple
addresses or domain names, if desired.

In the second form, ip.address is an IP address, a partial IP address, a network/netmask pair, or a network/nnn CIDR
specification. Either IPv4 or IPv6 addresses may be used.

See the mod authz host documentation (p. 504) for further examples of this syntax.

You can insert not to negate a particular requirement. Note, that since a not is a negation of a value, it cannot be
used by itself to allow or deny a request, as not true does not constitute false. Thus, to deny a visit using a negation,
the block must have one element that evaluates as true or false. For example, if you have someone spamming your
message board, and you want to keep them out, you could do the following:

<RequireAll>
Require all granted
Require not ip 10.252.46.165

</RequireAll>

Visitors coming from that address (10.252.46.165) will not be able to see the content covered by this directive.
If, instead, you have a machine name, rather than an IP address, you can use that.

Require not host host.example.com

And, if you’d like to block access from an entire domain, you can specify just part of an address or domain name:

6.3. ACCESS CONTROL 225

Require not ip 192.168.205
Require not host phishers.example.com moreidiots.example
Require not host gov

Use of the REQUIREALL, REQUIREANY, and REQUIRENONE directives may be used to enforce more complex sets
of requirements.

Access control by arbitrary variables

Using the <IF>, you can allow or deny access based on arbitrary environment variables or request header values. For
example, to deny access based on user-agent (the browser type) you might do the following:

<If "%{HTTP_USER_AGENT} == ’BadBot’">
Require all denied

</If>

Using the REQUIRE expr syntax, this could also be written as:

Require expr %{HTTP_USER_AGENT} != ’BadBot’

=⇒Warning:
Access control by User-Agent is an unreliable technique, since the User-Agent header
can be set to anything at all, at the whim of the end user.

See the expressions document (p. 89) for a further discussion of what expression syntaxes and variables are available
to you.

Access control with mod rewrite

The [F] REWRITERULE flag causes a 403 Forbidden response to be sent. Using this, you can deny access to a
resource based on arbitrary criteria.

For example, if you wish to block access to a resource between 8pm and 6am, you can do this using MOD REWRITE.

RewriteEngine On
RewriteCond "%{TIME_HOUR}" ">=20" [OR]
RewriteCond "%{TIME_HOUR}" "<07"
RewriteRule "ˆ/fridge" "-" [F]

This will return a 403 Forbidden response for any request after 8pm or before 7am. This technique can be used for any
criteria that you wish to check. You can also redirect, or otherwise rewrite these requests, if that approach is preferred.

The <IF> directive, added in 2.4, replaces many things that MOD REWRITE has traditionally been used to do, and
you should probably look there first before resorting to mod rewrite.

More information

The expression engine (p. 89) gives you a great deal of power to do a variety of things based on arbitrary server
variables, and you should consult that document for more detail.

Also, you should read the MOD AUTHZ CORE documentation for examples of combining multiple access requirements
and specifying how they interact.

See also the Authentication and Authorization (p. 217) howto.

226 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

6.4 Apache Tutorial: Dynamic Content with CGI

Introduction

Related Modules
MOD ALIAS
MOD CGI

Related Directives
ADDHANDLER
OPTIONS
SCRIPTALIAS

The CGI (Common Gateway Interface) defines a way for a web server to interact with external content-generating
programs, which are often referred to as CGI programs or CGI scripts. It is the simplest, and most common, way to
put dynamic content on your web site. This document will be an introduction to setting up CGI on your Apache web
server, and getting started writing CGI programs.

Configuring Apache to permit CGI

In order to get your CGI programs to work properly, you’ll need to have Apache configured to permit CGI execution.
There are several ways to do this.

! Note: If Apache has been built with shared module support you need to ensure that the module
is loaded; in your httpd.conf you need to make sure the LOADMODULE directive has not
been commented out. A correctly configured directive may look like this:

LoadModule cgi_module modules/mod_cgi.so

ScriptAlias

The SCRIPTALIAS

directive tells Apache that a particular directory is set aside for CGI programs. Apache will assume that every file in
this directory is a CGI program, and will attempt to execute it, when that particular resource is requested by a client.

The SCRIPTALIAS directive looks like:

ScriptAlias "/cgi-bin/" "/usr/local/apache2/cgi-bin/"

The example shown is from your default httpd.conf configuration file, if you installed Apache in the default
location. The SCRIPTALIAS directive is much like the ALIAS directive, which defines a URL prefix that is to
mapped to a particular directory. ALIAS and SCRIPTALIAS are usually used for directories that are outside of
the DOCUMENTROOT directory. The difference between ALIAS and SCRIPTALIAS is that SCRIPTALIAS has the
added meaning that everything under that URL prefix will be considered a CGI program. So, the example above
tells Apache that any request for a resource beginning with /cgi-bin/ should be served from the directory
/usr/local/apache2/cgi-bin/, and should be treated as a CGI program.

For example, if the URL http://www.example.com/cgi-bin/test.pl is requested, Apache will attempt
to execute the file /usr/local/apache2/cgi-bin/test.pl and return the output. Of course, the file will
have to exist, and be executable, and return output in a particular way, or Apache will return an error message.

CGI outside of ScriptAlias directories

CGI programs are often restricted to SCRIPTALIAS’ed directories for security reasons. In this way, administrators can
tightly control who is allowed to use CGI programs. However, if the proper security precautions are taken, there is no

6.4. APACHE TUTORIAL: DYNAMIC CONTENT WITH CGI 227

reason why CGI programs cannot be run from arbitrary directories. For example, you may wish to let users have web
content in their home directories with the USERDIR directive. If they want to have their own CGI programs, but don’t
have access to the main cgi-bin directory, they will need to be able to run CGI programs elsewhere.

There are two steps to allowing CGI execution in an arbitrary directory. First, the cgi-script handler must be
activated using the ADDHANDLER or SETHANDLER directive. Second, ExecCGI must be specified in the OPTIONS
directive.

Explicitly using Options to permit CGI execution

You could explicitly use the OPTIONS directive, inside your main server configuration file, to specify that CGI execu-
tion was permitted in a particular directory:

<Directory "/usr/local/apache2/htdocs/somedir">
Options +ExecCGI

</Directory>

The above directive tells Apache to permit the execution of CGI files. You will also need to tell the server what files
are CGI files. The following ADDHANDLER directive tells the server to treat all files with the cgi or pl extension as
CGI programs:

AddHandler cgi-script .cgi .pl

.htaccess files

The .htaccess tutorial (p. 239) shows how to activate CGI programs if you do not have access to httpd.conf.

User Directories

To allow CGI program execution for any file ending in .cgi in users’ directories, you can use the following configu-
ration.

<Directory "/home/*/public_html">
Options +ExecCGI
AddHandler cgi-script .cgi

</Directory>

If you wish designate a cgi-bin subdirectory of a user’s directory where everything will be treated as a CGI program,
you can use the following.

<Directory "/home/*/public_html/cgi-bin">
Options ExecCGI
SetHandler cgi-script

</Directory>

Writing a CGI program

There are two main differences between “regular” programming, and CGI programming.

First, all output from your CGI program must be preceded by a MIME-type header. This is HTTP header that tells the
client what sort of content it is receiving. Most of the time, this will look like:

228 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Content-type: text/html

Secondly, your output needs to be in HTML, or some other format that a browser will be able to display. Most of
the time, this will be HTML, but occasionally you might write a CGI program that outputs a gif image, or other
non-HTML content.

Apart from those two things, writing a CGI program will look a lot like any other program that you might write.

Your first CGI program

The following is an example CGI program that prints one line to your browser. Type in the following, save it to a file
called first.pl, and put it in your cgi-bin directory.

#!/usr/bin/perl
print "Content-type: text/html\n\n";
print "Hello, World.";

Even if you are not familiar with Perl, you should be able to see what is happening here. The first line tells Apache (or
whatever shell you happen to be running under) that this program can be executed by feeding the file to the interpreter
found at the location /usr/bin/perl. The second line prints the content-type declaration we talked about, followed
by two carriage-return newline pairs. This puts a blank line after the header, to indicate the end of the HTTP headers,
and the beginning of the body. The third line prints the string "Hello, World.". And that’s the end of it.

If you open your favorite browser and tell it to get the address

http://www.example.com/cgi-bin/first.pl

or wherever you put your file, you will see the one line Hello, World. appear in your browser window. It’s not
very exciting, but once you get that working, you’ll have a good chance of getting just about anything working.

But it’s still not working!

There are four basic things that you may see in your browser when you try to access your CGI program from the web:

The output of your CGI program Great! That means everything worked fine. If the output is correct, but the
browser is not processing it correctly, make sure you have the correct Content-Type set in your CGI pro-
gram.

The source code of your CGI program or a "POST Method Not Allowed" message That means that you have
not properly configured Apache to process your CGI program. Reread the section on configuring Apache and
try to find what you missed.

A message starting with "Forbidden" That means that there is a permissions problem. Check the Apache error log
and the section below on file permissions.

A message saying "Internal Server Error" If you check the Apache error log, you will probably find that it says
"Premature end of script headers", possibly along with an error message generated by your CGI program. In
this case, you will want to check each of the below sections to see what might be preventing your CGI program
from emitting the proper HTTP headers.

6.4. APACHE TUTORIAL: DYNAMIC CONTENT WITH CGI 229

File permissions

Remember that the server does not run as you. That is, when the server starts up, it is running with the permissions of
an unprivileged user - usually nobody, or www - and so it will need extra permissions to execute files that are owned
by you. Usually, the way to give a file sufficient permissions to be executed by nobody is to give everyone execute
permission on the file:

chmod a+x first.pl

Also, if your program reads from, or writes to, any other files, those files will need to have the correct permissions to
permit this.

Path information and environment

When you run a program from your command line, you have certain information that is passed to the shell without you
thinking about it. For example, you have a PATH, which tells the shell where it can look for files that you reference.

When a program runs through the web server as a CGI program, it may not have the same PATH. Any programs that
you invoke in your CGI program (like sendmail, for example) will need to be specified by a full path, so that the
shell can find them when it attempts to execute your CGI program.

A common manifestation of this is the path to the script interpreter (often perl) indicated in the first line of your CGI
program, which will look something like:

#!/usr/bin/perl

Make sure that this is in fact the path to the interpreter.

! When editing CGI scripts on Windows, end-of-line characters may be appended to the inter-
preter path. Ensure that files are then transferred to the server in ASCII mode. Failure to
do so may result in "Command not found" warnings from the OS, due to the unrecognized
end-of-line character being interpreted as a part of the interpreter filename.

Missing environment variables

If your CGI program depends on non-standard environment variables, you will need to assure that those variables are
passed by Apache.

When you miss HTTP headers from the environment, make sure they are formatted according to RFC 26162, section
4.2: Header names must start with a letter, followed only by letters, numbers or hyphen. Any header violating this rule
will be dropped silently.

Program errors

Most of the time when a CGI program fails, it’s because of a problem with the program itself. This is particularly true
once you get the hang of this CGI stuff, and no longer make the above two mistakes. The first thing to do is to make
sure that your program runs from the command line before testing it via the web server. For example, try:

cd /usr/local/apache2/cgi-bin

./first.pl

2http://tools.ietf.org/html/rfc2616

http://tools.ietf.org/html/rfc2616

230 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

(Do not call the perl interpreter. The shell and Apache should find the interpreter using the path information on the
first line of the script.)

The first thing you see written by your program should be a set of HTTP headers, including the Content-Type, fol-
lowed by a blank line. If you see anything else, Apache will return the Premature end of script headers
error if you try to run it through the server. See Writing a CGI program above for more details.

Error logs

The error logs are your friend. Anything that goes wrong generates message in the error log. You should always look
there first. If the place where you are hosting your web site does not permit you access to the error log, you should
probably host your site somewhere else. Learn to read the error logs, and you’ll find that almost all of your problems
are quickly identified, and quickly solved.

Suexec

The suexec (p. 105) support program allows CGI programs to be run under different user permissions, depending on
which virtual host or user home directory they are located in. Suexec has very strict permission checking, and any
failure in that checking will result in your CGI programs failing with Premature end of script headers.

To check if you are using suexec, run apachectl -V and check for the location of SUEXEC BIN. If Apache finds
an suexec binary there on startup, suexec will be activated.

Unless you fully understand suexec, you should not be using it. To disable suexec, simply remove (or rename) the
suexec binary pointed to by SUEXEC BIN and then restart the server. If, after reading about suexec (p. 105) , you
still wish to use it, then run suexec -V to find the location of the suexec log file, and use that log file to find what
policy you are violating.

What’s going on behind the scenes?

As you become more advanced in CGI programming, it will become useful to understand more about what’s happening
behind the scenes. Specifically, how the browser and server communicate with one another. Because although it’s all
very well to write a program that prints "Hello, World.", it’s not particularly useful.

Environment variables

Environment variables are values that float around you as you use your computer. They are useful things like your
path (where the computer searches for the actual file implementing a command when you type it), your username,
your terminal type, and so on. For a full list of your normal, every day environment variables, type env at a command
prompt.

During the CGI transaction, the server and the browser also set environment variables, so that they can communicate
with one another. These are things like the browser type (Netscape, IE, Lynx), the server type (Apache, IIS, WebSite),
the name of the CGI program that is being run, and so on.

These variables are available to the CGI programmer, and are half of the story of the client-server communication.
The complete list of required variables is at Common Gateway Interface RFC3.

This simple Perl CGI program will display all of the environment variables that are being passed around. Two similar
programs are included in the cgi-bin

3http://www.ietf.org/rfc/rfc3875

http://www.ietf.org/rfc/rfc3875

6.4. APACHE TUTORIAL: DYNAMIC CONTENT WITH CGI 231

directory of the Apache distribution. Note that some variables are required, while others are optional, so you may see
some variables listed that were not in the official list. In addition, Apache provides many different ways for you to add
your own environment variables (p. 82) to the basic ones provided by default.

#!/usr/bin/perl
use strict;
use warnings;

print "Content-type: text/html\n\n";
foreach my $key (keys %ENV) {

print "$key --> $ENV{$key}
";
}

STDIN and STDOUT

Other communication between the server and the client happens over standard input (STDIN) and standard output
(STDOUT). In normal everyday context, STDIN means the keyboard, or a file that a program is given to act on, and
STDOUT usually means the console or screen.

When you POST a web form to a CGI program, the data in that form is bundled up into a special format and gets
delivered to your CGI program over STDIN. The program then can process that data as though it was coming in from
the keyboard, or from a file

The "special format" is very simple. A field name and its value are joined together with an equals (=) sign, and pairs
of values are joined together with an ampersand (&). Inconvenient characters like spaces, ampersands, and equals
signs, are converted into their hex equivalent so that they don’t gum up the works. The whole data string might look
something like:

name=Rich%20Bowen&city=Lexington&state=KY&sidekick=Squirrel%20Monkey

You’ll sometimes also see this type of string appended to a URL. When that is done, the server puts that string into
the environment variable called QUERY STRING. That’s called a GET request. Your HTML form specifies whether a
GET or a POST is used to deliver the data, by setting the METHOD attribute in the FORM tag.

Your program is then responsible for splitting that string up into useful information. Fortunately, there are libraries
and modules available to help you process this data, as well as handle other of the aspects of your CGI program.

CGI modules/libraries

When you write CGI programs, you should consider using a code library, or module, to do most of the grunt work for
you. This leads to fewer errors, and faster development.

If you’re writing CGI programs in Perl, modules are available on CPAN4. The most popular module for this purpose
is CGI.pm. You might also consider CGI::Lite, which implements a minimal set of functionality, which is all you
need in most programs.

If you’re writing CGI programs in C, there are a variety of options. One of these is the CGIC library, from
http://www.boutell.com/cgic/.

4http://www.cpan.org/

http://www.cpan.org/

232 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

For more information

The current CGI specification is available in the Common Gateway Interface RFC5.

When you post a question about a CGI problem that you’re having, whether to a mailing list, or to a newsgroup, make
sure you provide enough information about what happened, what you expected to happen, and how what actually
happened was different, what server you’re running, what language your CGI program was in, and, if possible, the
offending code. This will make finding your problem much simpler.

Note that questions about CGI problems should never be posted to the Apache bug database unless you are sure you
have found a problem in the Apache source code.

5http://www.ietf.org/rfc/rfc3875

http://www.ietf.org/rfc/rfc3875

6.5. APACHE HTTPD TUTORIAL: INTRODUCTION TO SERVER SIDE INCLUDES 233

6.5 Apache httpd Tutorial: Introduction to Server Side Includes

Server-side includes provide a means to add dynamic content to existing HTML documents.

Introduction

Related Modules
MOD INCLUDE
MOD CGI
MOD EXPIRES

Related Directives
OPTIONS
XBITHACK
ADDTYPE
SETOUTPUTFILTER
BROWSERMATCHNOCASE

This article deals with Server Side Includes, usually called simply SSI. In this article, I’ll talk about configuring your
server to permit SSI, and introduce some basic SSI techniques for adding dynamic content to your existing HTML
pages.

In the latter part of the article, we’ll talk about some of the somewhat more advanced things that can be done with SSI,
such as conditional statements in your SSI directives.

What are SSI?

SSI (Server Side Includes) are directives that are placed in HTML pages, and evaluated on the server while the pages
are being served. They let you add dynamically generated content to an existing HTML page, without having to serve
the entire page via a CGI program, or other dynamic technology.

For example, you might place a directive into an existing HTML page, such as:

<!--#echo var="DATE LOCAL" -->

And, when the page is served, this fragment will be evaluated and replaced with its value:

Tuesday, 15-Jan-2013 19:28:54 EST

The decision of when to use SSI, and when to have your page entirely generated by some program, is usually a matter
of how much of the page is static, and how much needs to be recalculated every time the page is served. SSI is a great
way to add small pieces of information, such as the current time - shown above. But if a majority of your page is being
generated at the time that it is served, you need to look for some other solution.

Configuring your server to permit SSI

To permit SSI on your server, you must have the following directive either in your httpd.conf file, or in a
.htaccess file:

Options +Includes

This tells Apache that you want to permit files to be parsed for SSI directives. Note that most configurations contain
multiple OPTIONS directives that can override each other. You will probably need to apply the Options to the
specific directory where you want SSI enabled in order to assure that it gets evaluated last.

234 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Not just any file is parsed for SSI directives. You have to tell Apache which files should be parsed. There are two ways
to do this. You can tell Apache to parse any file with a particular file extension, such as .shtml, with the following
directives:

AddType text/html .shtml
AddOutputFilter INCLUDES .shtml

One disadvantage to this approach is that if you wanted to add SSI directives to an existing page, you would have to
change the name of that page, and all links to that page, in order to give it a .shtml extension, so that those directives
would be executed.

The other method is to use the XBITHACK directive:

XBitHack on

XBITHACK tells Apache to parse files for SSI directives if they have the execute bit set. So, to add SSI directives to
an existing page, rather than having to change the file name, you would just need to make the file executable using
chmod.

chmod +x pagename.html

A brief comment about what not to do. You’ll occasionally see people recommending that you just tell Apache to
parse all .html files for SSI, so that you don’t have to mess with .shtml file names. These folks have perhaps not
heard about XBITHACK. The thing to keep in mind is that, by doing this, you’re requiring that Apache read through
every single file that it sends out to clients, even if they don’t contain any SSI directives. This can slow things down
quite a bit, and is not a good idea.

Of course, on Windows, there is no such thing as an execute bit to set, so that limits your options a little.

In its default configuration, Apache does not send the last modified date or content length HTTP headers on SSI pages,
because these values are difficult to calculate for dynamic content. This can prevent your document from being cached,
and result in slower perceived client performance. There are two ways to solve this:

1. Use the XBitHack Full configuration. This tells Apache to determine the last modified date by looking only
at the date of the originally requested file, ignoring the modification date of any included files.

2. Use the directives provided by MOD EXPIRES to set an explicit expiration time on your files, thereby letting
browsers and proxies know that it is acceptable to cache them.

Basic SSI directives

SSI directives have the following syntax:

<!--#function attribute=value attribute=value ... -->

It is formatted like an HTML comment, so if you don’t have SSI correctly enabled, the browser will ignore it, but it
will still be visible in the HTML source. If you have SSI correctly configured, the directive will be replaced with its
results.

The function can be one of a number of things, and we’ll talk some more about most of these in the next installment
of this series. For now, here are some examples of what you can do with SSI

6.5. APACHE HTTPD TUTORIAL: INTRODUCTION TO SERVER SIDE INCLUDES 235

Today’s date

<!--#echo var="DATE LOCAL" -->

The echo function just spits out the value of a variable. There are a number of standard variables, which include the
whole set of environment variables that are available to CGI programs. Also, you can define your own variables with
the set function.

If you don’t like the format in which the date gets printed, you can use the config function, with a timefmt
attribute, to modify that formatting.

<!--#config timefmt="%A %B %d, %Y" -->

Today is <!--#echo var="DATE LOCAL" -->

Modification date of the file

This document last modified <!--#flastmod file="index.html" -->

This function is also subject to timefmt format configurations.

Including the results of a CGI program

This is one of the more common uses of SSI - to output the results of a CGI program, such as everybody’s favorite, a
“hit counter.”

<!--#include virtual="/cgi-bin/counter.pl" -->

Additional examples

Following are some specific examples of things you can do in your HTML documents with SSI.

When was this document modified?

Earlier, we mentioned that you could use SSI to inform the user when the document was most recently modified.
However, the actual method for doing that was left somewhat in question. The following code, placed in your HTML
document, will put such a time stamp on your page. Of course, you will have to have SSI correctly enabled, as
discussed above.

<!--#config timefmt="%A %B %d, %Y" -->

This file last modified <!--#flastmod file="ssi.shtml" -->

Of course, you will need to replace the ssi.shtml with the actual name of the file that you’re referring to. This can
be inconvenient if you’re just looking for a generic piece of code that you can paste into any file, so you probably want
to use the LAST MODIFIED variable instead:

<!--#config timefmt="%D" -->

This file last modified <!--#echo var="LAST MODIFIED" -->

For more details on the timefmt format, go to your favorite search site and look for strftime. The syntax is the
same.

236 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Including a standard footer

If you are managing any site that is more than a few pages, you may find that making changes to all those pages can
be a real pain, particularly if you are trying to maintain some kind of standard look across all those pages.

Using an include file for a header and/or a footer can reduce the burden of these updates. You just have to make
one footer file, and then include it into each page with the include SSI command. The include function can
determine what file to include with either the file attribute, or the virtual attribute. The file attribute is a file
path, relative to the current directory. That means that it cannot be an absolute file path (starting with /), nor can it
contain ../ as part of that path. The virtual attribute is probably more useful, and should specify a URL relative to
the document being served. It can start with a /, but must be on the same server as the file being served.

<!--#include virtual="/footer.html" -->

I’ll frequently combine the last two things, putting a LAST MODIFIED directive inside a footer file to be included.
SSI directives can be contained in the included file, and includes can be nested - that is, the included file can include
another file, and so on.

What else can I config?

In addition to being able to config the time format, you can also config two other things.

Usually, when something goes wrong with your SSI directive, you get the message

[an error occurred while processing this directive]

If you want to change that message to something else, you can do so with the errmsg attribute to the config
function:

<!--#config errmsg="[It appears that you don’t know how to use SSI]"

-->

Hopefully, end users will never see this message, because you will have resolved all the problems with your SSI
directives before your site goes live. (Right?)

And you can config the format in which file sizes are returned with the sizefmt attribute. You can specify bytes
for a full count in bytes, or abbrev for an abbreviated number in Kb or Mb, as appropriate.

Executing commands

I expect that I’ll have an article some time in the coming months about using SSI with small CGI programs. For now,
here’s something else that you can do with the exec function. You can actually have SSI execute a command using
the shell (/bin/sh, to be precise - or the DOS shell, if you’re on Win32). The following, for example, will give you
a directory listing.

<pre>
<!--#exec cmd="ls" -->

</pre>

or, on Windows

6.5. APACHE HTTPD TUTORIAL: INTRODUCTION TO SERVER SIDE INCLUDES 237

<pre>
<!--#exec cmd="dir" -->

</pre>

You might notice some strange formatting with this directive on Windows, because the output from dir contains the
string “<dir>” in it, which confuses browsers.

Note that this feature is exceedingly dangerous, as it will execute whatever code happens to be embedded in the
exec tag. If you have any situation where users can edit content on your web pages, such as with a “guestbook”,
for example, make sure that you have this feature disabled. You can allow SSI, but not the exec feature, with the
IncludesNOEXEC argument to the Options directive.

Advanced SSI techniques

In addition to spitting out content, Apache SSI gives you the option of setting variables, and using those variables in
comparisons and conditionals.

Setting variables

Using the set directive, you can set variables for later use. We’ll need this later in the discussion, so we’ll talk about
it here. The syntax of this is as follows:

<!--#set var="name" value="Rich" -->

In addition to merely setting values literally like that, you can use any other variable, including environment variables
(p. 82) or the variables discussed above (like LAST MODIFIED, for example) to give values to your variables. You
will specify that something is a variable, rather than a literal string, by using the dollar sign ($) before the name of the
variable.

<!--#set var="modified" value="$LAST MODIFIED" -->

To put a literal dollar sign into the value of your variable, you need to escape the dollar sign with a backslash.

<!--#set var="cost" value="\$100" -->

Finally, if you want to put a variable in the midst of a longer string, and there’s a chance that the name of the variable
will run up against some other characters, and thus be confused with those characters, you can place the name of the
variable in braces, to remove this confusion. (It’s hard to come up with a really good example of this, but hopefully
you’ll get the point.)

<!--#set var="date" value="${DATE LOCAL} ${DATE GMT}" -->

238 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Conditional expressions

Now that we have variables, and are able to set and compare their values, we can use them to express conditionals. This
lets SSI be a tiny programming language of sorts. MOD INCLUDE provides an if, elif, else, endif structure for
building conditional statements. This allows you to effectively generate multiple logical pages out of one actual page.

The structure of this conditional construct is:

<!--#if expr="test condition" -->
<!--#elif expr="test condition" -->
<!--#else -->

<!--#endif -->

A test condition can be any sort of logical comparison - either comparing values to one another, or testing the “truth”
of a particular value. (A given string is true if it is nonempty.) For a full list of the comparison operators available to
you, see the MOD INCLUDE documentation.

For example, if you wish to customize the text on your web page based on the time of day, you could use the following
recipe, placed in the HTML page:

Good <!--#if expr="%{TIME HOUR} <12" -->
morning!
<!--#else -->
afternoon!

<!--#endif -->

Any other variable (either ones that you define, or normal environment variables) can be used in conditional statements.
See Expressions in Apache HTTP Server (p. 89) for more information on the expression evaluation engine.

With Apache’s ability to set environment variables with the SetEnvIf directives, and other related directives, this
functionality can let you do a wide variety of dynamic content on the server side without resorting a full web applica-
tion.

Conclusion

SSI is certainly not a replacement for CGI, or other technologies used for generating dynamic web pages. But it is a
great way to add small amounts of dynamic content to pages, without doing a lot of extra work.

6.6. APACHE HTTP SERVER TUTORIAL: .HTACCESS FILES 239

6.6 Apache HTTP Server Tutorial: .htaccess files

.htaccess files provide a way to make configuration changes on a per-directory basis.

.htaccess files

Related Modules
CORE
MOD AUTHN FILE
MOD AUTHZ GROUPFILE
MOD CGI
MOD INCLUDE
MOD MIME

Related Directives
ACCESSFILENAME
ALLOWOVERRIDE
OPTIONS
ADDHANDLER
SETHANDLER
AUTHTYPE
AUTHNAME
AUTHUSERFILE
AUTHGROUPFILE
REQUIRE

=⇒You should avoid using .htaccess files completely if you have access to httpd main server
config file. Using .htaccess files slows down your Apache http server. Any directive that
you can include in a .htaccess file is better set in a DIRECTORY block, as it will have the
same effect with better performance.

What they are/How to use them

.htaccess files (or "distributed configuration files") provide a way to make configuration changes on a per-
directory basis. A file, containing one or more configuration directives, is placed in a particular document directory,
and the directives apply to that directory, and all subdirectories thereof.

=⇒Note:
If you want to call your .htaccess file something else, you can change the name of the
file using the ACCESSFILENAME directive. For example, if you would rather call the file
.config then you can put the following in your server configuration file:

AccessFileName ".config"

In general, .htaccess files use the same syntax as the main configuration files (p. 30) . What you can put in these
files is determined by the ALLOWOVERRIDE directive. This directive specifies, in categories, what directives will be
honored if they are found in a .htaccess file. If a directive is permitted in a .htaccess file, the documentation
for that directive will contain an Override section, specifying what value must be in ALLOWOVERRIDE in order for
that directive to be permitted.

For example, if you look at the documentation for the ADDDEFAULTCHARSET directive, you will find that it is
permitted in .htaccess files. (See the Context line in the directive summary.) The Override (p. 351) line reads
FileInfo. Thus, you must have at least AllowOverride FileInfo in order for this directive to be honored in
.htaccess files.

Example:
Context: (p. 351) server config, virtual host,

directory, .htaccess
Override: (p. 351) FileInfo

240 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

If you are unsure whether a particular directive is permitted in a .htaccess file, look at the documentation for that
directive, and check the Context line for ".htaccess".

When (not) to use .htaccess files

In general, you should only use .htaccess files when you don’t have access to the main server configuration file.
There is, for example, a common misconception that user authentication should always be done in .htaccess files,
and, in more recent years, another misconception that MOD REWRITE directives must go in .htaccess files. This
is simply not the case. You can put user authentication configurations in the main server configuration, and this is, in
fact, the preferred way to do things. Likewise, mod rewrite directives work better, in many respects, in the main
server configuration.

.htaccess files should be used in a case where the content providers need to make configuration changes to the
server on a per-directory basis, but do not have root access on the server system. In the event that the server adminis-
trator is not willing to make frequent configuration changes, it might be desirable to permit individual users to make
these changes in .htaccess files for themselves. This is particularly true, for example, in cases where ISPs are
hosting multiple user sites on a single machine, and want their users to be able to alter their configuration.

However, in general, use of .htaccess files should be avoided when possible. Any configuration that you would
consider putting in a .htaccess file, can just as effectively be made in a <DIRECTORY> section in your main
server configuration file.

There are two main reasons to avoid the use of .htaccess files.

The first of these is performance. When ALLOWOVERRIDE is set to allow the use of .htaccess files, httpd will
look in every directory for .htaccess files. Thus, permitting .htaccess files causes a performance hit, whether
or not you actually even use them! Also, the .htaccess file is loaded every time a document is requested.

Further note that httpd must look for .htaccess files in all higher-level directories, in order to have a full comple-
ment of directives that it must apply. (See section on how directives are applied.) Thus, if a file is requested out of a
directory /www/htdocs/example, httpd must look for the following files:

/.htaccess
/www/.htaccess
/www/htdocs/.htaccess

/www/htdocs/example/.htaccess

And so, for each file access out of that directory, there are 4 additional file-system accesses, even if none of those files
are present. (Note that this would only be the case if .htaccess files were enabled for /, which is not usually the
case.)

In the case of REWRITERULE directives, in .htaccess context these regular expressions must be re-compiled
with every request to the directory, whereas in main server configuration context they are compiled once and cached.
Additionally, the rules themselves are more complicated, as one must work around the restrictions that come with
per-directory context and mod rewrite. Consult the Rewrite Guide (p. 137) for more detail on this subject.

The second consideration is one of security. You are permitting users to modify server configuration, which may result
in changes over which you have no control. Carefully consider whether you want to give your users this privilege.
Note also that giving users less privileges than they need will lead to additional technical support requests. Make
sure you clearly tell your users what level of privileges you have given them. Specifying exactly what you have set
ALLOWOVERRIDE to, and pointing them to the relevant documentation, will save yourself a lot of confusion later.

Note that it is completely equivalent to put a .htaccess file in a directory /www/htdocs/example containing
a directive, and to put that same directive in a Directory section <Directory "/www/htdocs/example"> in
your main server configuration:

.htaccess file in /www/htdocs/example:

6.6. APACHE HTTP SERVER TUTORIAL: .HTACCESS FILES 241

Contents of .htaccess file in /www/htdocs/example

AddType text/example ".exm"

Section from your httpd.conf file

<Directory "/www/htdocs/example">
AddType text/example ".exm"

</Directory>

However, putting this configuration in your server configuration file will result in less of a performance hit, as the
configuration is loaded once when httpd starts, rather than every time a file is requested.

The use of .htaccess files can be disabled completely by setting the ALLOWOVERRIDE directive to none:

AllowOverride None

How directives are applied

The configuration directives found in a .htaccess file are applied to the directory in which the .htaccess file
is found, and to all subdirectories thereof. However, it is important to also remember that there may have been
.htaccess files in directories higher up. Directives are applied in the order that they are found. Therefore, a
.htaccess file in a particular directory may override directives found in .htaccess files found higher up in
the directory tree. And those, in turn, may have overridden directives found yet higher up, or in the main server
configuration file itself.

Example:

In the directory /www/htdocs/example1 we have a .htaccess file containing the following:

Options +ExecCGI

(Note: you must have "AllowOverride Options" in effect to permit the use of the "OPTIONS" directive in
.htaccess files.)

In the directory /www/htdocs/example1/example2 we have a .htaccess file containing:

Options Includes

Because of this second .htaccess file, in the directory /www/htdocs/example1/example2, CGI execution
is not permitted, as only Options Includes is in effect, which completely overrides any earlier setting that may
have been in place.

Merging of .htaccess with the main configuration files

As discussed in the documentation on Configuration Sections (p. 33) , .htaccess files can override the <DIREC-
TORY> sections for the corresponding directory, but will be overridden by other types of configuration sections from
the main configuration files. This fact can be used to enforce certain configurations, even in the presence of a lib-
eral ALLOWOVERRIDE setting. For example, to prevent script execution while allowing anything else to be set in
.htaccess you can use:

242 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

<Directory "/www/htdocs">
AllowOverride All

</Directory>

<Location "/">
Options +IncludesNoExec -ExecCGI

</Location>

=⇒This example assumes that your DOCUMENTROOT is /www/htdocs.

Authentication example

If you jumped directly to this part of the document to find out how to do authentication, it is important to note
one thing. There is a common misconception that you are required to use .htaccess files in order to implement
password authentication. This is not the case. Putting authentication directives in a <DIRECTORY> section, in your
main server configuration file, is the preferred way to implement this, and .htaccess files should be used only if
you don’t have access to the main server configuration file. See above for a discussion of when you should and should
not use .htaccess files.

Having said that, if you still think you need to use a .htaccess file, you may find that a configuration such as what
follows may work for you.

.htaccess file contents:

AuthType Basic
AuthName "Password Required"
AuthUserFile "/www/passwords/password.file"
AuthGroupFile "/www/passwords/group.file"
Require group admins

Note that AllowOverride AuthConfig must be in effect for these directives to have any effect.

Please see the authentication tutorial (p. 217) for a more complete discussion of authentication and authorization.

Server Side Includes example

Another common use of .htaccess files is to enable Server Side Includes for a particular directory. This may be
done with the following configuration directives, placed in a .htaccess file in the desired directory:

Options +Includes
AddType text/html shtml
AddHandler server-parsed shtml

Note that AllowOverride Options and AllowOverride FileInfo must both be in effect for these direc-
tives to have any effect.

Please see the SSI tutorial (p. 233) for a more complete discussion of server-side includes.

Rewrite Rules in .htaccess files

When using REWRITERULE in .htaccess files, be aware that the per-directory context changes things a bit. In
particular, rules are taken to be relative to the current directory, rather than being the original requested URI. Consider
the following examples:

6.6. APACHE HTTP SERVER TUTORIAL: .HTACCESS FILES 243

In httpd.conf
RewriteRule "ˆ/images/(.+)\.jpg" "/images/$1.png"

In .htaccess in root dir
RewriteRule "ˆimages/(.+)\.jpg" "images/$1.png"

In .htaccess in images/
RewriteRule "ˆ(.+)\.jpg" "$1.png"

In a .htaccess in your document directory, the leading slash is removed from the value supplied to REWRITERULE,
and in the images subdirectory, /images/ is removed from it. Thus, your regular expression needs to omit that
portion as well.

Consult the mod rewrite documentation (p. 136) for further details on using mod rewrite.

CGI example

Finally, you may wish to use a .htaccess file to permit the execution of CGI programs in a particular directory.
This may be implemented with the following configuration:

Options +ExecCGI
AddHandler cgi-script cgi pl

Alternately, if you wish to have all files in the given directory be considered to be CGI programs, this may be done
with the following configuration:

Options +ExecCGI
SetHandler cgi-script

Note that AllowOverride Options and AllowOverride FileInfo must both be in effect for these direc-
tives to have any effect.

Please see the CGI tutorial (p. 226) for a more complete discussion of CGI programming and configuration.

Troubleshooting

When you put configuration directives in a .htaccess file, and you don’t get the desired effect, there are a number
of things that may be going wrong.

Most commonly, the problem is that ALLOWOVERRIDE is not set such that your configuration directives are being
honored. Make sure that you don’t have a AllowOverride None in effect for the file scope in question. A good
test for this is to put garbage in your .htaccess file and reload the page. If a server error is not generated, then you
almost certainly have AllowOverride None in effect.

If, on the other hand, you are getting server errors when trying to access documents, check your httpd error log. It will
likely tell you that the directive used in your .htaccess file is not permitted.

[Fri Sep 17 18:43:16 2010] [alert] [client 192.168.200.51]

/var/www/html/.htaccess: DirectoryIndex not allowed here

This will indicate either that you’ve used a directive that is never permitted in .htaccess files, or that you simply
don’t have ALLOWOVERRIDE set to a level sufficient for the directive you’ve used. Consult the documentation for
that particular directive to determine which is the case.

244 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Alternately, it may tell you that you had a syntax error in your usage of the directive itself.

[Sat Aug 09 16:22:34 2008] [alert] [client 192.168.200.51]

/var/www/html/.htaccess: RewriteCond: bad flag delimiters

In this case, the error message should be specific to the particular syntax error that you have committed.

6.7. PER-USER WEB DIRECTORIES 245

6.7 Per-user web directories

On systems with multiple users, each user can be permitted to have a web site in their home directory using the
USERDIR directive. Visitors to a URL http://example.com/˜username/ will get content out of the home
directory of the user "username", out of the subdirectory specified by the USERDIR directive.

Note that, by default, access to these directories is not enabled. You can enable access when using USERDIR by
uncommenting the line

#Include conf/extra/httpd-userdir.conf

in the default config file conf/httpd.conf, and adapting the httpd-userdir.conf file as necessary, or by
including the appropriate directives in a Directory block within the main config file.

See also

• Mapping URLs to the Filesystem (p. 61)

Per-user web directories

Related Modules
MOD USERDIR

Related Directives
USERDIR
DIRECTORYMATCH
ALLOWOVERRIDE

Setting the file path with UserDir

The USERDIR directive specifies a directory out of which per-user content is loaded. This directive may take several
different forms.

If a path is given which does not start with a leading slash, it is assumed to be a directory path relative to the home
directory of the specified user. Given this configuration:

UserDir public_html

the URL http://example.com/˜rbowen/file.html will be translated to the file path
/home/rbowen/public html/file.html

If a path is given starting with a slash, a directory path will be constructed using that path, plus the username specified.
Given this configuration:

UserDir /var/html

the URL http://example.com/˜rbowen/file.html will be translated to the file path
/var/html/rbowen/file.html

If a path is provided which contains an asterisk (*), a path is used in which the asterisk is replaced with the username.
Given this configuration:

UserDir /var/www/*/docs

246 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

the URL http://example.com/˜rbowen/file.html will be translated to the file path
/var/www/rbowen/docs/file.html

Multiple directories or directory paths can also be set.

UserDir public_html /var/html

For the URL http://example.com/˜rbowen/file.html, Apache will search for ˜rbowen. If it isn’t
found, Apache will search for rbowen in /var/html. If found, the above URL will then be translated to the file
path /var/html/rbowen/file.html

Redirecting to external URLs

The USERDIR directive can be used to redirect user directory requests to external URLs.

UserDir http://example.org/users/*/

The above example will redirect a request for http://example.com/˜bob/abc.html to
http://example.org/users/bob/abc.html.

Restricting what users are permitted to use this feature

Using the syntax shown in the UserDir documentation, you can restrict what users are permitted to use this function-
ality:

UserDir disabled root jro fish

The configuration above will enable the feature for all users except for those listed in the disabled statement. You
can, likewise, disable the feature for all but a few users by using a configuration like the following:

UserDir disabled
UserDir enabled rbowen krietz

See USERDIR documentation for additional examples.

Enabling a cgi directory for each user

In order to give each user their own cgi-bin directory, you can use a <DIRECTORY> directive to make a particular
subdirectory of a user’s home directory cgi-enabled.

<Directory "/home/*/public_html/cgi-bin/">
Options ExecCGI
SetHandler cgi-script

</Directory>

Then, presuming that UserDir is set to public html, a cgi program example.cgi could be loaded from that
directory as:

http://example.com/˜rbowen/cgi-bin/example.cgi

6.7. PER-USER WEB DIRECTORIES 247

Allowing users to alter configuration

If you want to allows users to modify the server configuration in their web space, they will need to use .htaccess
files to make these changes. Ensure that you have set ALLOWOVERRIDE to a value sufficient for the directives that
you want to permit the users to modify. See the .htaccess tutorial (p. 239) for additional details on how this works.

248 CHAPTER 6. GUIDES, TUTORIALS, AND HOWTOS

Chapter 7

Platform-specific Notes

249

250 CHAPTER 7. PLATFORM-SPECIFIC NOTES

7.1 Platform Specific Notes

Microsoft Windows

Using Apache This document explains how to install, configure and run Apache 2.4 under Microsoft Windows.

See: Using Apache with Microsoft Windows (p. 251)

Compiling Apache There are many important points before you begin compiling Apache. This document explain
them.

See: Compiling Apache for Microsoft Windows (p. 259)

Unix Systems

RPM Based Systems (Redhat / CentOS / Fedora) This document explains how to build, install, and run Apache 2.4
on systems supporting the RPM packaging format.

See: Using Apache With RPM Based Systems (p. 265)

Other Platforms

Novell NetWare This document explains how to install, configure and run Apache 2.4 under Novell NetWare 5.1 and
above.

See: Using Apache With Novell NetWare (p. 268)

EBCDIC Version 1.3 of the Apache HTTP Server is the first version which includes a port to a (non-ASCII) main-
frame machine which uses the EBCDIC character set as its native codeset.

! Warning: This document has not been updated to take into account changes made in the 2.4
version of the Apache HTTP Server. Some of the information may still be relevant, but please
use it with care.

See: The Apache EBCDIC Port (p. 277)

7.2. USING APACHE HTTP SERVER ON MICROSOFT WINDOWS 251

7.2 Using Apache HTTP Server on Microsoft Windows

This document explains how to install, configure and run Apache 2.4 under Microsoft Windows. If you have questions
after reviewing the documentation (and any event and error logs), you should consult the peer-supported users’ mailing
list1.

This document assumes that you are installing a binary distribution of Apache. If you want to compile Apache yourself
(possibly to help with development or tracking down bugs), see Compiling Apache for Microsoft Windows (p. 259) .

Operating System Requirements

The primary Windows platform for running Apache 2.4 is Windows 2000 or later. Always obtain and install the current
service pack to avoid operating system bugs.

=⇒Apache HTTP Server versions later than 2.2 will not run on any operating system earlier than
Windows 2000.

Downloading Apache for Windows

The Apache HTTP Server Project itself does not provide binary releases of software, only source code. Individual
committers may provide binary packages as a convenience, but it is not a release deliverable.

If you cannot compile the Apache HTTP Server yourself, you can obtain a binary package from numerous binary
distributions available on the Internet.

Popular options for deploying Apache httpd, and, optionally, PHP and MySQL, on Microsoft Windows, include:

• ApacheHaus2

• Apache Lounge3

• BitNami WAMP Stack4

• WampServer5

• XAMPP6

Customizing Apache for Windows

Apache is configured by the files in the conf subdirectory. These are the same files used to configure the Unix version,
but there are a few different directives for Apache on Windows. See the directive index (p. 1022) for all the available
directives.

The main differences in Apache for Windows are:

• Because Apache for Windows is multithreaded, it does not use a separate process for each request, as Apache
can on Unix. Instead there are usually only two Apache processes running: a parent process, and a child which
handles the requests. Within the child process each request is handled by a separate thread.

The process management directives are also different:

1http://httpd.apache.org/userslist.html
2http://www.apachehaus.com/cgi-bin/download.plx
3http://www.apachelounge.com/download/
4http://bitnami.com/stack/wamp
5http://www.wampserver.com/
6http://www.apachefriends.org/en/xampp.html

http://httpd.apache.org/userslist.html
http://www.apachehaus.com/cgi-bin/download.plx
http://www.apachelounge.com/download/
http://bitnami.com/stack/wamp
http://www.wampserver.com/
http://www.apachefriends.org/en/xampp.html

252 CHAPTER 7. PLATFORM-SPECIFIC NOTES

MAXCONNECTIONSPERCHILD: Like the Unix directive, this controls how many connections a single child
process will serve before exiting. However, unlike on Unix, a replacement process is not instantly available.
Use the default MaxConnectionsPerChild 0, unless instructed to change the behavior to overcome a
memory leak in third party modules or in-process applications.

! Warning: The server configuration file is reread when a new child process is started. If
you have modified httpd.conf, the new child may not start or you may receive unex-
pected results.

THREADSPERCHILD: This directive is new. It tells the server how many threads it should use. This is the
maximum number of connections the server can handle at once, so be sure to set this number high enough for
your site if you get a lot of hits. The recommended default is ThreadsPerChild 150, but this must be
adjusted to reflect the greatest anticipated number of simultaneous connections to accept.

• The directives that accept filenames as arguments must use Windows filenames instead of Unix ones. However,
because Apache may interpret backslashes as an "escape character" sequence, you should consistently use
forward slashes in path names, not backslashes.

• While filenames are generally case-insensitive on Windows, URLs are still treated internally as case-sensitive
before they are mapped to the filesystem. For example, the <LOCATION>, ALIAS, and PROXYPASS directives
all use case-sensitive arguments. For this reason, it is particularly important to use the <DIRECTORY> directive
when attempting to limit access to content in the filesystem, since this directive applies to any content in a
directory, regardless of how it is accessed. If you wish to assure that only lowercase is used in URLs, you can
use something like:

RewriteEngine On
RewriteMap lowercase int:tolower
RewriteCond "%{REQUEST_URI}" "[A-Z]"
RewriteRule "(.*)" "${lowercase:$1}" [R,L]

• When running, Apache needs write access only to the logs directory and any configured cache directory tree.
Due to the issue of case insensitive and short 8.3 format names, Apache must validate all path names given. This
means that each directory which Apache evaluates, from the drive root up to the directory leaf, must have read,
list and traverse directory permissions. If Apache2.4 is installed at C:\Program Files, then the root directory,
Program Files and Apache2.4 must all be visible to Apache.

• Apache for Windows contains the ability to load modules at runtime, without recompiling the server. If Apache
is compiled normally, it will install a number of optional modules in the \Apache2.4\modules directory. To
activate these or other modules, the LOADMODULE directive must be used. For example, to activate the status
module, use the following (in addition to the status-activating directives in access.conf):

LoadModule status_module modules/mod_status.so

Information on creating loadable modules (p. 839) is also available.

• Apache can also load ISAPI (Internet Server Application Programming Interface) extensions such as those used
by Microsoft IIS and other Windows servers. More information is available (p. 635) . Note that Apache cannot
load ISAPI Filters, and ISAPI Handlers with some Microsoft feature extensions will not work.

• When running CGI scripts, the method Apache uses to find the interpreter for the script is configurable using
the SCRIPTINTERPRETERSOURCE directive.

• Since it is often difficult to manage files with names like .htaccess in Windows, you may find it useful to
change the name of this per-directory configuration file using the ACCESSFILENAME directive.

• Any errors during Apache startup are logged into the Windows event log when running on Windows NT. This
mechanism acts as a backup for those situations where Apache is not yet prepared to use the error.log file.
You can review the Windows Application Event Log by using the Event Viewer, e.g. Start - Settings - Control
Panel - Administrative Tools - Event Viewer.

7.2. USING APACHE HTTP SERVER ON MICROSOFT WINDOWS 253

Running Apache as a Service

Apache comes with a utility called the Apache Service Monitor. With it you can see and manage the state of all
installed Apache services on any machine on your network. To be able to manage an Apache service with the monitor,
you have to first install the service (either automatically via the installation or manually).

You can install Apache as a Windows NT service as follows from the command prompt at the Apache bin subdirec-
tory:

httpd.exe -k install

If you need to specify the name of the service you want to install, use the following command. You have to do this if
you have several different service installations of Apache on your computer. If you specify a name during the install,
you have to also specify it during any other -k operation.

httpd.exe -k install -n "MyServiceName"

If you need to have specifically named configuration files for different services, you must use this:

httpd.exe -k install -n "MyServiceName" -f "c:\files\my.conf"

If you use the first command without any special parameters except -k install, the service will be called
Apache2.4 and the configuration will be assumed to be conf\httpd.conf.

Removing an Apache service is easy. Just use:

httpd.exe -k uninstall

The specific Apache service to be uninstalled can be specified by using:

httpd.exe -k uninstall -n "MyServiceName"

Normal starting, restarting and shutting down of an Apache service is usually done via the Apache Service Monitor,
by using commands like NET START Apache2.4 and NET STOP Apache2.4 or via normal Windows service
management. Before starting Apache as a service by any means, you should test the service’s configuration file by
using:

httpd.exe -n "MyServiceName" -t

You can control an Apache service by its command line switches, too. To start an installed Apache service you’ll use
this:

httpd.exe -k start -n "MyServiceName"

To stop an Apache service via the command line switches, use this:

httpd.exe -k stop -n "MyServiceName"

254 CHAPTER 7. PLATFORM-SPECIFIC NOTES

or

httpd.exe -k shutdown -n "MyServiceName"

You can also restart a running service and force it to reread its configuration file by using:

httpd.exe -k restart -n "MyServiceName"

By default, all Apache services are registered to run as the system user (the LocalSystem account). The
LocalSystem account has no privileges to your network via any Windows-secured mechanism, including the file
system, named pipes, DCOM, or secure RPC. It has, however, wide privileges locally.

! Never grant any network privileges to the LocalSystem account! If you need Apache
to be able to access network resources, create a separate account for Apache as noted
below.

It is recommended that users create a separate account for running Apache service(s). If you have to access network
resources via Apache, this is required.

1. Create a normal domain user account, and be sure to memorize its password.

2. Grant the newly-created user a privilege of Log on as a service and Act as part of the
operating system. On Windows NT 4.0 these privileges are granted via User Manager for Domains,
but on Windows 2000 and XP you probably want to use Group Policy for propagating these settings. You can
also manually set these via the Local Security Policy MMC snap-in.

3. Confirm that the created account is a member of the Users group.

4. Grant the account read and execute (RX) rights to all document and script folders (htdocs and cgi-bin for
example).

5. Grant the account change (RWXD) rights to the Apache logs directory.

6. Grant the account read and execute (RX) rights to the httpd.exe binary executable.

=⇒It is usually a good practice to grant the user the Apache service runs as read and execute (RX)
access to the whole Apache2.4 directory, except the logs subdirectory, where the user has to
have at least change (RWXD) rights.

If you allow the account to log in as a user and as a service, then you can log on with that account and test that
the account has the privileges to execute the scripts, read the web pages, and that you can start Apache in a console
window. If this works, and you have followed the steps above, Apache should execute as a service with no problems.

=⇒Error code 2186 is a good indication that you need to review the "Log On As" configuration
for the service, since Apache cannot access a required network resource. Also, pay close
attention to the privileges of the user Apache is configured to run as.

When starting Apache as a service you may encounter an error message from the Windows Service Control Manager.
For example, if you try to start Apache by using the Services applet in the Windows Control Panel, you may get the
following message:

Could not start the Apache2.4 service on \\COMPUTER
Error 1067; The process terminated unexpectedly.

7.2. USING APACHE HTTP SERVER ON MICROSOFT WINDOWS 255

You will get this generic error if there is any problem with starting the Apache service. In order to see what is really
causing the problem you should follow the instructions for Running Apache for Windows from the Command Prompt.

If you are having problems with the service, it is suggested you follow the instructions below to try starting httpd.exe
from a console window, and work out the errors before struggling to start it as a service again.

Running Apache as a Console Application

Running Apache as a service is usually the recommended way to use it, but it is sometimes easier to work from the
command line, especially during initial configuration and testing.

To run Apache from the command line as a console application, use the following command:

httpd.exe

Apache will execute, and will remain running until it is stopped by pressing Control-C.

You can also run Apache via the shortcut Start Apache in Console placed to Start Menu --> Programs -->
Apache HTTP Server 2.4.xx --> Control Apache Server during the installation. This will open a
console window and start Apache inside it. If you don’t have Apache installed as a service, the window will remain
visible until you stop Apache by pressing Control-C in the console window where Apache is running in. The server
will exit in a few seconds. However, if you do have Apache installed as a service, the shortcut starts the service. If the
Apache service is running already, the shortcut doesn’t do anything.

If Apache is running as a service, you can tell it to stop by opening another console window and entering:

httpd.exe -k shutdown

Running as a service should be preferred over running in a console window because this lets Apache end any current
operations and clean up gracefully.

But if the server is running in a console window, you can only stop it by pressing Control-C in the same window.

You can also tell Apache to restart. This forces it to reread the configuration file. Any operations in progress are
allowed to complete without interruption. To restart Apache, either press Control-Break in the console window you
used for starting Apache, or enter

httpd.exe -k restart

if the server is running as a service.

=⇒Note for people familiar with the Unix version of Apache: these commands provide a Windows
equivalent to kill -TERM pid and kill -USR1 pid. The command line option used,
-k, was chosen as a reminder of the kill command used on Unix.

If the Apache console window closes immediately or unexpectedly after startup, open the Command Prompt from the
Start Menu –> Programs. Change to the folder to which you installed Apache, type the command httpd.exe, and
read the error message. Then change to the logs folder, and review the error.log file for configuration mistakes.
Assuming httpd was installed into C:\Program Files\Apache Software Foundation\Apache2.4\,
you can do the following:

c:
cd "\Program Files\Apache Software Foundation\Apache2.4\bin"
httpd.exe

256 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Then wait for Apache to stop, or press Control-C. Then enter the following:

cd ..\logs
more < error.log

When working with Apache it is important to know how it will find the configuration file. You can specify a configu-
ration file on the command line in two ways:

• -f specifies an absolute or relative path to a particular configuration file:

httpd.exe -f "c:\my server files\anotherconfig.conf"

or

httpd.exe -f files\anotherconfig.conf

• -n specifies the installed Apache service whose configuration file is to be used:

httpd.exe -n "MyServiceName"

In both of these cases, the proper SERVERROOT should be set in the configuration file.

If you don’t specify a configuration file with -f or -n, Apache will use the file name compiled into the server, such
as conf\httpd.conf. This built-in path is relative to the installation directory. You can verify the compiled file
name from a value labelled as SERVER CONFIG FILE when invoking Apache with the -V switch, like this:

httpd.exe -V

Apache will then try to determine its SERVERROOT by trying the following, in this order:

1. A SERVERROOT directive via the -C command line switch.

2. The -d switch on the command line.

3. Current working directory.

4. A registry entry which was created if you did a binary installation.

5. The server root compiled into the server. This is /apache by default, you can verify it by using
httpd.exe -V and looking for a value labelled as HTTPD ROOT.

If you did not do a binary install, Apache will in some scenarios complain about the missing registry key. This warning
can be ignored if the server was otherwise able to find its configuration file.

The value of this key is the SERVERROOT directory which contains the conf subdirectory. When Apache starts
it reads the httpd.conf file from that directory. If this file contains a SERVERROOT directive which contains a
different directory from the one obtained from the registry key above, Apache will forget the registry key and use the
directory from the configuration file. If you copy the Apache directory or configuration files to a new location it is
vital that you update the SERVERROOT directive in the httpd.conf file to reflect the new location.

7.2. USING APACHE HTTP SERVER ON MICROSOFT WINDOWS 257

Testing the Installation

After starting Apache (either in a console window or as a service) it will be listening on port 80 (unless you changed
the LISTEN directive in the configuration files or installed Apache only for the current user). To connect to the server
and access the default page, launch a browser and enter this URL:

http://localhost/

Apache should respond with a welcome page and you should see "It Works!". If nothing happens or you get an error,
look in the error.log file in the logs subdirectory. If your host is not connected to the net, or if you have serious
problems with your DNS (Domain Name Service) configuration, you may have to use this URL:

http://127.0.0.1/

If you happen to be running Apache on an alternate port, you need to explicitly put that in the URL:

http://127.0.0.1:8080/

Once your basic installation is working, you should configure it properly by editing the files in the conf subdirectory.
Again, if you change the configuration of the Windows NT service for Apache, first attempt to start it from the
command line to make sure that the service starts with no errors.

Because Apache cannot share the same port with another TCP/IP application, you may need to stop, uninstall or
reconfigure certain other services before running Apache. These conflicting services include other WWW servers,
some firewall implementations, and even some client applications (such as Skype) which will use port 80 to attempt
to bypass firewall issues.

Configuring Access to Network Resources

Access to files over the network can be specified using two mechanisms provided by Windows:

Mapped drive letters e.g., Alias "/images/" "Z:/"

UNC paths e.g., Alias "/images/" "//imagehost/www/images/"

Mapped drive letters allow the administrator to maintain the mapping to a specific machine and path outside of the
Apache httpd configuration. However, these mappings are associated only with interactive sessions and are not directly
available to Apache httpd when it is started as a service. Use only UNC paths for network resources in httpd.conf
so that the resources can be accessed consistently regardless of how Apache httpd is started. (Arcane and error prone
procedures may work around the restriction on mapped drive letters, but this is not recommended.)

Example DocumentRoot with UNC path

DocumentRoot "//dochost/www/html/"

Example DocumentRoot with IP address in UNC path

DocumentRoot "//192.168.1.50/docs/"

258 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Example Alias and corresponding Directory with UNC path

Alias "/images/" "//imagehost/www/images/"

<Directory "//imagehost/www/images/">
#...
<Directory>

When running Apache httpd as a service, you must create a separate account in order to access network resources, as
described above.

Windows Tuning

• If more than a few dozen piped loggers are used on an operating system instance, scaling up the "desktop heap"
is often necessary. For more detailed information, refer to the piped logging (p. 53) documentation.

7.3. COMPILING APACHE FOR MICROSOFT WINDOWS 259

7.3 Compiling Apache for Microsoft Windows

There are many important points to consider before you begin compiling Apache HTTP Server (httpd). See Using
Apache HTTP Server on Microsoft Windows (p. 251) before you begin.

httpd can be built on Windows using a cmake-based build system or with Visual Studio project files maintained by
httpd developers. The cmake-based build system directly supports more versions of Visual Studio but currently has
considerable functional limitations.

Building httpd with the included Visual Studio project files

Requirements

Compiling Apache requires the following environment to be properly installed:

• Disk Space

Make sure you have at least 200 MB of free disk space available. After installation Apache requires approx-
imately 80 MB of disk space, plus space for log and cache files, which can grow rapidly. The actual disk
space requirements will vary considerably based on your chosen configuration and any third-party modules or
libraries, especially when OpenSSL is also built. Because many files are text and very easily compressed, NTFS
filesystem compression cuts these requirements in half.

• Appropriate Patches

The httpd binary is built with the help of several patches to third party packages, which ensure
the released code is buildable and debuggable. These patches are available and distributed from
http://www.apache.org/dist/httpd/binaries/win32/patches applied/ and are recommended to be applied to obtain
identical results as the "official" ASF distributed binaries.

• Microsoft Visual C++ 6.0 (Visual Studio 97) or later.

Apache can be built using the command line tools, or from within the Visual Studio IDE Workbench. The
command line build requires the environment to reflect the PATH, INCLUDE, LIB and other variables that can
be configured with the vcvars32.bat script.

=⇒You may want the Visual Studio Processor Pack for your older version of Visual Studio, or a
full (not Express) version of newer Visual Studio editions, for the ml.exe assembler. This will
allow you to build OpenSSL, if desired, using the more efficient assembly code implementa-
tion.

=⇒Only the Microsoft compiler tool chain is actively supported by the active httpd contributors.
Although the project regularly accepts patches to ensure MinGW and other alternative builds
work and improve upon them, they are not actively maintained and are often broken in the
course of normal development.

• Updated Microsoft Windows Platform SDK, February 2003 or later.

An appropriate Windows Platform SDK is included by default in the full (not express/lite) versions of Visual
C++ 7.1 (Visual Studio 2002) and later, these users can ignore these steps unless explicitly choosing a newer or
different version of the Platform SDK.

To use Visual C++ 6.0 or 7.0 (Studio 2000 .NET), the Platform SDK environment must be prepared using the
setenv.bat script (installed by the Platform SDK) before starting the command line build or launching the
msdev/devenv GUI environment. Installing the Platform SDK for Visual Studio Express versions (2003 and
later) should adjust the default environment appropriately.

"c:\Program Files\Microsoft Visual Studio\VC98\Bin\VCVARS32"
"c:\Program Files\Platform SDK\setenv.bat"

260 CHAPTER 7. PLATFORM-SPECIFIC NOTES

• Perl and awk

Several steps recommended here require a perl interpreter during the build preparation process, but it is otherwise
not required.

To install Apache within the build system, several files are modified using the awk.exe utility. awk was chosen
since it is a very small download (compared with Perl or WSH/VB) and accomplishes the task of modifying
configuration files upon installation. Brian Kernighan’s http://www.cs.princeton.edu/˜bwk/btl.mirror/ site has
a compiled native Win32 binary, http://www.cs.princeton.edu/˜bwk/btl.mirror/awk95.exe which you must save
with the name awk.exe (rather than awk95.exe).

=⇒If awk.exe is not found, Makefile.win’s install target will not perform substitutions in the in-
stalled .conf files. You must manually modify the installed .conf files to allow the server to
start. Search and replace all "@token@" tags as appropriate.

=⇒The Visual Studio IDE will only find awk.exe from the PATH, or executable path specified
in the menu option Tools -> Options -> (Projects ->) Directories. Ensure awk.exe is in your
system path.

=⇒Also note that if you are using Cygwin tools (http://www.cygwin.com/) the awk utility is named
gawk.exe and that the file awk.exe is really a symlink to the gawk.exe file. The Win-
dows command shell does not recognize symlinks, and because of this building InstallBin will
fail. A workaround is to delete awk.exe from the cygwin installation and copy gawk.exe
to awk.exe. Also note the cygwin/mingw ports of gawk 3.0.x were buggy, please upgrade to
3.1.x before attempting to use any gawk port.

• [Optional] zlib library (for MOD DEFLATE)

Zlib must be installed into a srclib subdirectory named zlib. This must be built in-place. Zlib can be
obtained from http://www.zlib.net/ – the MOD DEFLATE is confirmed to work correctly with version 1.2.3.

nmake -f win32\Makefile.msc
nmake -f win32\Makefile.msc test

• [Optional] OpenSSL libraries (for MOD SSL and ab.exe with ssl support)

=⇒The OpenSSL library is cryptographic software. The country in which you currently reside
may have restrictions on the import, possession, use, and/or re-export to another country, of en-
cryption software. BEFORE using any encryption software, please check your country’s laws,
regulations and policies concerning the import, possession, or use, and re-export of encryption
software, to see if this is permitted. See http://www.wassenaar.org/ for more information.

Configuring and building OpenSSL requires perl to be installed.

OpenSSL must be installed into a srclib subdirectory named openssl, obtained from
http://www.openssl.org/source/, in order to compile MOD SSL or the abs.exe project, which is ab.c
with SSL support enabled. To prepare OpenSSL to be linked to Apache mod ssl or abs.exe, and disable patent
encumbered features in OpenSSL, you might use the following build commands:

perl Configure no-rc5 no-idea enable-mdc2 enable-zlib VC-WIN32
-Ipath/to/srclib/zlib -Lpath/to/srclib/zlib
ms\do masm.bat

nmake -f ms\ntdll.mak

=⇒It is not advisable to use zlib-dynamic, as that transfers the cost of deflating SSL streams to
the first request which must load the zlib dll. Note the suggested patch enables the -L flag to
work with windows builds, corrects the name of zdll.lib and ensures .pdb files are generated
for troubleshooting. If the assembler is not installed, you would add no-asm above and use
ms\do ms.bat instead of the ms\do masm.bat script.

7.3. COMPILING APACHE FOR MICROSOFT WINDOWS 261

• [Optional] Database libraries (for MOD DBD and MOD AUTHN DBM)

The apr-util library exposes dbm (keyed database) and dbd (query oriented database) client functionality to the
httpd server and its modules, such as authentication and authorization. The sdbm dbm and odbc dbd providers
are compiled unconditionally.

The dbd support includes the Oracle instantclient package, MySQL, PostgreSQL and sqlite. To build these all,
for example, set up the LIB to include the library path, INCLUDE to include the headers path, and PATH to
include the dll bin path of all four SDK’s, and set the DBD LIST environment variable to inform the build which
client driver SDKs are installed correctly, e.g.;

set DBD LIST=sqlite3 pgsql oracle mysql

Similarly, the dbm support can be extended with DBM LIST to build a Berkeley DB provider (db) and/or gdbm
provider, by similarly configuring LIB, INCLUDE and PATH first to ensure the client library libs and headers
are available.

set DBM LIST=db gdbm

=⇒Depending on the choice of database distributions, it may be necessary to change the actual
link target name (e.g. gdbm.lib vs. libgdb.lib) that are listed in the corresponding .dsp/.mak
files within the directories srclib\apr-util\dbd or ...\dbm.

See the README-win32.txt file for more hints on obtaining the various database driver SDKs.

Building from Unix sources

The policy of the Apache HTTP Server project is to only release Unix sources. Windows source packages made
available for download have been supplied by volunteers and may not be available for every release. You can still
build the server on Windows from the Unix source tarball with just a few additional steps.

1. Download and unpack the Unix source tarball for the latest version.

2. Download and unpack the Unix source tarball for latest version of APR, AR-Util and APR-Iconv, place these
sources in directories httpd-2.x.x\srclib\apr, httpd-2.x.x\srclib\apr-util and httpd-2.x.x\srclib\apr-iconv

3. Open a Command Prompt and CD to the httpd-2.x.x folder

4. Run the line endings conversion utility at the prompt;

perl srclib\apr\build\lineends.pl

You can now build the server with the Visual Studio development environment using the IDE. Command-Line builds
of the server are not possible from Unix sources unless you export .mak files as explained below.

262 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Command-Line Build

Makefile.win is the top level Apache makefile. To compile Apache on Windows, simply use one of the following
commands to build the release or debug flavor:

nmake /f Makefile.win apacher

nmake /f Makefile.win apached

Either command will compile Apache. The latter will disable optimization of the resulting files, making it easier to
single step the code to find bugs and track down problems.

You can add your apr-util dbd and dbm provider choices with the additional make (environment) variables DBD LIST
and DBM LIST, see the comments about [Optional] Database libraries, above. Review the initial comments in Make-
file.win for additional options that can be provided when invoking the build.

Developer Studio Workspace IDE Build

Apache can also be compiled using VC++’s Visual Studio development environment. To simplify this process, a Visual
Studio workspace, Apache.dsw, is provided. This workspace exposes the entire list of working .dsp projects that
are required for the complete Apache binary release. It includes dependencies between the projects to assure that they
are built in the appropriate order.

Open the Apache.dsw workspace, and select InstallBin (Release or Debug build, as desired) as the Active
Project. InstallBin causes all related project to be built, and then invokes Makefile.win to move the compiled
executables and dlls. You may personalize the INSTDIR= choice by changing InstallBin’s Settings, General tab,
Build command line entry. INSTDIR defaults to the /Apache2 directory. If you only want a test compile (without
installing) you may build the BuildBin project instead.

The .dsp project files are distributed in Visual Studio 6.0 (98) format. Visual C++ 5.0 (97) will recognize them.
Visual Studio 2002 (.NET) and later users must convert Apache.dsw plus the .dsp files into an Apache.sln
plus .msproj files. Be sure you reconvert the .msproj file again if its source .dsp file changes! This is really
trivial, just open Apache.dsw in the VC++ 7.0 IDE once again and reconvert.

=⇒There is a flaw in the .vcproj conversion of .dsp files. devenv.exe will mis-parse the /D flag for
RC flags containing long quoted /D’efines which contain spaces. The command:

perl srclib\apr\build\cvtdsp.pl -2005

will convert the /D flags for RC flags to use an alternate, parseable syntax; unfortunately this
syntax isn’t supported by Visual Studio 97 or its exported .mak files. These /D flags are used to
pass the long description of the mod apachemodule.so files to the shared .rc resource version-
identifier build.

Visual Studio 2002 (.NET) and later users should also use the Build menu, Configuration Manager dialog to uncheck
both the Debug and Release Solution modules abs, MOD DEFLATE and MOD SSL components, as well as ev-
ery component starting with apr db*. These modules are built by invoking nmake, or the IDE directly with the
BinBuild target, which builds those modules conditionally if the srclib directories openssl and/or zlib exist,
and based on the setting of DBD LIST and DBM LIST environment variables.

Exporting command-line .mak files

Exported .mak files pose a greater hassle, but they are required for Visual C++ 5.0 users to build MOD SSL, abs (ab
with SSL support) and/or MOD DEFLATE. The .mak files also support a broader range of C++ tool chain distributions,
such as Visual Studio Express.

7.3. COMPILING APACHE FOR MICROSOFT WINDOWS 263

You must first build all projects in order to create all dynamic auto-generated targets, so that dependencies can be
parsed correctly. Build the entire project from within the Visual Studio 6.0 (98) IDE, using the BuildAll target,
then use the Project Menu Export for all makefiles (checking on "with dependencies".) Run the following command
to correct absolute paths into relative paths so they will build anywhere:

perl srclib\apr\build\fixwin32mak.pl

You must type this command from the top level directory of the httpd source tree. Every .mak and .dep project file
within the current directory and below will be corrected, and the timestamps adjusted to reflect the .dsp.

Always review the generated .mak and .dep files for Platform SDK or other local, machine specific file paths. The
DevStudio\Common\MSDev98\bin\ (VC6) directory contains a sysincl.dat file, which lists all exceptions.
Update this file (including both forward and backslashed paths, such as both sys/time.h and sys\time.h) to
ignore such newer dependencies. Including local-install paths in a distributed .mak file will cause the build to fail
completely.

If you contribute back a patch that revises project files, we must commit project files in Visual Studio 6.0 format.
Changes should be simple, with minimal compilation and linkage flags that can be recognized by all Visual Studio
environments.

Installation

Once Apache has been compiled, it needs to be installed in its server root directory. The default is the \Apache2
directory, of the same drive.

To build and install all the files into the desired folder dir automatically, use one of the following nmake commands:

nmake /f Makefile.win installr INSTDIR=dir

nmake /f Makefile.win installd INSTDIR=dir

The dir argument to INSTDIR provides the installation directory; it can be omitted if Apache is to be installed into
\Apache22 (of the current drive).

Warning about building Apache from the development tree

=⇒Note only the .dsp files are maintained between release builds. The .mak files are NOT
regenerated, due to the tremendous waste of reviewer’s time. Therefore, you cannot rely on the
NMAKE commands above to build revised .dsp project files unless you then export all .mak
files yourself from the project. This is unnecessary if you build from within the Microsoft
Developer Studio environment.

Building httpd with cmake

The primary documentation for this build mechanism is in the README.cmake file in the source distribution. Refer
to that file for detailed instructions.

Building httpd with cmake requires building APR and APR-util separately. Refer to their README.cmake files for
instructions.

The primary limitations of the cmake-based build are inherited from the APR-util project, and are listed below because
of their impact on httpd:

264 CHAPTER 7. PLATFORM-SPECIFIC NOTES

• No cmake build for the APR-iconv subproject is available, and the APR-util cmake build cannot consume an
existing APR-iconv build. Thus, MOD CHARSET LITE and possibly some third-party modules cannot be used.

• The cmake build for the APR-util subproject does not support most of the optional DBM and DBD libraries
supported by the included Visual Studio project files. This limits the database backends supported by a number
of bundled and third-party modules.

7.4. USING APACHE WITH RPM BASED SYSTEMS (REDHAT / CENTOS / FEDORA) 265

7.4 Using Apache With RPM Based Systems (Redhat / CentOS / Fedora)

While many distributions make Apache httpd available as operating system supported packages, it can sometimes be
desirable to install and use the canonical version of Apache httpd on these systems, replacing the natively provided
versions of the packages.

While the Apache httpd project does not currently create binary RPMs for the various distributions out there, it is easy
to build your own binary RPMs from the canonical Apache httpd tarball.

This document explains how to build, install, configure and run Apache httpd 2.4 under Unix systems supporting the
RPM packaging format.

Creating a Source RPM

The Apache httpd source tarball can be converted into an SRPM as follows:

rpmbuild -ts httpd-2.4.x.tar.bz2

Building RPMs

RPMs can be built directly from the Apache httpd source tarballs using the following command:

rpmbuild -tb httpd-2.4.x.tar.bz2

Corresponding "-devel" packages will be required to be installed on your build system prior to building the RPMs,
the rpmbuild command will automatically calculate what RPMs are required and will list any dependencies that are
missing on your system. These "-devel" packages will not be required after the build is completed, and can be safely
removed.

If successful, the following RPMs will be created:

httpd-2.4.x-1.i686.rpm The core server and basic module set.

httpd-debuginfo-2.4.x-1.i686.rpm Debugging symbols for the server and all modules.

httpd-devel-2.4.x-1.i686.rpm Headers and development files for the server.

httpd-manual-2.4.x-1.i686.rpm The webserver manual.

httpd-tools-2.4.x-1.i686.rpm Supporting tools for the webserver.

mod authnz ldap-2.4.x-1.i686.rpm MOD LDAP and MOD AUTHNZ LDAP, with corresponding dependency on
openldap.

mod lua-2.4.x-1.i686.rpm MOD LUA module, with corresponding dependency on lua.

mod proxy html-2.4.x-1.i686.rpm MOD PROXY HTML module, with corresponding dependency on libxml2.

mod socache dc-2.4.x-1.i686.rpm MOD SOCACHE DC module, with corresponding dependency on distcache.

mod ssl-2.4.x-1.i686.rpm MOD SSL module, with corresponding dependency on openssl.

266 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Installing the Server

The httpd RPM is the only RPM necessary to get a basic server to run. Install it as follows:

rpm -U httpd-2.4.x-1.i686.rpm

Self contained modules are included with the server. Modules that depend on external libraries are provided as separate
RPMs to install if needed.

Configuring the Default Instance of Apache httpd

The default configuration for the server is installed by default beneath the /etc/httpd directory, with logs writ-
ten by default to /var/log/httpd. The environment for the webserver is set by default within the optional
/etc/sysconfig/httpd file.

Start the server as follows:

service httpd restart

Configuring Additional Instances of Apache httpd on the Same Machine

It is possible to configure additional instances of the Apache httpd server running independently alongside each other
on the same machine. These instances can have independent configurations, and can potentially run as separate users
if so configured.

This was done by making the httpd startup script aware of its own name. This name is then used to find the environment
file for the server, and in turn, the server root of the server instance.

To create an additional instance called httpd-additional, follow these steps:

• Create a symbolic link to the startup script for the additional server:

ln -s /etc/rc.d/init.d/httpd /etc/rc.d/init.d/httpd-additional

chkconfig --add httpd-additional

• Create an environment file for the server, using the /etc/sysconfig/httpd file as a template:

template from httpd

cp /etc/sysconfig/httpd /etc/sysconfig/httpd-additional

blank template

touch /etc/sysconfig/httpd-additional

Edit /etc/sysconfig/httpd-additional and pass the server root of the new server instance within
the OPTIONS environment variable.

OPTIONS="-d /etc/httpd-additional -f conf/httpd-additional.conf"

7.4. USING APACHE WITH RPM BASED SYSTEMS (REDHAT / CENTOS / FEDORA) 267

• Edit the server configuration file /etc/httpd-additional/conf/httpd-additional.conf to en-
sure the correct ports and paths are configured.

• Start the server as follows:

service httpd-additional restart

• Repeat this process as required for each server instance.

268 CHAPTER 7. PLATFORM-SPECIFIC NOTES

7.5 Using Apache With Novell NetWare

This document explains how to install, configure and run Apache 2.0 under Novell NetWare 6.0 and above. If you find
any bugs, or wish to contribute in other ways, please use our bug reporting page.7

The bug reporting page and dev-httpd mailing list are not provided to answer questions about configuration or run-
ning Apache. Before you submit a bug report or request, first consult this document, the Frequently Asked Ques-
tions8 page and the other relevant documentation topics. If you still have a question or problem, post it to the
novell.devsup.webserver9 newsgroup, where many Apache users are more than willing to answer new and obscure
questions about using Apache on NetWare.

Most of this document assumes that you are installing Apache from a binary distribution. If you want to compile
Apache yourself (possibly to help with development, or to track down bugs), see the section on Compiling Apache for
NetWare below.

Requirements

Apache 2.0 is designed to run on NetWare 6.0 service pack 3 and above. If you are running a service pack less than
SP3, you must install the latest NetWare Libraries for C (LibC)10.

NetWare service packs are available here11.

Apache 2.0 for NetWare can also be run in a NetWare 5.1 environment as long as the latest service pack or the latest
version of the NetWare Libraries for C (LibC)12 has been installed . WARNING: Apache 2.0 for NetWare has not
been targeted for or tested in this environment.

Downloading Apache for NetWare

Information on the latest version of Apache can be found on the Apache web server at http://www.apache.org/. This
will list the current release, any more recent alpha or beta-test releases, together with details of mirror web and
anonymous ftp sites. Binary builds of the latest releases of Apache 2.0 for NetWare can be downloaded from here13.

Installing Apache for NetWare

There is no Apache install program for NetWare currently. If you are building Apache 2.0 for NetWare from source,
you will need to copy the files over to the server manually.

Follow these steps to install Apache on NetWare from the binary download (assuming you will install to
sys:/apache2):

• Unzip the binary download file to the root of the SYS: volume (may be installed to any volume)

• Edit the httpd.conf file setting SERVERROOT and SERVERNAME along with any file path values to reflect
your correct server settings

• Add SYS:/APACHE2 to the search path, for example:

SEARCH ADD SYS:\APACHE2

7http://httpd.apache.org/bug report.html
8http://wiki.apache.org/httpd/FAQ
9news://developer-forums.novell.com/novell.devsup.webserver

10http://developer.novell.com/ndk/libc.htm
11http://support.novell.com/misc/patlst.htm#nw
12http://developer.novell.com/ndk/libc.htm
13http://www.apache.org/dist/httpd/binaries/netware

http://httpd.apache.org/bug_report.html
http://wiki.apache.org/httpd/FAQ
news://developer-forums.novell.com/novell.devsup.webserver
http://developer.novell.com/ndk/libc.htm
http://support.novell.com/misc/patlst.htm#nw
http://developer.novell.com/ndk/libc.htm
http://www.apache.org/dist/httpd/binaries/netware

7.5. USING APACHE WITH NOVELL NETWARE 269

Follow these steps to install Apache on NetWare manually from your own build source (assuming you will install to
sys:/apache2):

• Create a directory called Apache2 on a NetWare volume

• Copy APACHE2.NLM, APRLIB.NLM to SYS:/APACHE2

• Create a directory under SYS:/APACHE2 called BIN

• Copy HTDIGEST.NLM, HTPASSWD.NLM, HTDBM.NLM, LOGRES.NLM, ROTLOGS.NLM to
SYS:/APACHE2/BIN

• Create a directory under SYS:/APACHE2 called CONF

• Copy the HTTPD-STD.CONF file to the SYS:/APACHE2/CONF directory and rename to HTTPD.CONF

• Copy the MIME.TYPES, CHARSET.CONV and MAGIC files to SYS:/APACHE2/CONF directory

• Copy all files and subdirectories in \HTTPD-2.0\DOCS\ICONS to SYS:/APACHE2/ICONS

• Copy all files and subdirectories in \HTTPD-2.0\DOCS\MANUAL to SYS:/APACHE2/MANUAL

• Copy all files and subdirectories in \HTTPD-2.0\DOCS\ERROR to SYS:/APACHE2/ERROR

• Copy all files and subdirectories in \HTTPD-2.0\DOCS\DOCROOT to SYS:/APACHE2/HTDOCS

• Create the directory SYS:/APACHE2/LOGS on the server

• Create the directory SYS:/APACHE2/CGI-BIN on the server

• Create the directory SYS:/APACHE2/MODULES and copy all nlm modules into the modules directory

• Edit the HTTPD.CONF file searching for all @@Value@@ markers and replacing them with the appropriate
setting

• Add SYS:/APACHE2 to the search path, for example:

SEARCH ADD SYS:\APACHE2

Apache may be installed to other volumes besides the default SYS volume.

During the build process, adding the keyword "install" to the makefile command line will automatically produce a
complete distribution package under the subdirectory DIST. Install Apache by simply copying the distribution that
was produced by the makfiles to the root of a NetWare volume (see: Compiling Apache for NetWare below).

Running Apache for NetWare

To start Apache just type apache at the console. This will load apache in the OS address space. If you prefer to load
Apache in a protected address space you may specify the address space with the load statement as follows:

load address space = apache2 apache2

This will load Apache into an address space called apache2. Running multiple instances of Apache concurrently on
NetWare is possible by loading each instance into its own protected address space.

After starting Apache, it will be listening to port 80 (unless you changed the LISTEN directive in the configuration
files). To connect to the server and access the default page, launch a browser and enter the server’s name or address.
This should respond with a welcome page, and a link to the Apache manual. If nothing happens or you get an error,
look in the error log file in the logs directory.

Once your basic installation is working, you should configure it properly by editing the files in the conf directory.

To unload Apache running in the OS address space just type the following at the console:

270 CHAPTER 7. PLATFORM-SPECIFIC NOTES

unload apache2

or

apache2 shutdown

If apache is running in a protected address space specify the address space in the unload statement:

unload address space = apache2 apache2

When working with Apache it is important to know how it will find the configuration files. You can specify a config-
uration file on the command line in two ways:

• -f specifies a path to a particular configuration file

apache2 -f "vol:/my server/conf/my.conf"

apache -f test/test.conf

In these cases, the proper SERVERROOT should be set in the configuration file.

If you don’t specify a configuration file name with -f, Apache will use the file name compiled into the
server, usually conf/httpd.conf. Invoking Apache with the -V switch will display this value labeled as
SERVER CONFIG FILE. Apache will then determine its SERVERROOT by trying the following, in this order:

• A ServerRoot directive via a -C switch.

• The -d switch on the command line.

• Current working directory

• The server root compiled into the server.

The server root compiled into the server is usually sys:/apache2. invoking apache with the -V switch will display
this value labeled as HTTPD ROOT.

Apache 2.0 for NetWare includes a set of command line directives that can be used to modify or display information
about the running instance of the web server. These directives are only available while Apache is running. Each of
these directives must be preceded by the keyword APACHE2.

RESTART Instructs Apache to terminate all running worker threads as they become idle, reread the configuration
file and restart each worker thread based on the new configuration.

VERSION Displays version information about the currently running instance of Apache.

MODULES Displays a list of loaded modules both built-in and external.

DIRECTIVES Displays a list of all available directives.

SETTINGS Enables or disables the thread status display on the console. When enabled, the state of each running
threads is displayed on the Apache console screen.

SHUTDOWN Terminates the running instance of the Apache web server.

HELP Describes each of the runtime directives.

By default these directives are issued against the instance of Apache running in the OS address space. To issue a
directive against a specific instance running in a protected address space, include the -p parameter along with the name
of the address space. For more information type "apache2 Help" on the command line.

7.5. USING APACHE WITH NOVELL NETWARE 271

Configuring Apache for NetWare

Apache is configured by reading configuration files usually stored in the conf directory. These are the same as files
used to configure the Unix version, but there are a few different directives for Apache on NetWare. See the Apache
module documentation (p. 1017) for all the available directives.

The main differences in Apache for NetWare are:

• Because Apache for NetWare is multithreaded, it does not use a separate process for each request, as Apache
does on some Unix implementations. Instead there are only threads running: a parent thread, and multiple child
or worker threads which handle the requests.

Therefore the "process"-management directives are different:

MAXCONNECTIONSPERCHILD - Like the Unix directive, this controls how many connections a worker thread
will serve before exiting. The recommended default, MaxConnectionsPerChild 0, causes the thread to
continue servicing request indefinitely. It is recommended on NetWare, unless there is some specific reason,
that this directive always remain set to 0.

STARTTHREADS - This directive tells the server how many threads it should start initially. The recommended
default is StartThreads 50.

MINSPARETHREADS - This directive instructs the server to spawn additional worker threads if the number of
idle threads ever falls below this value. The recommended default is MinSpareThreads 10.

MAXSPARETHREADS - This directive instructs the server to begin terminating worker threads if the number of
idle threads ever exceeds this value. The recommended default is MaxSpareThreads 100.

MAXTHREADS - This directive limits the total number of work threads to a maximum value. The recommended
default is ThreadsPerChild 250.

THREADSTACKSIZE - This directive tells the server what size of stack to use for the individual worker thread.
The recommended default is ThreadStackSize 65536.

• The directives that accept filenames as arguments must use NetWare filenames instead of Unix names. However,
because Apache uses Unix-style names internally, forward slashes must be used rather than backslashes. It is
recommended that all rooted file paths begin with a volume name. If omitted, Apache will assume the SYS:
volume which may not be correct.

• Apache for NetWare has the ability to load modules at runtime, without recompiling the server. If Apache is
compiled normally, it will install a number of optional modules in the \Apache2\modules directory. To
activate these, or other modules, the LOADMODULE directive must be used. For example, to active the status
module, use the following:

LoadModule status module modules/status.nlm

Information on creating loadable modules (p. 839) is also available.

Additional NetWare specific directives:

• CGIMAPEXTENSION - This directive maps a CGI file extension to a script interpreter.

• SECURELISTEN - Enables SSL encryption for a specified port.

• NWSSLTRUSTEDCERTS - Adds trusted certificates that are used to create secure connections to proxied
servers.

• NWSSLUPGRADEABLE - Allow a connection created on the specified address/port to be upgraded to an SSL
connection.

272 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Compiling Apache for NetWare

Compiling Apache requires MetroWerks CodeWarrior 6.x or higher. Once Apache has been built, it can be installed
to the root of any NetWare volume. The default is the sys:/Apache2 directory.

Before running the server you must fill out the conf directory. Copy the file HTTPD-STD.CONF from the distribution
conf directory and rename it to HTTPD.CONF. Edit the HTTPD.CONF file searching for all @@Value@@ markers
and replacing them with the appropriate setting. Copy over the conf/magic and conf/mime.types files as well.
Alternatively, a complete distribution can be built by including the keyword install when invoking the makefiles.

Requirements:

The following development tools are required to build Apache 2.0 for NetWare:

• Metrowerks CodeWarrior 6.0 or higher with the NetWare PDK 3.014 or higher.

• NetWare Libraries for C (LibC)15

• LDAP Libraries for C16

• ZLIB Compression Library source code17

• AWK utility (awk, gawk or similar). AWK can be downloaded from
http://developer.novell.com/ndk/apache.htm. The utility must be found in your windows path and
must be named awk.exe.

• To build using the makefiles, you will need GNU make version 3.78.1 (GMake) available at
http://developer.novell.com/ndk/apache.htm.

Building Apache using the NetWare makefiles:

• Set the environment variable NOVELLLIBC to the location of the NetWare Libraries for C SDK, for example:

Set NOVELLLIBC=c:\novell\ndk\libc

• Set the environment variable METROWERKS to the location where you installed the Metrowerks CodeWarrior
compiler, for example:

Set METROWERKS=C:\Program Files\Metrowerks\CodeWarrior

If you installed to the default location C:\Program Files\Metrowerks\CodeWarrior, you don’t need
to set this.

• Set the environment variable LDAPSDK to the location where you installed the LDAP Libraries for C, for
example:

Set LDAPSDK=c:\Novell\NDK\cldapsdk\NetWare\libc

• Set the environment variable ZLIBSDK to the location where you installed the source code for the ZLib Library,
for example:

14http://developer.novell.com/ndk/cwpdk.htm
15http://developer.novell.com/ndk/libc.htm
16http://developer.novell.com/ndk/cldap.htm
17http://www.gzip.org/zlib/

http://developer.novell.com/ndk/cwpdk.htm
http://developer.novell.com/ndk/libc.htm
http://developer.novell.com/ndk/cldap.htm
http://www.gzip.org/zlib/

7.5. USING APACHE WITH NOVELL NETWARE 273

Set ZLIBSDK=D:\NOVELL\zlib

• Set the environment variable PCRESDK to the location where you installed the source code for the PCRE
Library, for example:

Set PCRESDK=D:\NOVELL\pcre

• Set the environment variable AP WORK to the full path of the httpd source code directory.

Set AP WORK=D:\httpd-2.0.x

• Set the environment variable APR WORK to the full path of the apr source code directory. Typically
\httpd\srclib\apr but the APR project can be outside of the httpd directory structure.

Set APR WORK=D:\apr-1.x.x

• Set the environment variable APU WORK to the full path of the apr-util source code directory. Typically
\httpd\srclib\apr-util but the APR-UTIL project can be outside of the httpd directory structure.

Set APU WORK=D:\apr-util-1.x.x

• Make sure that the path to the AWK utility and the GNU make utility (gmake.exe) have been included in the
system’s PATH environment variable.

• Download the source code and unzip to an appropriate directory on your workstation.

• Change directory to \httpd-2.0 and build the prebuild utilities by running "gmake -f nwgnumakefile
prebuild". This target will create the directory \httpd-2.0\nwprebuild and copy each of the utilities
to this location that are necessary to complete the following build steps.

• Copy the files \httpd-2.0\nwprebuild\GENCHARS.nlm and
\httpd-2.0\nwprebuild\DFTABLES.nlm to the SYS: volume of a NetWare server and run
them using the following commands:

SYS:\genchars > sys:\test char.h

SYS:\dftables sys:\chartables.c

• Copy the files test char.h and chartables.c to the directory \httpd-2.0\os\netware on the
build machine.

• Change directory to \httpd-2.0 and build Apache by running "gmake -f nwgnumakefile". You can
create a distribution directory by adding an install parameter to the command, for example:

gmake -f nwgnumakefile install

274 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Additional make options

• gmake -f nwgnumakefileBuilds release versions of all of the binaries and copies them to a \release
destination directory.

• gmake -f nwgnumakefile DEBUG=1Builds debug versions of all of the binaries and copies them to a
\debug destination directory.

• gmake -f nwgnumakefile installCreates a complete Apache distribution with binaries, docs and ad-
ditional support files in a \dist\Apache2 directory.

• gmake -f nwgnumakefile prebuildBuilds all of the prebuild utilities and copies them to the
\nwprebuild directory.

• gmake -f nwgnumakefile installdevSame as install but also creates a \lib and \include direc-
tory in the destination directory and copies headers and import files.

• gmake -f nwgnumakefile cleanCleans all object files and binaries from the \release.o or
\debug.o build areas depending on whether DEBUG has been defined.

• gmake -f nwgnumakefile clobber allSame as clean and also deletes the distribution directory if it
exists.

Additional environment variable options

• To build all of the experimental modules, set the environment variable EXPERIMENTAL:

Set EXPERIMENTAL=1

• To build Apache using standard BSD style sockets rather than Winsock, set the environment variable
USE STDSOCKETS:

Set USE STDSOCKETS=1

Building mod ssl for the NetWare platform

By default Apache for NetWare uses the built-in module MOD NW SSL to provide SSL services. This module simply
enables the native SSL services implemented in NetWare OS to handle all encryption for a given port. Alternatively,
mod ssl can also be used in the same manner as on other platforms.

Before mod ssl can be built for the NetWare platform, the OpenSSL libraries must be provided. This can be done
through the following steps:

• Download the recent OpenSSL 0.9.8 release source code from the OpenSSL Source18 page (older 0.9.7 versions
need to be patched and are therefore not recommended).

• Edit the file NetWare/set env.bat and modify any tools and utilities paths so that they correspond to your
build environment.

• From the root of the OpenSSL source directory, run the following scripts:

Netware\set env netware-libc

Netware\build netware-libc

18http://www.openssl.org/source/

http://www.openssl.org/source/

7.5. USING APACHE WITH NOVELL NETWARE 275

For performance reasons you should enable to build with ASM code. Download NASM from the SF site19.
Then configure OpenSSL to use ASM code:

Netware\build netware-libc nw-nasm enable-mdc2 enable-md5

Warning: dont use the CodeWarrior Assembler - it produces broken code!

• Before building Apache, set the environment variable OSSLSDK to the full path to the root of the openssl source
code directory, and set WITH MOD SSL to 1.

Set OSSLSDK=d:\openssl-0.9.8x
Set WITH MOD SSL=1

19http://nasm.sourceforge.net/

http://nasm.sourceforge.net/

276 CHAPTER 7. PLATFORM-SPECIFIC NOTES

7.6 Running a High-Performance Web Server on HPUX

Date: Wed, 05 Nov 1997 16:59:34 -0800
From: Rick Jones <raj@cup.hp.com>
Reply-To: raj@cup.hp.com
Organization: Network Performance
Subject: HP-UX tuning tips

Here are some tuning tips for HP-UX to add to the tuning page.

For HP-UX 9.X: Upgrade to 10.20
For HP-UX 10.[00—01—10]: Upgrade to 10.20

For HP-UX 10.20:

Install the latest cumulative ARPA Transport Patch. This will allow you to configure the size of the TCP connection
lookup hash table. The default is 256 buckets and must be set to a power of two. This is accomplished with adb
against the *disc* image of the kernel. The variable name is tcp hash size. Notice that it’s critically important
that you use "W" to write a 32 bit quantity, not "w" to write a 16 bit value when patching the disc image because the
tcp hash size variable is a 32 bit quantity.

How to pick the value? Examine the output of ftp://ftp.cup.hp.com/dist/networking/tools/connhist and see how many
total TCP connections exist on the system. You probably want that number divided by the hash table size to be
reasonably small, say less than 10. Folks can look at HP’s SPECweb96 disclosures for some common settings. These
can be found at http://www.specbench.org/. If an HP-UX system was performing at 1000 SPECweb96 connections
per second, the TIME WAIT time of 60 seconds would mean 60,000 TCP "connections" being tracked.

Folks can check their listen queue depths with ftp://ftp.cup.hp.com/dist/networking/misc/listenq.

If folks are running Apache on a PA-8000 based system, they should consider "chatr’ing" the Apache executable to
have a large page size. This would be "chatr +pi L <BINARY>". The GID of the running executable must have
MLOCK privileges. Setprivgrp(1m) should be consulted for assigning MLOCK. The change can be validated by
running Glance and examining the memory regions of the server(s) to make sure that they show a non-trivial fraction
of the text segment being locked.

If folks are running Apache on MP systems, they might consider writing a small program that uses mpctl() to bind
processes to processors. A simple pid % numcpu algorithm is probably sufficient. This might even go into the
source code.

If folks are concerned about the number of FIN WAIT 2 connections, they can use nettune to shrink the value of
tcp keepstart. However, they should be careful there - certainly do not make it less than oh two to four minutes.
If tcp hash size has been set well, it is probably OK to let the FIN WAIT 2’s take longer to timeout (perhaps
even the default two hours) - they will not on average have a big impact on performance.

There are other things that could go into the code base, but that might be left for another email. Feel free to drop me a
message if you or others are interested.

sincerely,

rick jones

http://www.netperf.org/netperf/

7.7. THE APACHE EBCDIC PORT 277

7.7 The Apache EBCDIC Port

! Warning: This document has not been updated to take into account changes made in the 2.0
version of the Apache HTTP Server. Some of the information may still be relevant, but please
use it with care.

Overview of the Apache EBCDIC Port

Version 1.3 of the Apache HTTP Server was the first version which included a port to a (non-ASCII) mainframe
machine which uses the EBCDIC character set as its native codeset.

(It is the SIEMENS family of mainframes running the BS2000/OSD operating system20. This mainframe OS nowadays
features a SVR4-derived POSIX subsystem).

The port was started initially to

• prove the feasibility of porting the Apache HTTP server21 to this platform

• find a "worthy and capable" successor for the venerable CERN-3.022 daemon (which was ported a couple of
years ago), and to

• prove that Apache’s preforking process model can on this platform easily outperform the accept-fork-serve
model used by CERN by a factor of 5 or more.

This document serves as a rationale to describe some of the design decisions of the port to this machine.

Design Goals

One objective of the EBCDIC port was to maintain enough backwards compatibility with the (EBCDIC) CERN server
to make the transition to the new server attractive and easy. This required the addition of a configurable method to
define whether a HTML document was stored in ASCII (the only format accepted by the old server) or in EBCDIC
(the native document format in the POSIX subsystem, and therefore the only realistic format in which the other POSIX
tools like grep or sed could operate on the documents). The current solution to this is a "pseudo-MIME-format"
which is intercepted and interpreted by the Apache server (see below). Future versions might solve the problem by
defining an "ebcdic-handler" for all documents which must be converted.

Technical Solution

Since all Apache input and output is based upon the BUFF data type and its methods, the easiest solution was to add
the conversion to the BUFF handling routines. The conversion must be settable at any time, so a BUFF flag was added
which defines whether a BUFF object has currently enabled conversion or not. This flag is modified at several points
in the HTTP protocol:

• set before a request is received (because the request and the request header lines are always in ASCII format)

• set/unset when the request body is received - depending on the content type of the request body (because the
request body may contain ASCII text or a binary file)

• set before a reply header is sent (because the response header lines are always in ASCII format)

• set/unset when the response body is sent - depending on the content type of the response body (because the
response body may contain text or a binary file)

20http://www.siemens.de/servers/bs2osd/osdbc us.htm
21http://httpd.apache.org/
22http://www.w3.org/Daemon/

http://www.siemens.de/servers/bs2osd/osdbc_us.htm
http://httpd.apache.org/
http://www.w3.org/Daemon/

278 CHAPTER 7. PLATFORM-SPECIFIC NOTES

Porting Notes

1. The relevant changes in the source are #ifdef’ed into two categories:

#ifdef CHARSET EBCDIC Code which is needed for any EBCDIC based machine. This includes character
translations, differences in contiguity of the two character sets, flags which indicate which part of the
HTTP protocol has to be converted and which part doesn’t etc.

#ifdef OSD POSIX Code which is needed for the SIEMENS BS2000/OSD mainframe platform only.
This deals with include file differences and socket implementation topics which are only required on the
BS2000/OSD platform.

2. The possibility to translate between ASCII and EBCDIC at the socket level (on BS2000 POSIX, there is a socket
option which supports this) was intentionally not chosen, because the byte stream at the HTTP protocol level
consists of a mixture of protocol related strings and non-protocol related raw file data. HTTP protocol strings
are always encoded in ASCII (the GET request, any Header: lines, the chunking information etc.) whereas the
file transfer parts (i.e., GIF images, CGI output etc.) should usually be just "passed through" by the server. This
separation between "protocol string" and "raw data" is reflected in the server code by functions like bgets()
or rvputs() for strings, and functions like bwrite() for binary data. A global translation of everything
would therefore be inadequate.

(In the case of text files of course, provisions must be made so that EBCDIC documents are always served in
ASCII)

3. This port therefore features a built-in protocol level conversion for the server-internal strings (which the compiler
translated to EBCDIC strings) and thus for all server-generated documents. The hard coded ASCII escapes \012
and \015 which are ubiquitous in the server code are an exception: they are already the binary encoding of the
ASCII \n and \r and must not be converted to ASCII a second time. This exception is only relevant for server-
generated strings; and external EBCDIC documents are not expected to contain ASCII newline characters.

4. By examining the call hierarchy for the BUFF management routines, I added an "ebcdic/ascii conversion layer"
which would be crossed on every puts/write/get/gets, and a conversion flag which allowed enabling/disabling
the conversions on-the-fly. Usually, a document crosses this layer twice from its origin source (a file or CGI
output) to its destination (the requesting client): file -> Apache, and Apache -> client.

The server can now read the header lines of a CGI-script output in EBCDIC format, and then find out that
the remainder of the script’s output is in ASCII (like in the case of the output of a WWW Counter program:
the document body contains a GIF image). All header processing is done in the native EBCDIC format; the
server then determines, based on the type of document being served, whether the document body (except for the
chunking information, of course) is in ASCII already or must be converted from EBCDIC.

5. For Text documents (MIME types text/plain, text/html etc.), an implicit translation to ASCII can be used, or (if
the users prefer to store some documents in raw ASCII form for faster serving, or because the files reside on a
NFS-mounted directory tree) can be served without conversion.

Example:
to serve files with the suffix .ahtml as a raw ASCII text/html document without implicit conversion (and
suffix .ascii as ASCII text/plain), use the directives:

AddType text/x-ascii-html .ahtml

AddType text/x-ascii-plain .ascii

Similarly, any text/foo MIME type can be served as "raw ASCII" by configuring a MIME type
"text/x-ascii-foo" for it using AddType.

6. Non-text documents are always served "binary" without conversion. This seems to be the most sensible choice
for, .e.g., GIF/ZIP/AU file types. This of course requires the user to copy them to the mainframe host using the
"rcp -b" binary switch.

7.7. THE APACHE EBCDIC PORT 279

7. Server parsed files are always assumed to be in native (i.e., EBCDIC) format as used on the machine, and are
converted after processing.

8. For CGI output, the CGI script determines whether a conversion is needed or not: by setting the appropriate
Content-Type, text files can be converted, or GIF output can be passed through unmodified. An example for the
latter case is the wwwcount program which we ported as well.

Document Storage Notes

Binary Files

All files with a Content-Type: which does not start with text/ are regarded as binary files by the server and are
not subject to any conversion. Examples for binary files are GIF images, gzip-compressed files and the like.

When exchanging binary files between the mainframe host and a Unix machine or Windows PC, be sure to use the
ftp "binary" (TYPE I) command, or use the rcp -b command from the mainframe host (the -b switch is not
supported in unix rcp’s).

Text Documents

The default assumption of the server is that Text Files (i.e., all files whose Content-Type: starts with text/) are
stored in the native character set of the host, EBCDIC.

Server Side Included Documents

SSI documents must currently be stored in EBCDIC only. No provision is made to convert it from ASCII before
processing.

Apache Modules’ Status

Module Status Notes
CORE +
MOD ACCESS +
MOD ACTIONS +
MOD ALIAS +
MOD ASIS +
MOD AUTH +
MOD AUTHN ANON +
MOD AUTHN DBM ? with own libdb.a
MOD AUTHZ DBM ? with own libdb.a
MOD AUTOINDEX +
MOD CERN META ?
MOD CGI +
mod digest +
MOD DIR +
MOD SO - no shared libs
MOD ENV +
MOD EXAMPLE - (test bed only)
MOD EXPIRES +
MOD HEADERS +

280 CHAPTER 7. PLATFORM-SPECIFIC NOTES

MOD IMAGEMAP +
MOD INCLUDE +
MOD INFO +
mod log agent +
mod log config +
MOD LOG REFERER +
MOD MIME +
MOD MIME MAGIC ? not ported yet
MOD NEGOTIATION +
MOD PROXY +
MOD REWRITE + untested
MOD SETENVIF +
MOD SPELING +
MOD STATUS +
MOD UNIQUE ID +
MOD USERDIR +
MOD USERTRACK ? untested

Third Party Modules’ Status

Module Status Notes
mod jserva

ahttp://java.apache.org/

- JAVA still being ported.

mod php3a

ahttp://www.php.net/

+ mod php3 runs fine, with LDAP and GD
and FreeType libraries.

mod puta

ahttp://hpwww.ec-
lyon.fr/˜vincent/apache/mod put.html

? untested

mod sessiona

aftp://hachiman.vidya.com/pub/apache/

- untested

http://java.apache.org/
http://www.php.net/
http://hpwww.ec-lyon.fr/~vincent/apache/mod_put.html
http://hpwww.ec-lyon.fr/~vincent/apache/mod_put.html
ftp://hachiman.vidya.com/pub/apache/

Chapter 8

Apache HTTP Server and Supporting
Programs

281

282 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.1 Server and Supporting Programs

This page documents all the executable programs included with the Apache HTTP Server.

Index

httpd Apache hypertext transfer protocol server

apachectl Apache HTTP server control interface

ab Apache HTTP server benchmarking tool

apxs APache eXtenSion tool

configure Configure the source tree

dbmmanage Create and update user authentication files in DBM format for basic authentication

fcgistarter Start a FastCGI program

htcacheclean Clean up the disk cache

htdigest Create and update user authentication files for digest authentication

htdbm Manipulate DBM password databases.

htpasswd Create and update user authentication files for basic authentication

httxt2dbm Create dbm files for use with RewriteMap

logresolve Resolve hostnames for IP-addresses in Apache logfiles

log server status Periodically log the server’s status

rotatelogs Rotate Apache logs without having to kill the server

split-logfile Split a multi-vhost logfile into per-host logfiles

suexec Switch User For Exec

8.2. HTTPD - APACHE HYPERTEXT TRANSFER PROTOCOL SERVER 283

8.2 httpd - Apache Hypertext Transfer Protocol Server

httpd is the Apache HyperText Transfer Protocol (HTTP) server program. It is designed to be run as a standalone
daemon process. When used like this it will create a pool of child processes or threads to handle requests.

In general, httpd should not be invoked directly, but rather should be invoked via apachectl on Unix-based
systems or as a service on Windows NT, 2000 and XP (p. 251) and as a console application on Windows 9x and ME
(p. 251) .

See also

• Starting Apache httpd (p. 25)

• Stopping Apache httpd (p. 27)

• Configuration Files (p. 30)

• Platform-specific Documentation (p. 250)

• apachectl

Synopsis

httpd [-d serverroot] [-f config] [-C directive] [-c
directive] [-D parameter] [-e level] [-E file] [-k
start|restart|graceful|stop|graceful-stop] [-R directory] [-h] [-l
] [-L] [-S] [-t] [-v] [-V] [-X] [-M] [-T]

On Windows systems (p. 251) , the following additional arguments are available:

httpd [-k install|config|uninstall] [-n name] [-w]

Options

-d serverroot Set the initial value for the SERVERROOT directive to serverroot. This can be overridden by the
ServerRoot directive in the configuration file. The default is /usr/local/apache2.

-f config Uses the directives in the file config on startup. If config does not begin with a /, then it is taken to be a
path relative to the SERVERROOT. The default is conf/httpd.conf.

-k start|restart|graceful|stop|graceful-stop Signals httpd to start, restart, or stop. See Stop-
ping Apache httpd (p. 27) for more information.

-C directive Process the configuration directive before reading config files.

-c directive Process the configuration directive after reading config files.

-D parameter Sets a configuration parameter which can be used with <IFDEFINE> sections in the configuration
files to conditionally skip or process commands at server startup and restart. Also can be used to set certain less-
common startup parameters including -DNO DETACH (prevent the parent from forking) and -DFOREGROUND
(prevent the parent from calling setsid() et al).

-e level Sets the LOGLEVEL to level during server startup. This is useful for temporarily increasing the verbosity
of the error messages to find problems during startup.

-E file Send error messages during server startup to file.

-h Output a short summary of available command line options.

284 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

-l Output a list of modules compiled into the server. This will not list dynamically loaded modules included using
the LOADMODULE directive.

-L Output a list of directives provided by static modules, together with expected arguments and places where the
directive is valid. Directives provided by shared modules are not listed.

-M Dump a list of loaded Static and Shared Modules.

-S Show the settings as parsed from the config file (currently only shows the virtualhost settings).

-T (Available in 2.3.8 and later) Skip document root check at startup/restart.

-t Run syntax tests for configuration files only. The program immediately exits after these syntax parsing tests with
either a return code of 0 (Syntax OK) or return code not equal to 0 (Syntax Error). If -D DUMP VHOSTS is also
set, details of the virtual host configuration will be printed. If -D DUMP MODULES is set, all loaded modules
will be printed.

-v Print the version of httpd, and then exit.

-V Print the version and build parameters of httpd, and then exit.

-X Run httpd in debug mode. Only one worker will be started and the server will not detach from the console.

The following arguments are available only on the Windows platform (p. 251) :

-k install|config|uninstall Install Apache httpd as a Windows NT service; change startup options for
the Apache httpd service; and uninstall the Apache httpd service.

-n name The name of the Apache httpd service to signal.

-w Keep the console window open on error so that the error message can be read.

8.3. AB - APACHE HTTP SERVER BENCHMARKING TOOL 285

8.3 ab - Apache HTTP server benchmarking tool

ab is a tool for benchmarking your Apache Hypertext Transfer Protocol (HTTP) server. It is designed to give you
an impression of how your current Apache installation performs. This especially shows you how many requests per
second your Apache installation is capable of serving.

See also

• httpd

Synopsis

ab [-A auth-username:password] [-b windowsize] [-B local-address
] [-c concurrency] [-C cookie-name=value] [-d] [-e csv-file]
[-f protocol] [-g gnuplot-file] [-h] [-H custom-header] [-i]
[-k] [-l] [-m HTTP-method] [-n requests] [-p POST-file] [-P
proxy-auth-username:password] [-q] [-r] [-s timeout] [-S] [-t
timelimit] [-T content-type] [-u PUT-file] [-v verbosity] [-V] [-w
] [-x <table>-attributes] [-X proxy[:port]] [-y <tr>-attributes] [-z
<td>-attributes] [-Z ciphersuite] [http[s]://]hostname[:port]/path

Options

-A auth-username:password Supply BASIC Authentication credentials to the server. The username and
password are separated by a single : and sent on the wire base64 encoded. The string is sent regardless of
whether the server needs it (i.e., has sent an 401 authentication needed).

-b windowsize Size of TCP send/receive buffer, in bytes.

-B local-address Address to bind to when making outgoing connections.

-c concurrency Number of multiple requests to perform at a time. Default is one request at a time.

-C cookie-name=value Add a Cookie: line to the request. The argument is typically in the form of a
name=value pair. This field is repeatable.

-d Do not display the "percentage served within XX [ms] table". (legacy support).

-e csv-file Write a Comma separated value (CSV) file which contains for each percentage (from 1% to 100%)
the time (in milliseconds) it took to serve that percentage of the requests. This is usually more useful than the
’gnuplot’ file; as the results are already ’binned’.

-f protocol Specify SSL/TLS protocol (SSL2, SSL3, TLS1, TLS1.1, TLS1.2, or ALL). TLS1.1 and TLS1.2
support available in 2.4.4 and later.

-g gnuplot-file Write all measured values out as a ’gnuplot’ or TSV (Tab separate values) file. This file can
easily be imported into packages like Gnuplot, IDL, Mathematica, Igor or even Excel. The labels are on the first
line of the file.

-h Display usage information.

-H custom-header Append extra headers to the request. The argument is typically in the form of a valid header
line, containing a colon-separated field-value pair (i.e., "Accept-Encoding: zip/zop;8bit").

-i Do HEAD requests instead of GET.

286 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

-k Enable the HTTP KeepAlive feature, i.e., perform multiple requests within one HTTP session. Default is no
KeepAlive.

-l Do not report errors if the length of the responses is not constant. This can be useful for dynamic pages. Available
in 2.4.7 and later.

-m HTTP-method Custom HTTP method for the requests. Available in 2.4.10 and later.

-n requests Number of requests to perform for the benchmarking session. The default is to just perform a single
request which usually leads to non-representative benchmarking results.

-p POST-file File containing data to POST. Remember to also set -T.

-P proxy-auth-username:password Supply BASIC Authentication credentials to a proxy en-route. The
username and password are separated by a single : and sent on the wire base64 encoded. The string is sent
regardless of whether the proxy needs it (i.e., has sent an 407 proxy authentication needed).

-q When processing more than 150 requests, ab outputs a progress count on stderr every 10% or 100 requests or
so. The -q flag will suppress these messages.

-r Don’t exit on socket receive errors.

-s timeout Maximum number of seconds to wait before the socket times out. Default is 30 seconds. Available in
2.4.4 and later.

-S Do not display the median and standard deviation values, nor display the warning/error messages when the average
and median are more than one or two times the standard deviation apart. And default to the min/avg/max values.
(legacy support).

-t timelimit Maximum number of seconds to spend for benchmarking. This implies a -n 50000 internally.
Use this to benchmark the server within a fixed total amount of time. Per default there is no timelimit.

-T content-type Content-type header to use for POST/PUT data, eg.
application/x-www-form-urlencoded. Default is text/plain.

-u PUT-file File containing data to PUT. Remember to also set -T.

-v verbosity Set verbosity level - 4 and above prints information on headers, 3 and above prints response codes
(404, 200, etc.), 2 and above prints warnings and info.

-V Display version number and exit.

-w Print out results in HTML tables. Default table is two columns wide, with a white background.

-x <table>-attributes String to use as attributes for <table>. Attributes are inserted <table here
>.

-X proxy[:port] Use a proxy server for the requests.

-y <tr>-attributes String to use as attributes for <tr>.

-z <td>-attributes String to use as attributes for <td>.

-Z ciphersuite Specify SSL/TLS cipher suite (See openssl ciphers)

8.3. AB - APACHE HTTP SERVER BENCHMARKING TOOL 287

Output

The following list describes the values returned by ab:

Server Software The value, if any, returned in the server HTTP header of the first successful response. This includes
all characters in the header from beginning to the point a character with decimal value of 32 (most notably: a
space or CR/LF) is detected.

Server Hostname The DNS or IP address given on the command line

Server Port The port to which ab is connecting. If no port is given on the command line, this will default to 80 for
http and 443 for https.

SSL/TLS Protocol The protocol parameters negotiated between the client and server. This will only be printed if
SSL is used.

Document Path The request URI parsed from the command line string.

Document Length This is the size in bytes of the first successfully returned document. If the document length
changes during testing, the response is considered an error.

Concurrency Level The number of concurrent clients used during the test

Time taken for tests This is the time taken from the moment the first socket connection is created to the moment the
last response is received

Complete requests The number of successful responses received

Failed requests The number of requests that were considered a failure. If the number is greater than zero, another
line will be printed showing the number of requests that failed due to connecting, reading, incorrect content
length, or exceptions.

Write errors The number of errors that failed during write (broken pipe).

Non-2xx responses The number of responses that were not in the 200 series of response codes. If all responses were
200, this field is not printed.

Keep-Alive requests The number of connections that resulted in Keep-Alive requests

Total body sent If configured to send data as part of the test, this is the total number of bytes sent during the tests.
This field is omitted if the test did not include a body to send.

Total transferred The total number of bytes received from the server. This number is essentially the number of bytes
sent over the wire.

HTML transferred The total number of document bytes received from the server. This number excludes bytes
received in HTTP headers

Requests per second This is the number of requests per second. This value is the result of dividing the number of
requests by the total time taken

Time per request The average time spent per request. The first value is calculated with the formula concurrency
* timetaken * 1000 / done while the second value is calculated with the formula timetaken *
1000 / done

Transfer rate The rate of transfer as calculated by the formula totalread / 1024 / timetaken

288 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Bugs

There are various statically declared buffers of fixed length. Combined with the lazy parsing of the command line
arguments, the response headers from the server and other external inputs, this might bite you.

It does not implement HTTP/1.x fully; only accepts some ’expected’ forms of responses. The rather heavy use of
strstr(3) shows up top in profile, which might indicate a performance problem; i.e., you would measure the ab
performance rather than the server’s.

8.4. APACHECTL - APACHE HTTP SERVER CONTROL INTERFACE 289

8.4 apachectl - Apache HTTP Server Control Interface

apachectl is a front end to the Apache HyperText Transfer Protocol (HTTP) server. It is designed to help the
administrator control the functioning of the Apache httpd daemon.

The apachectl script can operate in two modes. First, it can act as a simple front-end to the httpd command
that simply sets any necessary environment variables and then invokes httpd, passing through any command line
arguments. Second, apachectl can act as a SysV init script, taking simple one-word arguments like start,
restart, and stop, and translating them into appropriate signals to httpd.

If your Apache installation uses non-standard paths, you will need to edit the apachectl script to set the appropriate
paths to the httpd binary. You can also specify any necessary httpd command line arguments. See the comments
in the script for details.

The apachectl script returns a 0 exit value on success, and >0 if an error occurs. For more details, view the
comments in the script.

See also

• Starting Apache (p. 25)

• Stopping Apache (p. 27)

• Configuration Files (p. 30)

• Platform Docs (p. 250)

• httpd

Synopsis

When acting in pass-through mode, apachectl can take all the arguments available for the httpd binary.

apachectl [httpd-argument]

When acting in SysV init mode, apachectl takes simple, one-word commands, defined below.

apachectl command

Options

Only the SysV init-style options are defined here. Other arguments are defined on the httpd manual page.

start Start the Apache httpd daemon. Gives an error if it is already running. This is equivalent to apachectl
-k start.

stop Stops the Apache httpd daemon. This is equivalent to apachectl -k stop.

restart Restarts the Apache httpd daemon. If the daemon is not running, it is started. This command automat-
ically checks the configuration files as in configtest before initiating the restart to make sure the daemon
doesn’t die. This is equivalent to apachectl -k restart.

fullstatus Displays a full status report from MOD STATUS. For this to work, you need to have MOD STATUS
enabled on your server and a text-based browser such as lynx available on your system. The URL used to
access the status report can be set by editing the STATUSURL variable in the script.

status Displays a brief status report. Similar to the fullstatus option, except that the list of requests currently
being served is omitted.

290 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

graceful Gracefully restarts the Apache httpd daemon. If the daemon is not running, it is started. This differs
from a normal restart in that currently open connections are not aborted. A side effect is that old log files will
not be closed immediately. This means that if used in a log rotation script, a substantial delay may be necessary
to ensure that the old log files are closed before processing them. This command automatically checks the
configuration files as in configtest before initiating the restart to make sure Apache doesn’t die. This is
equivalent to apachectl -k graceful.

graceful-stop Gracefully stops the Apache httpd daemon. This differs from a normal stop in that currently
open connections are not aborted. A side effect is that old log files will not be closed immediately. This is
equivalent to apachectl -k graceful-stop.

configtest Run a configuration file syntax test. It parses the configuration files and either reports Syntax Ok
or detailed information about the particular syntax error. This is equivalent to apachectl -t.

The following option was available in earlier versions but has been removed.

startssl To start httpdwith SSL support, you should edit your configuration file to include the relevant directives
and then use the normal apachectl start.

8.5. APXS - APACHE EXTENSION TOOL 291

8.5 apxs - APache eXtenSion tool

apxs is a tool for building and installing extension modules for the Apache HyperText Transfer Protocol (HTTP)
server. This is achieved by building a dynamic shared object (DSO) from one or more source or object files which then
can be loaded into the Apache server under runtime via the LOADMODULE directive from MOD SO.

So to use this extension mechanism your platform has to support the DSO feature and your Apache httpd binary has
to be built with the MOD SO module. The apxs tool automatically complains if this is not the case. You can check
this yourself by manually running the command

$ httpd -l

The module MOD SO should be part of the displayed list. If these requirements are fulfilled you can easily extend your
Apache server’s functionality by installing your own modules with the DSO mechanism by the help of this apxs tool:

$ apxs -i -a -c mod foo.c
gcc -fpic -DSHARED MODULE -I/path/to/apache/include -c mod foo.c
ld -Bshareable -o mod foo.so mod foo.o
cp mod foo.so /path/to/apache/modules/mod foo.so
chmod 755 /path/to/apache/modules/mod foo.so
[activating module ‘foo’ in /path/to/apache/etc/httpd.conf]
$ apachectl restart
/path/to/apache/sbin/apachectl restart: httpd not running, trying to
start
[Tue Mar 31 11:27:55 1998] [debug] mod so.c(303): loaded module
foo module
/path/to/apache/sbin/apachectl restart: httpd started

$

The arguments files can be any C source file (.c), a object file (.o) or even a library archive (.a). The apxs tool
automatically recognizes these extensions and automatically used the C source files for compilation while just using
the object and archive files for the linking phase. But when using such pre-compiled objects make sure they are
compiled for position independent code (PIC) to be able to use them for a dynamically loaded shared object. For
instance with GCC you always just have to use -fpic. For other C compilers consult its manual page or at watch for
the flags apxs uses to compile the object files.

For more details about DSO support in Apache read the documentation of MOD SO or perhaps even read the
src/modules/standard/mod so.c source file.

See also

• apachectl

• httpd

Synopsis

apxs -g [-S name=value] -n modname

apxs -q [-v] [-S name=value] query ...

apxs -c [-S name=value] [-o dsofile] [-I incdir] [-D name=value] [-L
libdir] [-l libname] [-Wc,compiler-flags] [-Wl,linker-flags] files ...

apxs -i [-S name=value] [-n modname] [-a] [-A] dso-file ...

apxs -e [-S name=value] [-n modname] [-a] [-A] dso-file ...

292 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Options

Common Options

-n modname This explicitly sets the module name for the -i (install) and -g (template generation) option. Use
this to explicitly specify the module name. For option -g this is required, for option -i the apxs tool tries to
determine the name from the source or (as a fallback) at least by guessing it from the filename.

Query Options

-q Performs a query for variables and environment settings used to build httpd. When invoked without query
parameters, it prints all known variables and their values. The optional -v parameter formats the list output.

Use this to manually determine settings used to build the httpd that will load your module. For instance use

INC=-I‘apxs -q INCLUDEDIR‘

inside your own Makefiles if you need manual access to Apache’s C header files.

Configuration Options

-S name=value This option changes the apxs settings described above.

Template Generation Options

-g This generates a subdirectory name (see option -n) and there two files: A sample module source file named
mod name.c which can be used as a template for creating your own modules or as a quick start for playing
with the apxs mechanism. And a corresponding Makefile for even easier build and installing of this module.

DSO Compilation Options

-c This indicates the compilation operation. It first compiles the C source files (.c) of files into corresponding object
files (.o) and then builds a dynamically shared object in dsofile by linking these object files plus the remaining
object files (.o and .a) of files. If no -o option is specified the output file is guessed from the first filename in
files and thus usually defaults to mod name.so.

-o dsofile Explicitly specifies the filename of the created dynamically shared object. If not specified and the
name cannot be guessed from the files list, the fallback name mod unknown.so is used.

-D name=value This option is directly passed through to the compilation command(s). Use this to add your own
defines to the build process.

-I incdir This option is directly passed through to the compilation command(s). Use this to add your own include
directories to search to the build process.

-L libdir This option is directly passed through to the linker command. Use this to add your own library directo-
ries to search to the build process.

-l libname This option is directly passed through to the linker command. Use this to add your own libraries to
search to the build process.

-Wc,compiler-flags This option passes compiler-flags as additional flags to the libtool
--mode=compile command. Use this to add local compiler-specific options.

8.5. APXS - APACHE EXTENSION TOOL 293

-Wl,linker-flags This option passes linker-flags as additional flags to the libtool --mode=link com-
mand. Use this to add local linker-specific options.

-p This option causes apxs to link against the apr/apr-util libraries. This is useful when compiling helper programs
that use the apr/apr-util libraries.

DSO Installation and Configuration Options

-i This indicates the installation operation and installs one or more dynamically shared objects into the server’s
modules directory.

-a This activates the module by automatically adding a corresponding LOADMODULE line to Apache’s
httpd.conf configuration file, or by enabling it if it already exists.

-A Same as option -a but the created LOADMODULE directive is prefixed with a hash sign (#), i.e., the module is
just prepared for later activation but initially disabled.

-e This indicates the editing operation, which can be used with the -a and -A options similarly to the -i operation
to edit Apache’s httpd.conf configuration file without attempting to install the module.

Examples

Assume you have an Apache module named mod foo.c available which should extend Apache’s server functionality.
To accomplish this you first have to compile the C source into a shared object suitable for loading into the Apache
server under runtime via the following command:

$ apxs -c mod foo.c
/path/to/libtool --mode=compile gcc ... -c mod foo.c
/path/to/libtool --mode=link gcc ... -o mod foo.la mod foo.slo

$

Then you have to update the Apache configuration by making sure a LOADMODULE directive is present to load this
shared object. To simplify this step apxs provides an automatic way to install the shared object in its "modules"
directory and updating the httpd.conf file accordingly. This can be achieved by running:

$ apxs -i -a mod foo.la
/path/to/instdso.sh mod foo.la /path/to/apache/modules
/path/to/libtool --mode=install cp mod foo.la /path/to/apache/modules
... chmod 755 /path/to/apache/modules/mod foo.so
[activating module ‘foo’ in /path/to/apache/conf/httpd.conf]

$

This way a line named

LoadModule foo module modules/mod foo.so

is added to the configuration file if still not present. If you want to have this disabled per default use the -A option, i.e.

$ apxs -i -A mod foo.c

294 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

For a quick test of the apxs mechanism you can create a sample Apache module template plus a corresponding Makefile
via:

$ apxs -g -n foo
Creating [DIR] foo
Creating [FILE] foo/Makefile
Creating [FILE] foo/modules.mk
Creating [FILE] foo/mod foo.c
Creating [FILE] foo/.deps

$

Then you can immediately compile this sample module into a shared object and load it into the Apache server:

$ cd foo
$ make all reload
apxs -c mod foo.c
/path/to/libtool --mode=compile gcc ... -c mod foo.c
/path/to/libtool --mode=link gcc ... -o mod foo.la mod foo.slo
apxs -i -a -n "foo" mod foo.la
/path/to/instdso.sh mod foo.la /path/to/apache/modules
/path/to/libtool --mode=install cp mod foo.la /path/to/apache/modules
... chmod 755 /path/to/apache/modules/mod foo.so
[activating module ‘foo’ in /path/to/apache/conf/httpd.conf]
apachectl restart
/path/to/apache/sbin/apachectl restart: httpd not running, trying to
start
[Tue Mar 31 11:27:55 1998] [debug] mod so.c(303): loaded module
foo module
/path/to/apache/sbin/apachectl restart: httpd started

$

8.6. CONFIGURE - CONFIGURE THE SOURCE TREE 295

8.6 configure - Configure the source tree

The configure script configures the source tree for compiling and installing the Apache HTTP Server on your
particular platform. Various options allow the compilation of a server corresponding to your personal requirements.

This script, included in the root directory of the source distribution, is for compilation on Unix and Unix-like systems
only. For other platforms, see the platform (p. 250) documentation.

See also

• Compiling and Installing (p. 20)

Synopsis

You should call the configure script from within the root directory of the distribution.

./configure [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g. CC, CFLAGS ...), specify them as VAR=VALUE. See below for descriptions of
some of the useful variables.

Options

• Configuration options

• Installation directories

• System types

• Optional features

• Options for support programs

Configuration options

The following options influence the behavior of configure itself.

-C

--config-cache This is an alias for --cache-file=config.cache

--cache-file=FILE The test results will be cached in file FILE. This option is disabled by default.

-h

--help [short|recursive] Output the help and exit. With the argument short only options specific to this
package will displayed. The argument recursive displays the short help of all the included packages.

-n

--no-create The configure script is run normally but does not create output files. This is useful to check the
test results before generating makefiles for compilation.

-q

--quiet Do not print checking ... messages during the configure process.

--srcdir=DIR Defines directory DIR to be the source file directory. Default is the directory where configure
is located, or the parent directory.

296 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

--silent Same as --quiet

-V

–version Display copyright information and exit.

Installation directories

These options define the installation directory. The installation tree depends on the selected layout.

--prefix=PREFIX Install architecture-independent files in PREFIX. By default the installation directory is set to
/usr/local/apache2.

--exec-prefix=EPREFIX Install architecture-dependent files in EPREFIX. By default the installation directory
is set to the PREFIX directory.

By default, make install will install all the files in /usr/local/apache2/bin,
/usr/local/apache2/lib etc. You can specify an installation prefix other than /usr/local/apache2
using --prefix, for instance --prefix=$HOME.

Define a directory layout

--enable-layout=LAYOUT Configure the source code and build scripts to assume an installation tree based on
the layout LAYOUT. This allows you to separately specify the locations for each type of file within the Apache
HTTP Server installation. The config.layout file contains several example configurations, and you can
also create your own custom configuration following the examples. The different layouts in this file are grouped
into <Layout FOO>...</Layout> sections and referred to by name as in FOO. The default layout is
Apache.

Fine tuning of the installation directories

For better control of the installation directories, use the options below. Please note that the directory defaults are set
by autoconf and are overwritten by the corresponding layout setting.

--bindir=DIR Install user executables in DIR. The user executables are supporting programs like htpasswd,
dbmmanage, etc. which are useful for site administrators. By default DIR is set to EPREFIX/bin.

--datadir=DIR Install read-only architecture-independent data in DIR. By default datadir is set to
PREFIX/share. This option is offered by autoconf and currently unused.

--includedir=DIR Install C header files in DIR. By default includedir is set to EPREFIX/include.

--infodir=DIR Install info documentation in DIR. By default infodir is set to PREFIX/info. This option
is currently unused.

--libdir=DIR Install object code libraries in DIR. By default libdir is set to EPREFIX/lib.

--libexecdir=DIR Install the program executables (i.e., shared modules) in DIR. By default libexecdir is
set to EPREFIX/modules.

--localstatedir=DIR Install modifiable single-machine data in DIR. By default localstatedir is set to
PREFIX/var. This option is offered by autoconf and currently unused.

--mandir=DIR Install the man documentation in DIR. By default mandir is set to EPREFIX/man.

8.6. CONFIGURE - CONFIGURE THE SOURCE TREE 297

--oldincludedir=DIR Install C header files for non-gcc in DIR. By default oldincludedir is set to
/usr/include. This option is offered by autoconf and currently unused.

--sbindir=DIR Install the system administrator executables in DIR. Those are server programs like httpd,
apachectl, suexec, etc. which are necessary to run the Apache HTTP Server. By default sbindir is
set to EPREFIX/sbin.

--sharedstatedir=DIR Install modifiable architecture-independent data in DIR. By default
sharedstatedir is set to PREFIX/com. This option is offered by autoconf and currently
unused.

--sysconfdir=DIR Install read-only single-machine data like the server configuration files httpd.conf,
mime.types, etc. in DIR. By default sysconfdir is set to PREFIX/conf.

System types

These options are used to cross-compile the Apache HTTP Server to run on another system. In normal cases, when
building and running the server on the same system, these options are not used.

--build=BUILD Defines the system type of the system on which the tools are being built. It defaults to the result
of the script config.guess.

--host=HOST Defines the system type of the system on which the server will run. HOST defaults to BUILD.

--target=TARGET Configure for building compilers for the system type TARGET. It defaults to HOST. This
option is offered by autoconf and not necessary for the Apache HTTP Server.

Optional Features

These options are used to fine tune the features your HTTP server will have.

General syntax

Generally you can use the following syntax to enable or disable a feature:

--disable-FEATURE Do not include FEATURE. This is the same as --enable-FEATURE=no.

--enable-FEATURE[=ARG] Include FEATURE. The default value for ARG is yes.

--enable-MODULE=shared The corresponding module will be build as DSO module. By default enabled mod-
ules are linked dynamically.

--enable-MODULE=static The corresponding module will be linked statically.

=⇒Note
configure will not complain about --enable-foo even if foo doesn’t exist, so you need
to type carefully.

298 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Choosing modules to compile

Most modules are compiled by default and have to be disabled explicitly or by using the keywords few or none (see
--enable-modules, --enable-mods-shared and --enable-mods-static below for further explana-
tion) to be removed.

Other modules are not compiled by default and have to be enabled explicitly or by using the keywords all or
reallyall to be available.

To find out which modules are compiled by default, run ./configure -h or ./configure --help and look
under Optional Features. Suppose you are interested in mod example1 and mod example2, and you see
this:

Optional Features:
...
--disable-example1 example module 1
--enable-example2 example module 2
...

Then mod example1 is enabled by default, and you would use --disable-example1 to not compile it.
mod example2 is disabled by default, and you would use --enable-example2 to compile it.

Multi-Processing Modules

Multi-Processing Modules (p. 80) , or MPMs, implement the basic behavior of the server. A single MPM must be
active in order for the server to function. The list of available MPMs appears on the module index page (p. 1017) .

MPMs can be built as DSOs for dynamic loading or statically linked with the server, and are enabled using the
following options:

--with-mpm=MPM Choose the default MPM for your server. If MPMs are built as DSO modules (see
--enable-mpms-shared), this directive selects the MPM which will be loaded in the default configura-
tion file. Otherwise, this directive selects the only available MPM, which will be statically linked into the server.

If this option is omitted, the default MPM (p. 80) for your operating system will be used.

--enable-mpms-shared=MPM-LIST Enable a list of MPMs as dynamic shared modules. One of these modules
must be loaded dynamically using the LOADMODULE directive.

MPM-LIST is a space-separated list of MPM names enclosed by quotation marks. For example:

--enable-mpms-shared=’prefork worker’

Additionally you can use the special keyword all, which will select all MPMs which support dynamic loading
on the current platform and build them as DSO modules. For example:

--enable-mpms-shared=all

8.6. CONFIGURE - CONFIGURE THE SOURCE TREE 299

Third-party modules

To add additional third-party modules use the following options:

--with-module=module-type:module-file[, module-type:module-file] Add one or more
third-party modules to the list of statically linked modules. The module source file module-file will be
searched in the modules/module-type subdirectory of your Apache HTTP server source tree. If it is not
found there configure is considering module-file to be an absolute file path and tries to copy the source
file into the module-type subdirectory. If the subdirectory doesn’t exist it will be created and populated with a
standard Makefile.in.

This option is useful to add small external modules consisting of one source file. For more complex modules
you should read the vendor’s documentation.

=⇒Note
If you want to build a DSO module instead of a statically linked use apxs.

Cumulative and other options

--enable-maintainer-mode Turn on debugging and compile time warnings and load all compiled modules.

--enable-mods-shared=MODULE-LIST Defines a list of modules to be enabled and build as dynamic shared
modules. This mean, these module have to be loaded dynamically by using the LOADMODULE directive.

MODULE-LIST is a space separated list of modulenames enclosed by quotation marks. The module names are
given without the preceding mod . For example:

--enable-mods-shared=’headers rewrite dav’

Additionally you can use the special keywords reallyall, all, most, few and none. For example,

--enable-mods-shared=most

will compile most modules and build them as DSO modules,

--enable-mods-shared=few

will only compile a very basic set of modules.

The default set is most.

The LOADMODULE directives for the chosen modules will be automatically generated in the main configuration
file. By default, all those directives will be commented out except for the modules that are either required or
explicitly selected by a configure --enable-foo argument. You can change the set of loaded modules by
activating or deactivating the LOADMODULE directives in httpd.conf. In addition the LOADMODULE
directives for all built modules can be activated via the configure option --enable-load-all-modules.

--enable-mods-static=MODULE-LIST This option behaves similar to --enable-mods-shared, but
will link the given modules statically. This mean, these modules will always be present while running httpd.
They need not be loaded with LOADMODULE.

--enable-modules=MODULE-LIST This option behaves like to --enable-mods-shared, and will also
link the given modules dynamically. The special keyword none disables the build of all modules.

--enable-v4-mapped Allow IPv6 sockets to handle IPv4 connections.

--with-port=PORT This defines the port on which httpd will listen. This port number is used when generating
the configuration file httpd.conf. The default is 80.

--with-program-name Define an alternative executable name. The default is httpd.

300 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Optional packages

These options are used to define optional packages.

General syntax

Generally you can use the following syntax to define an optional package:

--with-PACKAGE[=ARG] Use the package PACKAGE. The default value for ARG is yes.

--without-PACKAGE Do not use the package PACKAGE. This is the same as --with-PACKAGE=no. This
option is provided by autoconf but not very useful for the Apache HTTP Server.

Specific packages

--with-apr=DIR|FILE The Apache Portable Runtime (APR) is part of the httpd source distribution and will
automatically be build together with the HTTP server. If you want to use an already installed APR instead you
have to tell configure the path to the apr-config script. You may set the absolute path and name or the
directory to the installed APR. apr-config must exist within this directory or the subdirectory bin.

--with-apr-util=DIR|FILE The Apache Portable Runtime Utilities (APU) are part of the httpd source distri-
bution and will automatically be build together with the HTTP server. If you want to use an already installed
APU instead you have to tell configure the path to the apu-config script. You may set the absolute
path and name or the directory to the installed APU. apu-config must exist within this directory or the
subdirectory bin.

--with-ssl=DIR If MOD SSL has been enabled configure searches for an installed OpenSSL. You can set the
directory path to the SSL/TLS toolkit instead.

--with-z=DIR configure searches automatically for an installed zlib library if your source configuration
requires one (e.g., when MOD DEFLATE is enabled). You can set the directory path to the compression library
instead.

Several features of the Apache HTTP Server, including MOD AUTHN DBM and MOD REWRITE’s DBM
REWRITEMAP use simple key/value databases for quick lookups of information. SDBM is included in the APU,
so this database is always available. If you would like to use other database types, use the following options to enable
them:

--with-gdbm[=path] If no path is specified, configurewill search for the include files and libraries of a GNU
DBM installation in the usual search paths. An explicit path will cause configure to look in path/lib and
path/include for the relevant files. Finally, the path may specify specific include and library paths separated
by a colon.

--with-ndbm[=path] Like --with-gdbm, but searches for a New DBM installation.

--with-berkeley-db[=path] Like --with-gdbm, but searches for a Berkeley DB installation.

=⇒Note
The DBM options are provided by the APU and passed through to its configuration script.
They are useless when using an already installed APU defined by --with-apr-util.
You may use more then one DBM implementation together with your HTTP server. The ap-
propriated DBM type will be configured within the runtime configuration at each time.

8.6. CONFIGURE - CONFIGURE THE SOURCE TREE 301

Options for support programs

--enable-static-support Build a statically linked version of the support binaries. This means, a stand-alone
executable will be built with all the necessary libraries integrated. Otherwise the support binaries are linked
dynamically by default.

--enable-suexec Use this option to enable suexec, which allows you to set uid and gid for spawned pro-
cesses. Do not use this option unless you understand all the security implications of running a suid binary
on your server. Further options to configure suexec are described below.

It is possible to create a statically linked binary of a single support program by using the following options:

--enable-static-ab Build a statically linked version of ab.

--enable-static-checkgid Build a statically linked version of checkgid.

--enable-static-htdbm Build a statically linked version of htdbm.

--enable-static-htdigest Build a statically linked version of htdigest.

--enable-static-htpasswd Build a statically linked version of htpasswd.

--enable-static-logresolve Build a statically linked version of logresolve.

--enable-static-rotatelogs Build a statically linked version of rotatelogs.

suexec configuration options

The following options are used to fine tune the behavior of suexec. See Configuring and installing suEXEC (p.
322) for further information.

--with-suexec-bin This defines the path to suexec binary. Default is --sbindir (see Fine tuning of instal-
lation directories).

--with-suexec-caller This defines the user allowed to call suexec. It should be the same as the user under
which httpd normally runs.

--with-suexec-docroot This defines the directory tree under which suexec access is allowed for executa-
bles. Default value is --datadir/htdocs.

--with-suexec-gidmin Define this as the lowest GID allowed to be a target user for suexec. The default
value is 100.

--with-suexec-logfile This defines the filename of the suexec logfile. By default the logfile is named
suexec log and located in --logfiledir.

--with-suexec-safepath Define the value of the environment variable PATH to be set for processes started
by suexec. Default value is /usr/local/bin:/usr/bin:/bin.

--with-suexec-userdir This defines the subdirectory under the user’s directory that contains all executables
for which suexec access is allowed. This setting is necessary when you want to use suexec together with
user-specific directories (as provided by MOD USERDIR). The default is public html.

--with-suexec-uidmin Define this as the lowest UID allowed to be a target user for suexec. The default
value is 100.

--with-suexec-umask Set umask for processes started by suexec. It defaults to your system settings.

302 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Environment variables

There are some useful environment variables to override the choices made by configure or to help it to find libraries
and programs with nonstandard names or locations.

CC Define the C compiler command to be used for compilation.

CFLAGS Set C compiler flags you want to use for compilation.

CPP Define the C preprocessor command to be used.

CPPFLAGS Set C/C++ preprocessor flags, e.g. -Iincludedir if you have headers in a nonstandard directory
includedir.

LDFLAGS Set linker flags, e.g. -Llibdir if you have libraries in a nonstandard directory libdir.

8.7. DBMMANAGE - MANAGE USER AUTHENTICATION FILES IN DBM FORMAT 303

8.7 dbmmanage - Manage user authentication files in DBM format

dbmmanage is used to create and update the DBM format files used to store usernames and password for basic
authentication of HTTP users via MOD AUTHN DBM. Resources available from the Apache HTTP server can be
restricted to just the users listed in the files created by dbmmanage. This program can only be used when the
usernames are stored in a DBM file. To use a flat-file database see htpasswd.

Another tool to maintain a DBM password database is htdbm.

This manual page only lists the command line arguments. For details of the directives necessary to configure
user authentication in httpd see the httpd manual, which is part of the Apache distribution or can be found at
http://httpd.apache.org/.

See also

• httpd

• htdbm

• MOD AUTHN DBM

• MOD AUTHZ DBM

Synopsis

dbmmanage [encoding] filename add|adduser|check|delete|update username [
encpasswd [group[,group...] [comment]]]

dbmmanage filename view [username]

dbmmanage filename import

Options

filename The filename of the DBM format file. Usually without the extension .db, .pag, or .dir.

username The user for which the operations are performed. The username may not contain a colon (:).

encpasswd This is the already encrypted password to use for the update and add commands. You may use a
hyphen (-) if you want to get prompted for the password, but fill in the fields afterwards. Additionally when
using the update command, a period (.) keeps the original password untouched.

group A group, which the user is member of. A groupname may not contain a colon (:). You may use a hyphen
(-) if you don’t want to assign the user to a group, but fill in the comment field. Additionally when using the
update command, a period (.) keeps the original groups untouched.

comment This is the place for your opaque comments about the user, like realname, mailaddress or such things. The
server will ignore this field.

Encodings

-d crypt encryption (default, except on Win32, Netware)

-m MD5 encryption (default on Win32, Netware)

-s SHA1 encryption

-p plaintext (not recommended)

304 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Commands

add Adds an entry for username to filename using the encrypted password encpasswd.

dbmmanage passwords.dat add rbowen foKntnEF3KSXA

adduser Asks for a password and then adds an entry for username to filename.

dbmmanage passwords.dat adduser krietz

check Asks for a password and then checks if username is in filename and if it’s password matches the specified
one.

dbmmanage passwords.dat check rbowen

delete Deletes the username entry from filename.

dbmmanage passwords.dat delete rbowen

import Reads username:password entries (one per line) from STDIN and adds them to filename. The pass-
words already have to be crypted.

update Same as the adduser command, except that it makes sure username already exists in filename.

dbmmanage passwords.dat update rbowen

view Just displays the contents of the DBM file. If you specify a username, it displays the particular record only.

dbmmanage passwords.dat view

Bugs

One should be aware that there are a number of different DBM file formats in existence, and with all likelihood,
libraries for more than one format may exist on your system. The three primary examples are SDBM, NDBM, the
GNU project’s GDBM, and Berkeley DB 2. Unfortunately, all these libraries use different file formats, and you must
make sure that the file format used by filename is the same format that dbmmanage expects to see. dbmmanage
currently has no way of determining what type of DBM file it is looking at. If used against the wrong format, will
simply return nothing, or may create a different DBM file with a different name, or at worst, it may corrupt the DBM
file if you were attempting to write to it.

dbmmanage has a list of DBM format preferences, defined by the @AnyDBM::ISA array near the beginning of the
program. Since we prefer the Berkeley DB 2 file format, the order in which dbmmanage will look for system libraries
is Berkeley DB 2, then NDBM, then GDBM and then SDBM. The first library found will be the library dbmmanage
will attempt to use for all DBM file transactions. This ordering is slightly different than the standard @AnyDBM::ISA
ordering in Perl, as well as the ordering used by the simple dbmopen() call in Perl, so if you use any other utilities to
manage your DBM files, they must also follow this preference ordering. Similar care must be taken if using programs
in other languages, like C, to access these files.

One can usually use the file program supplied with most Unix systems to see what format a DBM file is in.

8.8. FCGISTARTER - START A FASTCGI PROGRAM 305

8.8 fcgistarter - Start a FastCGI program

See also

• MOD PROXY FCGI

Note

Currently only works on Unix systems.

Synopsis

fcgistarter -c command -p port [-i interface] -N num

Options

-c command FastCGI program

-p port Port which the program will listen on

-i interface Interface which the program will listen on

-N num Number of instances of the program

306 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.9 htcacheclean - Clean up the disk cache

htcacheclean is used to keep the size of MOD CACHE DISK’s storage within a given size limit, or limit on inodes
in use. This tool can run either manually or in daemon mode. When running in daemon mode, it sleeps in the
background and checks the cache directory at regular intervals for cached content to be removed. You can stop the
daemon cleanly by sending it a TERM or INT signal. When run manually, a once off check of the cache directory is
made for cached content to be removed. If one or more URLs are specified, each URL will be deleted from the cache,
if present.

See also

• MOD CACHE DISK

Synopsis

htcacheclean [-D] [-v] [-t] [-r] [-n] [-Rround] -ppath [-llimit|
-Llimit]

htcacheclean [-n] [-t] [-i] [-Ppidfile] [-Rround] -dinterval -ppath
[-llimit| -Llimit]

htcacheclean [-v] [-Rround] -ppath [-a] [-A]

htcacheclean [-D] [-v] [-t] [-Rround] -ppath url

Options

-dinterval Daemonize and repeat cache cleaning every interval minutes. This option is mutually exclusive with
the -D, -v and -r options. To shutdown the daemon cleanly, just send it a SIGTERM or SIGINT.

-D Do a dry run and don’t delete anything. This option is mutually exclusive with the -d option. When doing a
dry run and deleting directories with -t, the inodes reported deleted in the stats cannot take into account the
directories deleted, and will be marked as an estimate.

-v Be verbose and print statistics. This option is mutually exclusive with the -d option.

-r Clean thoroughly. This assumes that the Apache web server is not running (otherwise you may get garbage in the
cache). This option is mutually exclusive with the -d option and implies the -t option.

-n Be nice. This causes slower processing in favour of other processes. htcacheclean will sleep from time to
time so that (a) the disk IO will be delayed and (b) the kernel can schedule other processes in the meantime.

-t Delete all empty directories. By default only cache files are removed, however with some configurations the
large number of directories created may require attention. If your configuration requires a very large number of
directories, to the point that inode or file allocation table exhaustion may become an issue, use of this option is
advised.

-ppath Specify path as the root directory of the disk cache. This should be the same value as specified with the
CACHEROOT directive.

-Ppidfile Specify pidfile as the name of the file to write the process ID to when daemonized.

-Rround Specify round as the amount to round sizes up to, to compensate for disk block sizes. Set to the block size
of the cache partition.

-llimit Specify limit as the total disk cache size limit. The value is expressed in bytes by default (or attaching B
to the number). Attach K for Kbytes or M for MBytes.

8.9. HTCACHECLEAN - CLEAN UP THE DISK CACHE 307

-Llimit Specify limit as the total disk cache inode limit.

-i Be intelligent and run only when there was a modification of the disk cache. This option is only possible together
with the -d option.

-a List the URLs currently stored in the cache. Variants of the same URL will be listed once for each variant.

-A List the URLs currently stored in the cache, along with their attributes in the following order: url, header size,
body size, status, entity version, date, expiry, request time, response time, body present, head request.

Deleting a specific URL

If htcacheclean is passed one or more URLs, each URL will be deleted from the cache. If multiple variants of an
URL exists, all variants would be deleted.

When a reverse proxied URL is to be deleted, the effective URL is constructed from the Host header, the port, the path
and the query. Note the ’?’ in the URL must always be specified explicitly, whether a query string is present or not. For
example, an attempt to delete the path / from the server localhost, the URL to delete would be http://localhost:80/?.

Listing URLs in the Cache

By passing the -a or -A options to htcacheclean, the URLs within the cache will be listed as they are found, one
URL per line. The -A option dumps the full cache entry after the URL, with fields in the following order:

url The URL of the entry.

header size The size of the header in bytes.

body size The size of the body in bytes.

status Status of the cached response.

entity version The number of times this entry has been revalidated without being deleted.

date Date of the response.

expiry Expiry date of the response.

request time Time of the start of the request.

response time Time of the end of the request.

body present If 0, no body is stored with this request, 1 otherwise.

head request If 1, the entry contains a cached HEAD request with no body, 0 otherwise.

Exit Status

htcacheclean returns a zero status ("true") if all operations were successful, 1 otherwise. If an URL is specified,
and the URL was cached and successfully removed, 0 is returned, 2 otherwise. If an error occurred during URL
removal, 1 is returned.

308 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.10 htdbm - Manipulate DBM password databases

htdbm is used to manipulate the DBM format files used to store usernames and password for basic authentication
of HTTP users via MOD AUTHN DBM. See the dbmmanage documentation for more information about these DBM
files.

See also

• httpd

• dbmmanage

• MOD AUTHN DBM

Synopsis

htdbm [-TDBTYPE] [-i] [-c] [-m | -B | -d | -s | -p] [-C cost] [-t]
[-v] filename username

htdbm -b [-TDBTYPE] [-c] [-m | -B | -d | -s | -p] [-C cost] [-t] [
-v] filename username password

htdbm -n [-i] [-c] [-m | -B | -d | -s | -p] [-C cost] [-t] [-v]
username

htdbm -nb [-c] [-m | -B | -d | -s | -p] [-C cost] [-t] [-v] username
password

htdbm -v [-TDBTYPE] [-i] [-c] [-m | -B | -d | -s | -p] [-C cost] [
-t] [-v] filename username

htdbm -vb [-TDBTYPE] [-c] [-m | -B | -d | -s | -p] [-C cost] [-t] [
-v] filename username password

htdbm -x [-TDBTYPE] filename username

htdbm -l [-TDBTYPE]

Options

-b Use batch mode; i.e., get the password from the command line rather than prompting for it. This option should be
used with extreme care, since the password is clearly visible on the command line. For script use see the -i
option.

-i Read the password from stdin without verification (for script usage).

-c Create the passwdfile. If passwdfile already exists, it is rewritten and truncated. This option cannot be combined
with the -n option.

-n Display the results on standard output rather than updating a database. This option changes the syntax of the
command line, since the passwdfile argument (usually the first one) is omitted. It cannot be combined with the
-c option.

-m Use MD5 encryption for passwords. On Windows and Netware, this is the default.

-B Use bcrypt encryption for passwords. This is currently considered to be very secure.

-C This flag is only allowed in combination with -B (bcrypt encryption). It sets the computing time used for the
bcrypt algorithm (higher is more secure but slower, default: 5, valid: 4 to 31).

8.10. HTDBM - MANIPULATE DBM PASSWORD DATABASES 309

-d Use crypt() encryption for passwords. The default on all platforms but Windows and Netware. Though
possibly supported by htdbm on all platforms, it is not supported by the httpd server on Windows and
Netware. This algorithm is insecure by today’s standards.

-s Use SHA encryption for passwords. Facilitates migration from/to Netscape servers using the LDAP Directory
Interchange Format (ldif). This algorithm is insecure by today’s standards.

-p Use plaintext passwords. Though htdbm will support creation on all platforms, the httpd daemon will only
accept plain text passwords on Windows and Netware.

-l Print each of the usernames and comments from the database on stdout.

-v Verify the username and password. The program will print a message indicating whether the supplied password
is valid. If the password is invalid, the program exits with error code 3.

-x Delete user. If the username exists in the specified DBM file, it will be deleted.

-t Interpret the final parameter as a comment. When this option is specified, an additional string can be appended
to the command line; this string will be stored in the "Comment" field of the database, associated with the
specified username.

filename The filename of the DBM format file. Usually without the extension .db, .pag, or .dir. If -c is
given, the DBM file is created if it does not already exist, or updated if it does exist.

username The username to create or update in passwdfile. If username does not exist in this file, an entry is added.
If it does exist, the password is changed.

password The plaintext password to be encrypted and stored in the DBM file. Used only with the -b flag.

-TDBTYPE Type of DBM file (SDBM, GDBM, DB, or "default").

Bugs

One should be aware that there are a number of different DBM file formats in existence, and with all likelihood,
libraries for more than one format may exist on your system. The three primary examples are SDBM, NDBM, GNU
GDBM, and Berkeley/Sleepycat DB 2/3/4. Unfortunately, all these libraries use different file formats, and you must
make sure that the file format used by filename is the same format that htdbm expects to see. htdbm currently has
no way of determining what type of DBM file it is looking at. If used against the wrong format, will simply return
nothing, or may create a different DBM file with a different name, or at worst, it may corrupt the DBM file if you were
attempting to write to it.

One can usually use the file program supplied with most Unix systems to see what format a DBM file is in.

Exit Status

htdbm returns a zero status ("true") if the username and password have been successfully added or updated in the
DBM File. htdbm returns 1 if it encounters some problem accessing files, 2 if there was a syntax problem with the
command line, 3 if the password was entered interactively and the verification entry didn’t match, 4 if its operation
was interrupted, 5 if a value is too long (username, filename, password, or final computed record), 6 if the username
contains illegal characters (see the Restrictions section), and 7 if the file is not a valid DBM password file.

310 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Examples

htdbm /usr/local/etc/apache/.htdbm-users jsmith

Adds or modifies the password for user jsmith. The user is prompted for the password. If executed on a Windows
system, the password will be encrypted using the modified Apache MD5 algorithm; otherwise, the system’s crypt()
routine will be used. If the file does not exist, htdbm will do nothing except return an error.

htdbm -c /home/doe/public html/.htdbm jane

Creates a new file and stores a record in it for user jane. The user is prompted for the password. If the file exists and
cannot be read, or cannot be written, it is not altered and htdbm will display a message and return an error status.

htdbm -mb /usr/web/.htdbm-all jones Pwd4Steve

Encrypts the password from the command line (Pwd4Steve) using the MD5 algorithm, and stores it in the specified
file.

Security Considerations

Web password files such as those managed by htdbm should not be within the Web server’s URI space – that is, they
should not be fetchable with a browser.

The use of the -b option is discouraged, since when it is used the unencrypted password appears on the command
line.

When using the crypt() algorithm, note that only the first 8 characters of the password are used to form the pass-
word. If the supplied password is longer, the extra characters will be silently discarded.

The SHA encryption format does not use salting: for a given password, there is only one encrypted representation.
The crypt() and MD5 formats permute the representation by prepending a random salt string, to make dictionary
attacks against the passwords more difficult.

The SHA and crypt() formats are insecure by today’s standards.

Restrictions

On the Windows platform, passwords encrypted with htdbm are limited to no more than 255 characters in length.
Longer passwords will be truncated to 255 characters.

The MD5 algorithm used by htdbm is specific to the Apache software; passwords encrypted using it will not be usable
with other Web servers.

Usernames are limited to 255 bytes and may not include the character :.

8.11. HTDIGEST - MANAGE USER FILES FOR DIGEST AUTHENTICATION 311

8.11 htdigest - manage user files for digest authentication

htdigest is used to create and update the flat-files used to store usernames, realm and password for digest authen-
tication of HTTP users. Resources available from the Apache HTTP server can be restricted to just the users listed in
the files created by htdigest.

This manual page only lists the command line arguments. For details of the directives necessary to configure di-
gest authentication in httpd see the Apache manual, which is part of the Apache distribution or can be found at
http://httpd.apache.org/.

See also

• httpd

• MOD AUTH DIGEST

Synopsis

htdigest [-c] passwdfile realm username

Options

-c Create the passwdfile. If passwdfile already exists, it is deleted first.

passwdfile Name of the file to contain the username, realm and password. If -c is given, this file is created if it
does not already exist, or deleted and recreated if it does exist.

realm The realm name to which the user name belongs. See

http://tools.ietf.org/html/rfc2617#section-3.2.11 for more details.

username The user name to create or update in passwdfile. If username does not exist is this file, an entry is added.
If it does exist, the password is changed.

Security Considerations

This program is not safe as a setuid executable. Do not make it setuid.

1http://tools.ietf.org/html/rfc2617#section-3.2.1

http://tools.ietf.org/html/rfc2617#section-3.2.1

312 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.12 htpasswd - Manage user files for basic authentication

htpasswd is used to create and update the flat-files used to store usernames and password for basic authentication of
HTTP users. If htpasswd cannot access a file, such as not being able to write to the output file or not being able to
read the file in order to update it, it returns an error status and makes no changes.

Resources available from the Apache HTTP server can be restricted to just the users listed in the files created by
htpasswd. This program can only manage usernames and passwords stored in a flat-file. It can encrypt and display
password information for use in other types of data stores, though. To use a DBM database see dbmmanage or
htdbm.

htpasswd encrypts passwords using either bcrypt, a version of MD5 modified for Apache, SHA1, or the system’s
crypt() routine. Files managed by htpasswd may contain a mixture of different encoding types of passwords;
some user records may have bcrypt or MD5-encrypted passwords while others in the same file may have passwords
encrypted with crypt().

This manual page only lists the command line arguments. For details of the directives necessary to configure
user authentication in httpd see the Apache manual, which is part of the Apache distribution or can be found at
http://httpd.apache.org/2.

See also

• httpd

• htdbm

• The scripts in support/SHA1 which come with the distribution.

Synopsis

htpasswd [-c] [-i] [-m | -B | -d | -s | -p] [-C cost] [-D] [-v]
passwdfile username

htpasswd -b [-c] [-m | -B | -d | -s | -p] [-C cost] [-D] [-v]
passwdfile username password

htpasswd -n [-i] [-m | -B | -d | -s | -p] [-C cost] username

htpasswd -nb [-m | -B | -d | -s | -p] [-C cost] username password

Options

-b Use batch mode; i.e., get the password from the command line rather than prompting for it. This option should be
used with extreme care, since the password is clearly visible on the command line. For script use see the -i
option. Available in 2.4.4 and later.

-i Read the password from stdin without verification (for script usage).

-c Create the passwdfile. If passwdfile already exists, it is rewritten and truncated. This option cannot be combined
with the -n option.

-n Display the results on standard output rather than updating a file. This is useful for generating password records
acceptable to Apache for inclusion in non-text data stores. This option changes the syntax of the command line,
since the passwdfile argument (usually the first one) is omitted. It cannot be combined with the -c option.

-m Use MD5 encryption for passwords. This is the default (since version 2.2.18).

2http://httpd.apache.org

http://httpd.apache.org

8.12. HTPASSWD - MANAGE USER FILES FOR BASIC AUTHENTICATION 313

-B Use bcrypt encryption for passwords. This is currently considered to be very secure.

-C This flag is only allowed in combination with -B (bcrypt encryption). It sets the computing time used for the
bcrypt algorithm (higher is more secure but slower, default: 5, valid: 4 to 31).

-d Use crypt() encryption for passwords. This is not supported by the httpd server on Windows and Netware.
This algorithm limits the password length to 8 characters. This algorithm is insecure by today’s standards. It
used to be the default algorithm until version 2.2.17.

-s Use SHA encryption for passwords. Facilitates migration from/to Netscape servers using the LDAP Directory
Interchange Format (ldif). This algorithm is insecure by today’s standards.

-p Use plaintext passwords. Though htpasswd will support creation on all platforms, the httpd daemon will only
accept plain text passwords on Windows and Netware.

-D Delete user. If the username exists in the specified htpasswd file, it will be deleted.

-v Verify password. Verify that the given password matches the password of the user stored in the specified htpasswd
file. Available in 2.4.5 and later.

passwdfile Name of the file to contain the user name and password. If -c is given, this file is created if it does
not already exist, or rewritten and truncated if it does exist.

username The username to create or update in passwdfile. If username does not exist in this file, an entry is added.
If it does exist, the password is changed.

password The plaintext password to be encrypted and stored in the file. Only used with the -b flag.

Exit Status

htpasswd returns a zero status ("true") if the username and password have been successfully added or updated in
the passwdfile. htpasswd returns 1 if it encounters some problem accessing files, 2 if there was a syntax problem
with the command line, 3 if the password was entered interactively and the verification entry didn’t match, 4 if its
operation was interrupted, 5 if a value is too long (username, filename, password, or final computed record), 6 if the
username contains illegal characters (see the Restrictions section), and 7 if the file is not a valid password file.

Examples

htpasswd /usr/local/etc/apache/.htpasswd-users jsmith

Adds or modifies the password for user jsmith. The user is prompted for the password. The password will be
encrypted using the modified Apache MD5 algorithm. If the file does not exist, htpasswd will do nothing except
return an error.

htpasswd -c /home/doe/public html/.htpasswd jane

Creates a new file and stores a record in it for user jane. The user is prompted for the password. If the file exists and
cannot be read, or cannot be written, it is not altered and htpasswd will display a message and return an error status.

htpasswd -db /usr/web/.htpasswd-all jones Pwd4Steve

Encrypts the password from the command line (Pwd4Steve) using the crypt() algorithm, and stores it in the
specified file.

314 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Security Considerations

Web password files such as those managed by htpasswd should not be within the Web server’s URI space – that is,
they should not be fetchable with a browser.

This program is not safe as a setuid executable. Do not make it setuid.

The use of the -b option is discouraged, since when it is used the unencrypted password appears on the command
line.

When using the crypt() algorithm, note that only the first 8 characters of the password are used to form the pass-
word. If the supplied password is longer, the extra characters will be silently discarded.

The SHA encryption format does not use salting: for a given password, there is only one encrypted representation.
The crypt() and MD5 formats permute the representation by prepending a random salt string, to make dictionary
attacks against the passwords more difficult.

The SHA and crypt() formats are insecure by today’s standards.

Restrictions

On the Windows platform, passwords encrypted with htpasswd are limited to no more than 255 characters in length.
Longer passwords will be truncated to 255 characters.

The MD5 algorithm used by htpasswd is specific to the Apache software; passwords encrypted using it will not be
usable with other Web servers.

Usernames are limited to 255 bytes and may not include the character :.

8.13. HTTXT2DBM - GENERATE DBM FILES FOR USE WITH REWRITEMAP 315

8.13 httxt2dbm - Generate dbm files for use with RewriteMap

httxt2dbm is used to generate dbm files from text input, for use in REWRITEMAP with the dbm map type.

If the output file already exists, it will not be truncated. New keys will be added and existing keys will be updated.

See also

• httpd

• MOD REWRITE

Synopsis

httxt2dbm [-v] [-f DBM TYPE] -i SOURCE TXT -o OUTPUT DBM

Options

-v More verbose output

-f DBM TYPE Specify the DBM type to be used for the output. If not specified, will use the APR Default. Available
types are: GDBM for GDBM files, SDBM for SDBM files, DB for berkeley DB files, NDBM for NDBM files,
default for the default DBM type.

-i SOURCE TXT Input file from which the dbm is to be created. The file should be formated with one record per
line, of the form: key value. See the documentation for REWRITEMAP for further details of this file’s format
and meaning.

-o OUTPUT DBM Name of the output dbm files.

Examples

httxt2dbm -i rewritemap.txt -o rewritemap.dbm

httxt2dbm -f SDBM -i rewritemap.txt -o rewritemap.dbm

316 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.14 logresolve - Resolve IP-addresses to hostnames in Apache log files

logresolve is a post-processing program to resolve IP-addresses in Apache’s access logfiles. To minimize impact
on your nameserver, logresolve has its very own internal hash-table cache. This means that each IP number will only
be looked up the first time it is found in the log file.

Takes an Apache log file on standard input. The IP addresses must be the first thing on each line and must be separated
from the remainder of the line by a space.

Synopsis

logresolve [-s filename] [-c] < access log > access log.new

Options

-s filename Specifies a filename to record statistics.

-c This causes logresolve to apply some DNS checks: after finding the hostname from the IP address, it looks
up the IP addresses for the hostname and checks that one of these matches the original address.

8.15. LOG SERVER STATUS - LOG PERIODIC STATUS SUMMARIES 317

8.15 log server status - Log periodic status summaries

This perl script is designed to be run at a frequent interval by something like cron. It connects to the server and
downloads the status information. It reformats the information to a single line and logs it to a file. Adjust the variables
at the top of the script to specify the location of the resulting logfile. MOD STATUS will need to be loaded and
configured in order for this script to do its job.

Usage

The script contains the following section.

my $wherelog = "/usr/local/apache2/logs/"; # Logs will be like "/usr/local/apache2/logs/19960312"
my $server = "localhost"; # Name of server, could be "www.foo.com"
my $port = "80"; # Port on server
my $request = "/server-status/?auto"; # Request to send

You’ll need to ensure that these variables have the correct values, and you’ll need to have the /server-status
handler configured at the location specified, and the specified log location needs to be writable by the user which will
run the script.

Run the script periodically via cron to produce a daily log file, which can then be used for statistical analysis.

318 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.16 rotatelogs - Piped logging program to rotate Apache logs

rotatelogs is a simple program for use in conjunction with Apache’s piped logfile feature. It supports rotation
based on a time interval or maximum size of the log.

Synopsis

rotatelogs [-l] [-L linkname] [-p program] [-f] [-t] [-v] [-e] [
-c] [-n number-of-files] logfile rotationtime|filesize(B|K|M|G) [offset]

Options

-l Causes the use of local time rather than GMT as the base for the interval or for strftime(3) formatting with
size-based rotation.

-L linkname Causes a hard link to be made from the current logfile to the specified link name. This can be used to
watch the log continuously across rotations using a command like tail -F linkname.

-p program If given, rotatelogs will execute the specified program every time a new log file is opened. The
filename of the newly opened file is passed as the first argument to the program. If executing after a rotation,
the old log file is passed as the second argument. rotatelogs does not wait for the specified program to
terminate before continuing to operate, and will not log any error code returned on termination. The spawned
program uses the same stdin, stdout, and stderr as rotatelogs itself, and also inherits the environment.

-f Causes the logfile to be opened immediately, as soon as rotatelogs starts, instead of waiting for the first
logfile entry to be read (for non-busy sites, there may be a substantial delay between when the server is started
and when the first request is handled, meaning that the associated logfile does not "exist" until then, which
causes problems from some automated logging tools)

-t Causes the logfile to be truncated instead of rotated. This is useful when a log is processed in real time by a
command like tail, and there is no need for archived data. No suffix will be added to the filename, however
format strings containing ’%’ characters will be respected.

-v Produce verbose output on STDERR. The output contains the result of the configuration parsing, and all file open
and close actions.

-e Echo logs through to stdout. Useful when logs need to be further processed in real time by a further tool in the
chain.

-c Create log file for each interval, even if empty.

-n number-of-files Use a circular list of filenames without timestamps. With -n 3, the series of log files
opened would be "logfile", "logfile.1", "logfile.2", then overwriting "logfile". Available in 2.4.5 and later.

logfile The path plus basename of the logfile. If logfile includes any ’%’ characters, it is treated as a format
string for strftime(3). Otherwise, the suffix .nnnnnnnnnn is automatically added and is the time in seconds
(unless the -t option is used). Both formats compute the start time from the beginning of the current period.
For example, if a rotation time of 86400 is specified, the hour, minute, and second fields created from the
strftime(3) format will all be zero, referring to the beginning of the current 24-hour period (midnight).

When using strftime(3) filename formatting, be sure the log file format has enough granularity to produce
a different file name each time the logs are rotated. Otherwise rotation will overwrite the same file instead of
starting a new one. For example, if logfile was /var/log/errorlog.%Y-%m-%d with log rotation at 5
megabytes, but 5 megabytes was reached twice in the same day, the same log file name would be produced and
log rotation would keep writing to the same file.

8.16. ROTATELOGS - PIPED LOGGING PROGRAM TO ROTATE APACHE LOGS 319

rotationtime The time between log file rotations in seconds. The rotation occurs at the beginning of this interval.
For example, if the rotation time is 3600, the log file will be rotated at the beginning of every hour; if the rotation
time is 86400, the log file will be rotated every night at midnight. (If no data is logged during an interval, no file
will be created.)

filesize(B|K|M|G) The maximum file size in followed by exactly one of the letters B (Bytes), K (KBytes), M
(MBytes) or G (GBytes).

When time and size are specified, the size must be given after the time. Rotation will occur whenever either
time or size limits are reached.

offset The number of minutes offset from UTC. If omitted, zero is assumed and UTC is used. For example, to use
local time in the zone UTC -5 hours, specify a value of -300 for this argument. In most cases, -l should be
used instead of specifying an offset.

Examples

CustomLog "|bin/rotatelogs /var/log/logfile 86400" common

This creates the files /var/log/logfile.nnnn where nnnn is the system time at which the log nominally starts (this time
will always be a multiple of the rotation time, so you can synchronize cron scripts with it). At the end of each rotation
time (here after 24 hours) a new log is started.

CustomLog "|bin/rotatelogs -l /var/log/logfile.%Y.%m.%d 86400" common

This creates the files /var/log/logfile.yyyy.mm.dd where yyyy is the year, mm is the month, and dd is the day of the
month. Logging will switch to a new file every day at midnight, local time.

CustomLog "|bin/rotatelogs /var/log/logfile 5M" common

This configuration will rotate the logfile whenever it reaches a size of 5 megabytes.

ErrorLog "|bin/rotatelogs /var/log/errorlog.%Y-%m-%d-%H %M %S 5M"

This configuration will rotate the error logfile whenever it reaches a size of 5 megabytes, and the suffix to the logfile
name will be created of the form errorlog.YYYY-mm-dd-HH MM SS.

CustomLog "|bin/rotatelogs -t /var/log/logfile 86400" common

This creates the file /var/log/logfile, truncating the file at startup and then truncating the file once per day. It is expected
in this scenario that a separate process (such as tail) would process the file in real time.

Portability

The following logfile format string substitutions should be supported by all strftime(3) implementations, see the
strftime(3) man page for library-specific extensions.

%A full weekday name (localized)

320 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

%a 3-character weekday name (localized)
%B full month name (localized)
%b 3-character month name (localized)
%c date and time (localized)
%d 2-digit day of month
%H 2-digit hour (24 hour clock)
%I 2-digit hour (12 hour clock)
%j 3-digit day of year
%M 2-digit minute
%m 2-digit month
%p am/pm of 12 hour clock (localized)
%S 2-digit second
%U 2-digit week of year (Sunday first day of week)
%W 2-digit week of year (Monday first day of week)
%w 1-digit weekday (Sunday first day of week)
%X time (localized)
%x date (localized)
%Y 4-digit year
%y 2-digit year
%Z time zone name
%% literal ‘%’

8.17. SPLIT-LOGFILE - SPLIT UP MULTI-VHOST LOGFILES 321

8.17 split-logfile - Split up multi-vhost logfiles

This perl script will take a combined Web server access log file and break its contents into separate files. It assumes
that the first field of each line is the virtual host identity, put there using the "%v" variable in LOGFORMAT.

Usage

Create a log file with virtual host information in it:

LogFormat "%v %h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\"" combined_plus_vhost
CustomLog logs/access_log combined_plus_vhost

Log files will be created, in the directory where you run the script, for each virtual host name that appears in the
combined log file. These logfiles will named after the hostname, with a .log file extension.

The combined log file is read from stdin. Records read will be appended to any existing log files.

split-logfile < access log

322 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

8.18 suexec - Switch user before executing external programs

suexec is used by the Apache HTTP Server to switch to another user before executing CGI programs. In order to
achieve this, it must run as root. Since the HTTP daemon normally doesn’t run as root, the suexec executable
needs the setuid bit set and must be owned by root. It should never be writable for any other person than root.

For further information about the concepts and the security model of suexec please refer to the suexec documentation
(http://httpd.apache.org/docs/2.4/suexec.html).

Synopsis

suexec -V

Options

-V If you are root, this option displays the compile options of suexec. For security reasons all configuration
options are changeable only at compile time.

8.19. OTHER PROGRAMS 323

8.19 Other Programs

This page used to contain documentation for programs which now have their own docs pages. Please update any links.

log server status

split-logfile

324 CHAPTER 8. APACHE HTTP SERVER AND SUPPORTING PROGRAMS

Chapter 9

Apache Miscellaneous Documentation

325

326 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

9.1 Apache Miscellaneous Documentation

Below is a list of additional documentation pages that apply to the Apache web server development project.

! Warning
The documents below have not been fully updated to take into account changes made in the
2.1 version of the Apache HTTP Server. Some of the information may still be relevant, but
please use it with care.

Performance Notes - Apache Tuning (p. 327) Notes about how to (run-time and compile-time) configure Apache
for highest performance. Notes explaining why Apache does some things, and why it doesn’t do other things
(which make it slower/faster).

Security Tips (p. 338) Some "do"s - and "don’t"s - for keeping your Apache web site secure.

Relevant Standards (p. 343) This document acts as a reference page for most of the relevant standards that Apache
follows.

Password Encryption Formats (p. 345) Discussion of the various ciphers supported by Apache for authentication
purposes.

9.2. APACHE PERFORMANCE TUNING 327

9.2 Apache Performance Tuning

Apache 2.x is a general-purpose webserver, designed to provide a balance of flexibility, portability, and performance.
Although it has not been designed specifically to set benchmark records, Apache 2.x is capable of high performance
in many real-world situations.

Compared to Apache 1.3, release 2.x contains many additional optimizations to increase throughput and scalability.
Most of these improvements are enabled by default. However, there are compile-time and run-time configuration
choices that can significantly affect performance. This document describes the options that a server administrator
can configure to tune the performance of an Apache 2.x installation. Some of these configuration options enable the
httpd to better take advantage of the capabilities of the hardware and OS, while others allow the administrator to trade
functionality for speed.

Hardware and Operating System Issues

The single biggest hardware issue affecting webserver performance is RAM. A webserver should never ever have to
swap, as swapping increases the latency of each request beyond a point that users consider "fast enough". This causes
users to hit stop and reload, further increasing the load. You can, and should, control the MAXREQUESTWORKERS
setting so that your server does not spawn so many children that it starts swapping. The procedure for doing this is
simple: determine the size of your average Apache process, by looking at your process list via a tool such as top, and
divide this into your total available memory, leaving some room for other processes.

Beyond that the rest is mundane: get a fast enough CPU, a fast enough network card, and fast enough disks, where
"fast enough" is something that needs to be determined by experimentation.

Operating system choice is largely a matter of local concerns. But some guidelines that have proven generally useful
are:

• Run the latest stable release and patch level of the operating system that you choose. Many OS suppliers have
introduced significant performance improvements to their TCP stacks and thread libraries in recent years.

• If your OS supports a sendfile(2) system call, make sure you install the release and/or patches needed to
enable it. (With Linux, for example, this means using Linux 2.4 or later. For early releases of Solaris 8, you may
need to apply a patch.) On systems where it is available, sendfile enables Apache 2 to deliver static content
faster and with lower CPU utilization.

Run-Time Configuration Issues

Related Modules
MOD DIR
MPM COMMON
MOD STATUS

Related Directives
ALLOWOVERRIDE
DIRECTORYINDEX
HOSTNAMELOOKUPS
ENABLEMMAP
ENABLESENDFILE
KEEPALIVETIMEOUT
MAXSPARESERVERS
MINSPARESERVERS
OPTIONS
STARTSERVERS

328 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

HostnameLookups and other DNS considerations

Prior to Apache 1.3, HOSTNAMELOOKUPS defaulted to On. This adds latency to every request because it requires a
DNS lookup to complete before the request is finished. In Apache 1.3 this setting defaults to Off. If you need to have
addresses in your log files resolved to hostnames, use the logresolve program that comes with Apache, or one of
the numerous log reporting packages which are available.

It is recommended that you do this sort of postprocessing of your log files on some machine other than the production
web server machine, in order that this activity not adversely affect server performance.

If you use any ALLOW from domain or DENY from domain directives (i.e., using a hostname, or a domain
name, rather than an IP address) then you will pay for two DNS lookups (a reverse, followed by a forward lookup to
make sure that the reverse is not being spoofed). For best performance, therefore, use IP addresses, rather than names,
when using these directives, if possible.

Note that it’s possible to scope the directives, such as within a <Location "/server-status"> section. In
this case the DNS lookups are only performed on requests matching the criteria. Here’s an example which disables
lookups except for .html and .cgi files:

HostnameLookups off
<Files ˜ "\.(html|cgi)$">

HostnameLookups on
</Files>

But even still, if you just need DNS names in some CGIs you could consider doing the gethostbyname call in the
specific CGIs that need it.

FollowSymLinks and SymLinksIfOwnerMatch

Wherever in your URL-space you do not have an Options FollowSymLinks, or you do have an Options
SymLinksIfOwnerMatch, Apache will need to issue extra system calls to check up on symlinks. (One extra call
per filename component.) For example, if you had:

DocumentRoot "/www/htdocs"
<Directory "/">

Options SymLinksIfOwnerMatch
</Directory>

and a request is made for the URI /index.html, then Apache will perform lstat(2) on /www, /www/htdocs,
and /www/htdocs/index.html. The results of these lstats are never cached, so they will occur on every
single request. If you really desire the symlinks security checking, you can do something like this:

DocumentRoot "/www/htdocs"
<Directory "/">

Options FollowSymLinks
</Directory>

<Directory "/www/htdocs">
Options -FollowSymLinks +SymLinksIfOwnerMatch

</Directory>

This at least avoids the extra checks for the DOCUMENTROOT path. Note that you’ll need to add similar sections
if you have any ALIAS or REWRITERULE paths outside of your document root. For highest performance, and no
symlink protection, set FollowSymLinks everywhere, and never set SymLinksIfOwnerMatch.

9.2. APACHE PERFORMANCE TUNING 329

AllowOverride

Wherever in your URL-space you allow overrides (typically .htaccess files), Apache will attempt to open
.htaccess for each filename component. For example,

DocumentRoot "/www/htdocs"
<Directory "/">

AllowOverride all
</Directory>

and a request is made for the URI /index.html. Then Apache will attempt to open /.htaccess,
/www/.htaccess, and /www/htdocs/.htaccess. The solutions are similar to the previous case of Options
FollowSymLinks. For highest performance use AllowOverride None everywhere in your filesystem.

Negotiation

If at all possible, avoid content negotiation if you’re really interested in every last ounce of performance. In practice
the benefits of negotiation outweigh the performance penalties. There’s one case where you can speed up the server.
Instead of using a wildcard such as:

DirectoryIndex index

Use a complete list of options:

DirectoryIndex index.cgi index.pl index.shtml index.html

where you list the most common choice first.

Also note that explicitly creating a type-map file provides better performance than using MultiViews, as the
necessary information can be determined by reading this single file, rather than having to scan the directory for files.

If your site needs content negotiation, consider using type-map files, rather than the Options MultiViews
directive to accomplish the negotiation. See the Content Negotiation (p. 68) documentation for a full discussion of the
methods of negotiation, and instructions for creating type-map files.

Memory-mapping

In situations where Apache 2.x needs to look at the contents of a file being delivered–for example, when doing server-
side-include processing–it normally memory-maps the file if the OS supports some form of mmap(2).

On some platforms, this memory-mapping improves performance. However, there are cases where memory-mapping
can hurt the performance or even the stability of the httpd:

• On some operating systems, mmap does not scale as well as read(2) when the number of CPUs increases.
On multiprocessor Solaris servers, for example, Apache 2.x sometimes delivers server-parsed files faster when
mmap is disabled.

• If you memory-map a file located on an NFS-mounted filesystem and a process on another NFS client machine
deletes or truncates the file, your process may get a bus error the next time it tries to access the mapped file
content.

For installations where either of these factors applies, you should use EnableMMAP off to disable the memory-
mapping of delivered files. (Note: This directive can be overridden on a per-directory basis.)

330 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Sendfile

In situations where Apache 2.x can ignore the contents of the file to be delivered – for example, when serving static
file content – it normally uses the kernel sendfile support for the file if the OS supports the sendfile(2) operation.

On most platforms, using sendfile improves performance by eliminating separate read and send mechanics. However,
there are cases where using sendfile can harm the stability of the httpd:

• Some platforms may have broken sendfile support that the build system did not detect, especially if the binaries
were built on another box and moved to such a machine with broken sendfile support.

• With an NFS-mounted filesystem, the kernel may be unable to reliably serve the network file through its own
cache.

For installations where either of these factors applies, you should use EnableSendfile off to disable sendfile
delivery of file contents. (Note: This directive can be overridden on a per-directory basis.)

Process Creation

Prior to Apache 1.3 the MINSPARESERVERS, MAXSPARESERVERS, and STARTSERVERS settings all had drastic
effects on benchmark results. In particular, Apache required a "ramp-up" period in order to reach a number of
children sufficient to serve the load being applied. After the initial spawning of STARTSERVERS children, only one
child per second would be created to satisfy the MINSPARESERVERS setting. So a server being accessed by 100
simultaneous clients, using the default STARTSERVERS of 5 would take on the order of 95 seconds to spawn enough
children to handle the load. This works fine in practice on real-life servers because they aren’t restarted frequently.
But it does really poorly on benchmarks which might only run for ten minutes.

The one-per-second rule was implemented in an effort to avoid swamping the machine with the startup of new children.
If the machine is busy spawning children, it can’t service requests. But it has such a drastic effect on the perceived
performance of Apache that it had to be replaced. As of Apache 1.3, the code will relax the one-per-second rule. It
will spawn one, wait a second, then spawn two, wait a second, then spawn four, and it will continue exponentially
until it is spawning 32 children per second. It will stop whenever it satisfies the MINSPARESERVERS setting.

This appears to be responsive enough that it’s almost unnecessary to twiddle the MINSPARESERVERS, MAXSPARE-
SERVERS and STARTSERVERS knobs. When more than 4 children are spawned per second, a message will be emitted
to the ERRORLOG. If you see a lot of these errors, then consider tuning these settings. Use the MOD STATUS output
as a guide.

Related to process creation is process death induced by the MAXCONNECTIONSPERCHILD setting. By default this is
0, which means that there is no limit to the number of connections handled per child. If your configuration currently
has this set to some very low number, such as 30, you may want to bump this up significantly. If you are running
SunOS or an old version of Solaris, limit this to 10000 or so because of memory leaks.

When keep-alives are in use, children will be kept busy doing nothing waiting for more requests on the already open
connection. The default KEEPALIVETIMEOUT of 5 seconds attempts to minimize this effect. The tradeoff here is
between network bandwidth and server resources. In no event should you raise this above about 60 seconds, as most
of the benefits are lost1.

Compile-Time Configuration Issues

Choosing an MPM

Apache 2.x supports pluggable concurrency models, called Multi-Processing Modules (p. 80) (MPMs). When building
Apache, you must choose an MPM to use. There are platform-specific MPMs for some platforms: MPM NETWARE,

1http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-4.html

http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-4.html

9.2. APACHE PERFORMANCE TUNING 331

MPMT OS2, and MPM WINNT. For general Unix-type systems, there are several MPMs from which to choose. The
choice of MPM can affect the speed and scalability of the httpd:

• The WORKER MPM uses multiple child processes with many threads each. Each thread handles one connection
at a time. Worker generally is a good choice for high-traffic servers because it has a smaller memory footprint
than the prefork MPM.

• The EVENT MPM is threaded like the Worker MPM, but is designed to allow more requests to be served simul-
taneously by passing off some processing work to supporting threads, freeing up the main threads to work on
new requests.

• The PREFORK MPM uses multiple child processes with one thread each. Each process handles one connection
at a time. On many systems, prefork is comparable in speed to worker, but it uses more memory. Prefork’s
threadless design has advantages over worker in some situations: it can be used with non-thread-safe third-party
modules, and it is easier to debug on platforms with poor thread debugging support.

For more information on these and other MPMs, please see the MPM documentation (p. 80) .

Modules

Since memory usage is such an important consideration in performance, you should attempt to eliminate modules that
you are not actually using. If you have built the modules as DSOs (p. 65) , eliminating modules is a simple matter
of commenting out the associated LOADMODULE directive for that module. This allows you to experiment with
removing modules and seeing if your site still functions in their absence.

If, on the other hand, you have modules statically linked into your Apache binary, you will need to recompile Apache
in order to remove unwanted modules.

An associated question that arises here is, of course, what modules you need, and which ones you don’t. The answer
here will, of course, vary from one web site to another. However, the minimal list of modules which you can get by
with tends to include MOD MIME, MOD DIR, and MOD LOG CONFIG. mod log config is, of course, optional, as
you can run a web site without log files. This is, however, not recommended.

Atomic Operations

Some modules, such as MOD CACHE and recent development builds of the worker MPM, use APR’s atomic API. This
API provides atomic operations that can be used for lightweight thread synchronization.

By default, APR implements these operations using the most efficient mechanism available on each target OS/CPU
platform. Many modern CPUs, for example, have an instruction that does an atomic compare-and-swap (CAS) opera-
tion in hardware. On some platforms, however, APR defaults to a slower, mutex-based implementation of the atomic
API in order to ensure compatibility with older CPU models that lack such instructions. If you are building Apache
for one of these platforms, and you plan to run only on newer CPUs, you can select a faster atomic implementation at
build time by configuring Apache with the --enable-nonportable-atomics option:

./buildconf

./configure --with-mpm=worker --enable-nonportable-atomics=yes

The --enable-nonportable-atomics option is relevant for the following platforms:

• Solaris on SPARC
By default, APR uses mutex-based atomics on Solaris/SPARC. If you configure with
--enable-nonportable-atomics, however, APR generates code that uses a SPARC v8plus
opcode for fast hardware compare-and-swap. If you configure Apache with this option, the atomic operations

332 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

will be more efficient (allowing for lower CPU utilization and higher concurrency), but the resulting executable
will run only on UltraSPARC chips.

• Linux on x86
By default, APR uses mutex-based atomics on Linux. If you configure with
--enable-nonportable-atomics, however, APR generates code that uses a 486 opcode for
fast hardware compare-and-swap. This will result in more efficient atomic operations, but the resulting
executable will run only on 486 and later chips (and not on 386).

mod status and ExtendedStatus On

If you include MOD STATUS and you also set ExtendedStatus On when building and running Apache, then on
every request Apache will perform two calls to gettimeofday(2) (or times(2) depending on your operating
system), and (pre-1.3) several extra calls to time(2). This is all done so that the status report contains timing
indications. For highest performance, set ExtendedStatus off (which is the default).

accept Serialization - Multiple Sockets

! Warning:
This section has not been fully updated to take into account changes made in the 2.x version of
the Apache HTTP Server. Some of the information may still be relevant, but please use it with
care.

This discusses a shortcoming in the Unix socket API. Suppose your web server uses multiple LISTEN statements
to listen on either multiple ports or multiple addresses. In order to test each socket to see if a connection is ready,
Apache uses select(2). select(2) indicates that a socket has zero or at least one connection waiting on it.
Apache’s model includes multiple children, and all the idle ones test for new connections at the same time. A naive
implementation looks something like this (these examples do not match the code, they’re contrived for pedagogical
purposes):

for (;;) {
for (;;) {

fd_set accept_fds;

FD_ZERO (&accept_fds);
for (i = first_socket; i <= last_socket; ++i) {

FD_SET (i, &accept_fds);
}
rc = select (last_socket+1, &accept_fds, NULL, NULL, NULL);
if (rc < 1) continue;
new_connection = -1;
for (i = first_socket; i <= last_socket; ++i) {

if (FD_ISSET (i, &accept_fds)) {
new_connection = accept (i, NULL, NULL);
if (new_connection != -1) break;

}
}
if (new_connection != -1) break;

}
process_the(new_connection);

}

9.2. APACHE PERFORMANCE TUNING 333

But this naive implementation has a serious starvation problem. Recall that multiple children execute this loop at the
same time, and so multiple children will block at select when they are in between requests. All those blocked
children will awaken and return from select when a single request appears on any socket. (The number of children
which awaken varies depending on the operating system and timing issues.) They will all then fall down into the loop
and try to accept the connection. But only one will succeed (assuming there’s still only one connection ready). The
rest will be blocked in accept. This effectively locks those children into serving requests from that one socket and
no other sockets, and they’ll be stuck there until enough new requests appear on that socket to wake them all up. This
starvation problem was first documented in PR#4672. There are at least two solutions.

One solution is to make the sockets non-blocking. In this case the accept won’t block the children, and they will
be allowed to continue immediately. But this wastes CPU time. Suppose you have ten idle children in select, and
one connection arrives. Then nine of those children will wake up, try to accept the connection, fail, and loop back
into select, accomplishing nothing. Meanwhile none of those children are servicing requests that occurred on other
sockets until they get back up to the select again. Overall this solution does not seem very fruitful unless you have
as many idle CPUs (in a multiprocessor box) as you have idle children (not a very likely situation).

Another solution, the one used by Apache, is to serialize entry into the inner loop. The loop looks like this (differences
highlighted):

for (;;) {
accept_mutex_on ();
for (;;) {

fd_set accept_fds;

FD_ZERO (&accept_fds);
for (i = first_socket; i <= last_socket; ++i) {

FD_SET (i, &accept_fds);
}
rc = select (last_socket+1, &accept_fds, NULL, NULL, NULL);
if (rc < 1) continue;
new_connection = -1;
for (i = first_socket; i <= last_socket; ++i) {

if (FD_ISSET (i, &accept_fds)) {
new_connection = accept (i, NULL, NULL);
if (new_connection != -1) break;

}
}
if (new_connection != -1) break;

}
accept_mutex_off ();
process the new_connection;

}

The functions accept mutex on and accept mutex off implement a mutual exclusion semaphore. Only one
child can have the mutex at any time. There are several choices for implementing these mutexes. The choice is defined
in src/conf.h (pre-1.3) or src/include/ap config.h (1.3 or later). Some architectures do not have any
locking choice made, on these architectures it is unsafe to use multiple LISTEN directives.

The MUTEX directive can be used to change the mutex implementation of the mpm-accept mutex at run-time.
Special considerations for different mutex implementations are documented with that directive.

Another solution that has been considered but never implemented is to partially serialize the loop – that is, let in a
certain number of processes. This would only be of interest on multiprocessor boxes where it’s possible that multiple

2http://bugs.apache.org/index/full/467

http://bugs.apache.org/index/full/467

334 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

children could run simultaneously, and the serialization actually doesn’t take advantage of the full bandwidth. This is
a possible area of future investigation, but priority remains low because highly parallel web servers are not the norm.

Ideally you should run servers without multiple LISTEN statements if you want the highest performance. But read on.

accept Serialization - Single Socket

The above is fine and dandy for multiple socket servers, but what about single socket servers? In theory they shouldn’t
experience any of these same problems because all the children can just block in accept(2) until a connection
arrives, and no starvation results. In practice this hides almost the same "spinning" behavior discussed above in the
non-blocking solution. The way that most TCP stacks are implemented, the kernel actually wakes up all processes
blocked in accept when a single connection arrives. One of those processes gets the connection and returns to
user-space. The rest spin in the kernel and go back to sleep when they discover there’s no connection for them. This
spinning is hidden from the user-land code, but it’s there nonetheless. This can result in the same load-spiking wasteful
behavior that a non-blocking solution to the multiple sockets case can.

For this reason we have found that many architectures behave more "nicely" if we serialize even the single socket
case. So this is actually the default in almost all cases. Crude experiments under Linux (2.0.30 on a dual Pentium
pro 166 w/128Mb RAM) have shown that the serialization of the single socket case causes less than a 3% decrease in
requests per second over unserialized single-socket. But unserialized single-socket showed an extra 100ms latency on
each request. This latency is probably a wash on long haul lines, and only an issue on LANs. If you want to override
the single socket serialization, you can define SINGLE LISTEN UNSERIALIZED ACCEPT, and then single-socket
servers will not serialize at all.

Lingering Close

As discussed in draft-ietf-http-connection-00.txt3 section 8, in order for an HTTP server to reliably implement the
protocol, it needs to shut down each direction of the communication independently. (Recall that a TCP connection is
bi-directional. Each half is independent of the other.)

When this feature was added to Apache, it caused a flurry of problems on various versions of Unix because of short-
sightedness. The TCP specification does not state that the FIN WAIT 2 state has a timeout, but it doesn’t prohibit it.
On systems without the timeout, Apache 1.2 induces many sockets stuck forever in the FIN WAIT 2 state. In many
cases this can be avoided by simply upgrading to the latest TCP/IP patches supplied by the vendor. In cases where the
vendor has never released patches (i.e., SunOS4 – although folks with a source license can patch it themselves), we
have decided to disable this feature.

There are two ways to accomplish this. One is the socket option SO LINGER. But as fate would have it, this has never
been implemented properly in most TCP/IP stacks. Even on those stacks with a proper implementation (i.e., Linux
2.0.31), this method proves to be more expensive (cputime) than the next solution.

For the most part, Apache implements this in a function called lingering close (in http main.c). The func-
tion looks roughly like this:

void lingering_close (int s)
{

char junk_buffer[2048];

/* shutdown the sending side */
shutdown (s, 1);

signal (SIGALRM, lingering_death);
alarm (30);

3http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt

http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt

9.2. APACHE PERFORMANCE TUNING 335

for (;;) {
select (s for reading, 2 second timeout);
if (error) break;
if (s is ready for reading) {

if (read (s, junk_buffer, sizeof (junk_buffer)) <= 0) {
break;

}
/* just toss away whatever is here */

}
}

close (s);
}

This naturally adds some expense at the end of a connection, but it is required for a reliable implementation. As
HTTP/1.1 becomes more prevalent, and all connections are persistent, this expense will be amortized over more
requests. If you want to play with fire and disable this feature, you can define NO LINGCLOSE, but this is not
recommended at all. In particular, as HTTP/1.1 pipelined persistent connections come into use, lingering close
is an absolute necessity (and pipelined connections are faster4, so you want to support them).

Scoreboard File

Apache’s parent and children communicate with each other through something called the scoreboard. Ideally this
should be implemented in shared memory. For those operating systems that we either have access to, or have been
given detailed ports for, it typically is implemented using shared memory. The rest default to using an on-disk file.
The on-disk file is not only slow, but it is unreliable (and less featured). Peruse the src/main/conf.h file for your
architecture, and look for either USE MMAP SCOREBOARD or USE SHMGET SCOREBOARD. Defining one of those
two (as well as their companions HAVE MMAP and HAVE SHMGET respectively) enables the supplied shared memory
code. If your system has another type of shared memory, edit the file src/main/http main.c and add the hooks
necessary to use it in Apache. (Send us back a patch too, please.)

=⇒Historical note: The Linux port of Apache didn’t start to use shared memory until version 1.2
of Apache. This oversight resulted in really poor and unreliable behavior of earlier versions of
Apache on Linux.

DYNAMIC MODULE LIMIT

If you have no intention of using dynamically loaded modules (you probably don’t if you’re reading this and tun-
ing your server for every last ounce of performance), then you should add -DDYNAMIC MODULE LIMIT=0 when
building your server. This will save RAM that’s allocated only for supporting dynamically loaded modules.

Appendix: Detailed Analysis of a Trace

Here is a system call trace of Apache 2.0.38 with the worker MPM on Solaris 8. This trace was collected using:

truss -l -p httpd child pid.

4http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

336 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

The -l option tells truss to log the ID of the LWP (lightweight process–Solaris’ form of kernel-level thread) that
invokes each system call.

Other systems may have different system call tracing utilities such as strace, ktrace, or par. They all produce
similar output.

In this trace, a client has requested a 10KB static file from the httpd. Traces of non-static requests or requests with
content negotiation look wildly different (and quite ugly in some cases).

/67: accept(3, 0x00200BEC, 0x00200C0C, 1) (sleeping...)
/67: accept(3, 0x00200BEC, 0x00200C0C, 1) = 9

In this trace, the listener thread is running within LWP #67.

=⇒Note the lack of accept(2) serialization. On this particular platform, the worker MPM uses
an unserialized accept by default unless it is listening on multiple ports.

/65: lwp_park(0x00000000, 0) = 0
/67: lwp_unpark(65, 1) = 0

Upon accepting the connection, the listener thread wakes up a worker thread to do the request processing. In this trace,
the worker thread that handles the request is mapped to LWP #65.

/65: getsockname(9, 0x00200BA4, 0x00200BC4, 1) = 0

In order to implement virtual hosts, Apache needs to know the local socket address used to accept the connection. It is
possible to eliminate this call in many situations (such as when there are no virtual hosts, or when LISTEN directives
are used which do not have wildcard addresses). But no effort has yet been made to do these optimizations.

/65: brk(0x002170E8) = 0
/65: brk(0x002190E8) = 0

The brk(2) calls allocate memory from the heap. It is rare to see these in a system call trace, because the httpd
uses custom memory allocators (apr pool and apr bucket alloc) for most request processing. In this trace,
the httpd has just been started, so it must call malloc(3) to get the blocks of raw memory with which to create the
custom memory allocators.

/65: fcntl(9, F_GETFL, 0x00000000) = 2
/65: fstat64(9, 0xFAF7B818) = 0
/65: getsockopt(9, 65535, 8192, 0xFAF7B918, 0xFAF7B910, 2190656) = 0
/65: fstat64(9, 0xFAF7B818) = 0
/65: getsockopt(9, 65535, 8192, 0xFAF7B918, 0xFAF7B914, 2190656) = 0
/65: setsockopt(9, 65535, 8192, 0xFAF7B918, 4, 2190656) = 0
/65: fcntl(9, F_SETFL, 0x00000082) = 0

Next, the worker thread puts the connection to the client (file descriptor 9) in non-blocking mode. The
setsockopt(2) and getsockopt(2) calls are a side-effect of how Solaris’ libc handles fcntl(2) on sockets.

9.2. APACHE PERFORMANCE TUNING 337

/65: read(9, " G E T / 1 0 k . h t m".., 8000) = 97

The worker thread reads the request from the client.

/65: stat("/var/httpd/apache/httpd-8999/htdocs/10k.html", 0xFAF7B978) = 0
/65: open("/var/httpd/apache/httpd-8999/htdocs/10k.html", O_RDONLY) = 10

This httpd has been configured with Options FollowSymLinks and AllowOverride None. Thus it doesn’t
need to lstat(2) each directory in the path leading up to the requested file, nor check for .htaccess files. It
simply calls stat(2) to verify that the file: 1) exists, and 2) is a regular file, not a directory.

/65: sendfilev(0, 9, 0x00200F90, 2, 0xFAF7B53C) = 10269

In this example, the httpd is able to send the HTTP response header and the requested file with a single
sendfilev(2) system call. Sendfile semantics vary among operating systems. On some other systems, it is neces-
sary to do a write(2) or writev(2) call to send the headers before calling sendfile(2).

/65: write(4, " 1 2 7 . 0 . 0 . 1 - ".., 78) = 78

This write(2) call records the request in the access log. Note that one thing missing from this trace is a time(2)
call. Unlike Apache 1.3, Apache 2.x uses gettimeofday(3) to look up the time. On some operating systems,
like Linux or Solaris, gettimeofday has an optimized implementation that doesn’t require as much overhead as a
typical system call.

/65: shutdown(9, 1, 1) = 0
/65: poll(0xFAF7B980, 1, 2000) = 1
/65: read(9, 0xFAF7BC20, 512) = 0
/65: close(9) = 0

The worker thread does a lingering close of the connection.

/65: close(10) = 0
/65: lwp_park(0x00000000, 0) (sleeping...)

Finally the worker thread closes the file that it has just delivered and blocks until the listener assigns it another con-
nection.

/67: accept(3, 0x001FEB74, 0x001FEB94, 1) (sleeping...)

Meanwhile, the listener thread is able to accept another connection as soon as it has dispatched this connection to
a worker thread (subject to some flow-control logic in the worker MPM that throttles the listener if all the available
workers are busy). Though it isn’t apparent from this trace, the next accept(2) can (and usually does, under high
load conditions) occur in parallel with the worker thread’s handling of the just-accepted connection.

338 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

9.3 Security Tips

Some hints and tips on security issues in setting up a web server. Some of the suggestions will be general, others
specific to Apache.

Keep up to Date

The Apache HTTP Server has a good record for security and a developer community highly concerned about security
issues. But it is inevitable that some problems – small or large – will be discovered in software after it is released. For
this reason, it is crucial to keep aware of updates to the software. If you have obtained your version of the HTTP Server
directly from Apache, we highly recommend you subscribe to the Apache HTTP Server Announcements List5 where
you can keep informed of new releases and security updates. Similar services are available from most third-party
distributors of Apache software.

Of course, most times that a web server is compromised, it is not because of problems in the HTTP Server code.
Rather, it comes from problems in add-on code, CGI scripts, or the underlying Operating System. You must therefore
stay aware of problems and updates with all the software on your system.

Denial of Service (DoS) attacks

All network servers can be subject to denial of service attacks that attempt to prevent responses to clients by tying up
the resources of the server. It is not possible to prevent such attacks entirely, but you can do certain things to mitigate
the problems that they create.

Often the most effective anti-DoS tool will be a firewall or other operating-system configurations. For example, most
firewalls can be configured to restrict the number of simultaneous connections from any individual IP address or
network, thus preventing a range of simple attacks. Of course this is no help against Distributed Denial of Service
attacks (DDoS).

There are also certain Apache HTTP Server configuration settings that can help mitigate problems:

• The REQUESTREADTIMEOUT directive allows to limit the time a client may take to send the request.

• The TIMEOUT directive should be lowered on sites that are subject to DoS attacks. Setting this to as low as a
few seconds may be appropriate. As TIMEOUT is currently used for several different operations, setting it to a
low value introduces problems with long running CGI scripts.

• The KEEPALIVETIMEOUT directive may be also lowered on sites that are subject to DoS attacks. Some sites
even turn off the keepalives completely via KEEPALIVE, which has of course other drawbacks on performance.

• The values of various timeout-related directives provided by other modules should be checked.

• The directives LIMITREQUESTBODY, LIMITREQUESTFIELDS, LIMITREQUESTFIELDSIZE, LIMITREQUEST-
LINE, and LIMITXMLREQUESTBODY should be carefully configured to limit resource consumption triggered
by client input.

• On operating systems that support it, make sure that you use the ACCEPTFILTER directive to offload part of
the request processing to the operating system. This is active by default in Apache httpd, but may require
reconfiguration of your kernel.

• Tune the MAXREQUESTWORKERS directive to allow the server to handle the maximum number of simulta-
neous connections without running out of resources. See also the performance tuning documentation (p. 327)
.

5http://httpd.apache.org/lists.html#http-announce

http://httpd.apache.org/lists.html#http-announce

9.3. SECURITY TIPS 339

• The use of a threaded mpm (p. 80) may allow you to handle more simultaneous connections, thereby mitigating
DoS attacks. Further, the EVENT mpm uses asynchronous processing to avoid devoting a thread to each connec-
tion. Due to the nature of the OpenSSL library the EVENT mpm is currently incompatible with MOD SSL and
other input filters. In these cases it falls back to the behaviour of the WORKER mpm.

• There are a number of third-party modules available through http://modules.apache.org/ that can restrict certain
client behaviors and thereby mitigate DoS problems.

Permissions on ServerRoot Directories

In typical operation, Apache is started by the root user, and it switches to the user defined by the USER directive to
serve hits. As is the case with any command that root executes, you must take care that it is protected from modification
by non-root users. Not only must the files themselves be writeable only by root, but so must the directories, and parents
of all directories. For example, if you choose to place ServerRoot in /usr/local/apache then it is suggested that
you create that directory as root, with commands like these:

mkdir /usr/local/apache
cd /usr/local/apache
mkdir bin conf logs
chown 0 . bin conf logs
chgrp 0 . bin conf logs

chmod 755 . bin conf logs

It is assumed that /, /usr, and /usr/local are only modifiable by root. When you install the httpd executable,
you should ensure that it is similarly protected:

cp httpd /usr/local/apache/bin
chown 0 /usr/local/apache/bin/httpd
chgrp 0 /usr/local/apache/bin/httpd

chmod 511 /usr/local/apache/bin/httpd

You can create an htdocs subdirectory which is modifiable by other users – since root never executes any files out of
there, and shouldn’t be creating files in there.

If you allow non-root users to modify any files that root either executes or writes on then you open your system to
root compromises. For example, someone could replace the httpd binary so that the next time you start it, it will
execute some arbitrary code. If the logs directory is writeable (by a non-root user), someone could replace a log file
with a symlink to some other system file, and then root might overwrite that file with arbitrary data. If the log files
themselves are writeable (by a non-root user), then someone may be able to overwrite the log itself with bogus data.

Server Side Includes

Server Side Includes (SSI) present a server administrator with several potential security risks.

The first risk is the increased load on the server. All SSI-enabled files have to be parsed by Apache, whether or not
there are any SSI directives included within the files. While this load increase is minor, in a shared server environment
it can become significant.

SSI files also pose the same risks that are associated with CGI scripts in general. Using the exec cmd element,
SSI-enabled files can execute any CGI script or program under the permissions of the user and group Apache runs as,
as configured in httpd.conf.

There are ways to enhance the security of SSI files while still taking advantage of the benefits they provide.

340 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

To isolate the damage a wayward SSI file can cause, a server administrator can enable suexec (p. 105) as described in
the CGI in General section.

Enabling SSI for files with .html or .htm extensions can be dangerous. This is especially true in a shared, or high
traffic, server environment. SSI-enabled files should have a separate extension, such as the conventional .shtml.
This helps keep server load at a minimum and allows for easier management of risk.

Another solution is to disable the ability to run scripts and programs from SSI pages. To do this replace
Includes with IncludesNOEXEC in the OPTIONS directive. Note that users may still use <--#include
virtual="..." --> to execute CGI scripts if these scripts are in directories designated by a SCRIPTALIAS
directive.

CGI in General

First of all, you always have to remember that you must trust the writers of the CGI scripts/programs or your ability
to spot potential security holes in CGI, whether they were deliberate or accidental. CGI scripts can run essentially
arbitrary commands on your system with the permissions of the web server user and can therefore be extremely
dangerous if they are not carefully checked.

All the CGI scripts will run as the same user, so they have potential to conflict (accidentally or deliberately) with other
scripts e.g. User A hates User B, so he writes a script to trash User B’s CGI database. One program which can be used
to allow scripts to run as different users is suEXEC (p. 105) which is included with Apache as of 1.2 and is called from
special hooks in the Apache server code. Another popular way of doing this is with CGIWrap6.

Non Script Aliased CGI

Allowing users to execute CGI scripts in any directory should only be considered if:

• You trust your users not to write scripts which will deliberately or accidentally expose your system to an attack.

• You consider security at your site to be so feeble in other areas, as to make one more potential hole irrelevant.

• You have no users, and nobody ever visits your server.

Script Aliased CGI

Limiting CGI to special directories gives the admin control over what goes into those directories. This is inevitably
more secure than non script aliased CGI, but only if users with write access to the directories are trusted or the admin
is willing to test each new CGI script/program for potential security holes.

Most sites choose this option over the non script aliased CGI approach.

Other sources of dynamic content

Embedded scripting options which run as part of the server itself, such as mod php, mod perl, mod tcl, and
mod python, run under the identity of the server itself (see the USER directive), and therefore scripts executed by
these engines potentially can access anything the server user can. Some scripting engines may provide restrictions, but
it is better to be safe and assume not.

6http://cgiwrap.sourceforge.net/

http://cgiwrap.sourceforge.net/

9.3. SECURITY TIPS 341

Dynamic content security

When setting up dynamic content, such as mod php, mod perl or mod python, many security considerations get
out of the scope of httpd itself, and you need to consult documentation from those modules. For example, PHP lets
you setup Safe Mode7, which is most usually disabled by default. Another example is Suhosin8, a PHP addon for
more security. For more information about those, consult each project documentation.

At the Apache level, a module named mod security9 can be seen as a HTTP firewall and, provided you configure it
finely enough, can help you enhance your dynamic content security.

Protecting System Settings

To run a really tight ship, you’ll want to stop users from setting up .htaccess files which can override security
features you’ve configured. Here’s one way to do it.

In the server configuration file, put

<Directory "/">
AllowOverride None

</Directory>

This prevents the use of .htaccess files in all directories apart from those specifically enabled.

Note that this setting is the default since Apache 2.3.9.

Protect Server Files by Default

One aspect of Apache which is occasionally misunderstood is the feature of default access. That is, unless you take
steps to change it, if the server can find its way to a file through normal URL mapping rules, it can serve it to clients.

For instance, consider the following example:

cd /; ln -s / public html

Accessing http://localhost/˜root/

This would allow clients to walk through the entire filesystem. To work around this, add the following block to your
server’s configuration:

<Directory "/">
Require all denied

</Directory>

This will forbid default access to filesystem locations. Add appropriate DIRECTORY blocks to allow access only in
those areas you wish. For example,

<Directory "/usr/users/*/public_html">
Require all granted

</Directory>
<Directory "/usr/local/httpd">

Require all granted
</Directory>

7http://www.php.net/manual/en/ini.sect.safe-mode.php
8http://www.hardened-php.net/suhosin/
9http://modsecurity.org/

http://www.php.net/manual/en/ini.sect.safe-mode.php
http://www.hardened-php.net/suhosin/
http://modsecurity.org/

342 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Pay particular attention to the interactions of LOCATION and DIRECTORY directives; for instance, even if
<Directory "/"> denies access, a <Location "/"> directive might overturn it.

Also be wary of playing games with the USERDIR directive; setting it to something like ./ would have the same
effect, for root, as the first example above. We strongly recommend that you include the following line in your server
configuration files:

UserDir disabled root

Watching Your Logs

To keep up-to-date with what is actually going on against your server you have to check the Log Files (p. 53) . Even
though the log files only reports what has already happened, they will give you some understanding of what attacks is
thrown against the server and allow you to check if the necessary level of security is present.

A couple of examples:

grep -c "/jsp/source.jsp?/jsp/ /jsp/source.jsp??" access log

grep "client denied" error log | tail -n 10

The first example will list the number of attacks trying to exploit the Apache Tomcat Source.JSP Malformed Request
Information Disclosure Vulnerability10, the second example will list the ten last denied clients, for example:

[Thu Jul 11 17:18:39 2002] [error] [client foo.example.com] client

denied by server configuration: /usr/local/apache/htdocs/.htpasswd

As you can see, the log files only report what already has happened, so if the client had been able to access the
.htpasswd file you would have seen something similar to:

foo.example.com - - [12/Jul/2002:01:59:13 +0200] "GET /.htpasswd

HTTP/1.1"

in your Access Log (p. 53) . This means you probably commented out the following in your server configuration file:

<Files ".ht*">
Require all denied

</Files>

Merging of configuration sections

The merging of configuration sections is complicated and sometimes directive specific. Always test your changes
when creating dependencies on how directives are merged.

For modules that don’t implement any merging logic, such as MOD ACCESS COMPAT, the behavior in later sections
depends on whether the later section has any directives from the module. The configuration is inherited until a change
is made, at which point the configuration is replaced and not merged.

10http://online.securityfocus.com/bid/4876/info/

http://online.securityfocus.com/bid/4876/info/

9.4. RELEVANT STANDARDS 343

9.4 Relevant Standards

This page documents all the relevant standards that the Apache HTTP Server follows, along with brief descriptions.

In addition to the information listed below, the following resources should be consulted:

• http://purl.org/NET/http-errata11 - HTTP/1.1 Specification Errata

• http://www.rfc-editor.org/errata.php12 - RFC Errata

• http://ftp.ics.uci.edu/pub/ietf/http/#RFC13 - A pre-compiled list of HTTP related RFCs

! Notice
This document is not yet complete.

HTTP Recommendations

Regardless of what modules are compiled and used, Apache as a basic web server complies with the following IETF
recommendations:

RFC 194514 (Informational) The Hypertext Transfer Protocol (HTTP) is an application-level protocol with the light-
ness and speed necessary for distributed, collaborative, hypermedia information systems. This documents
HTTP/1.0.

RFC 261615 (Standards Track) The Hypertext Transfer Protocol (HTTP) is an application-level protocol for dis-
tributed, collaborative, hypermedia information systems. This documents HTTP/1.1.

RFC 239616 (Standards Track) A Uniform Resource Identifier (URI) is a compact string of characters for identify-
ing an abstract or physical resource.

RFC 434617 (Standards Track) The TLS protocol provides communications security over the Internet. It provides
encryption, and is designed to prevent eavesdropping, tampering, and message forgery.

HTML Recommendations

Regarding the Hypertext Markup Language, Apache complies with the following IETF and W3C recommendations:

RFC 285418 (Informational) This document summarizes the history of HTML development, and defines the
"text/html" MIME type by pointing to the relevant W3C recommendations.

HTML 4.01 Specification19 (Errata20) This specification defines the HyperText Markup Language (HTML), the
publishing language of the World Wide Web. This specification defines HTML 4.01, which is a subversion of
HTML 4.

HTML 3.2 Reference Specification21 The HyperText Markup Language (HTML) is a simple markup language used
to create hypertext documents that are portable from one platform to another. HTML documents are SGML
documents.

XHTML 1.1 - Module-based XHTML22 (Errata23) This Recommendation defines a new XHTML document type
that is based upon the module framework and modules defined in Modularization of XHTML.

11http://purl.org/NET/http-errata
12http://www.rfc-editor.org/errata.php
13http://ftp.ics.uci.edu/pub/ietf/http/#RFC

http://purl.org/NET/http-errata
http://www.rfc-editor.org/errata.php
http://ftp.ics.uci.edu/pub/ietf/http/#RFC

344 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

XHTML 1.0 The Extensible HyperText Markup Language (Second Edition)24 (Errata25) This specification de-
fines the Second Edition of XHTML 1.0, a reformulation of HTML 4 as an XML 1.0 application, and three
DTDs corresponding to the ones defined by HTML 4.

Authentication

Concerning the different methods of authentication, Apache follows the following IETF recommendations:

RFC 261726 (Standards Track) "HTTP/1.0", includes the specification for a Basic Access Authentication scheme.

Language/Country Codes

The following links document ISO and other language and country code information:

ISO 639-227 ISO 639 provides two sets of language codes, one as a two-letter code set (639-1) and another as a
three-letter code set (this part of ISO 639) for the representation of names of languages.

ISO 3166-128 These pages document the country names (official short names in English) in alphabetical order as
given in ISO 3166-1 and the corresponding ISO 3166-1-alpha-2 code elements.

BCP 4729 (Best Current Practice), RFC 306630 This document describes a language tag for use in cases where it is
desired to indicate the language used in an information object, how to register values for use in this language
tag, and a construct for matching such language tags.

RFC 328231 (Standards Track) This document defines a "Content-language:" header, for use in cases where one
desires to indicate the language of something that has RFC 822-like headers, like MIME body parts or Web
documents, and an "Accept-Language:" header for use in cases where one wishes to indicate one’s preferences
with regard to language.

9.5. PASSWORD FORMATS 345

9.5 Password Formats

Notes about the password encryption formats generated and understood by Apache.

Basic Authentication

There are five formats that Apache recognizes for basic-authentication passwords. Note that not all formats work on
every platform:

bcrypt "$2y$" + the result of the crypt blowfish algorithm. See the APR source file crypt blowfish.c32 for the details
of the algorithm.

MD5 "$apr1$" + the result of an Apache-specific algorithm using an iterated (1,000 times) MD5 digest of various
combinations of a random 32-bit salt and the password. See the APR source file apr md5.c33 for the details of
the algorithm.

SHA1 "{SHA}" + Base64-encoded SHA-1 digest of the password. Insecure.

CRYPT Unix only. Uses the traditional Unix crypt(3) function with a randomly-generated 32-bit salt (only 12
bits used) and the first 8 characters of the password. Insecure.

PLAIN TEXT (i.e. unencrypted) Windows & Netware only. Insecure.

Generating values with htpasswd

bcrypt
$ htpasswd -nbB myName myPassword

myName:$2y$05$c4WoMPo3SXsafkva.HHa6uXQZWr7oboPiC2bT/r7q1BB8I2s0BRqC

MD5
$ htpasswd -nbm myName myPassword

myName:$apr1$r31.....$HqJZimcKQFAMYayBlzkrA/

SHA1
$ htpasswd -nbs myName myPassword

myName:{SHA}VBPuJHI7uixaa6LQGWx4s+5GKNE=

CRYPT
$ htpasswd -nbd myName myPassword

myName:rqXexS6ZhobKA

32http://svn.apache.org/viewvc/apr/apr/trunk/crypto/crypt blowfish.c?view=markup
33http://svn.apache.org/viewvc/apr/apr/trunk/crypto/apr md5.c?view=markup

http://svn.apache.org/viewvc/apr/apr/trunk/crypto/crypt_blowfish.c?view=markup
http://svn.apache.org/viewvc/apr/apr/trunk/crypto/apr_md5.c?view=markup

346 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Generating CRYPT and MD5 values with the OpenSSL command-line program

OpenSSL knows the Apache-specific MD5 algorithm.

MD5
$ openssl passwd -apr1 myPassword

$apr1$qHDFfhPC$nITSVHgYbDAK1Y0acGRnY0

CRYPT
openssl passwd -crypt myPassword

qQ5vTYO3c8dsU

Validating CRYPT or MD5 passwords with the OpenSSL command line program

The salt for a CRYPT password is the first two characters (converted to a binary value). To validate myPassword
against rqXexS6ZhobKA

CRYPT
$ openssl passwd -crypt -salt rq myPassword
Warning: truncating password to 8 characters

rqXexS6ZhobKA

Note that using myPasswo instead of myPassword will produce the same result because only the first 8 characters
of CRYPT passwords are considered.

The salt for an MD5 password is between $apr1$ and the following $ (as a Base64-encoded binary value - max 8
chars). To validate myPassword against $apr1$r31.....$HqJZimcKQFAMYayBlzkrA/

MD5
$ openssl passwd -apr1 -salt r31..... myPassword

$apr1$r31.....$HqJZimcKQFAMYayBlzkrA/

Database password fields for mod dbd

The SHA1 variant is probably the most useful format for DBD authentication. Since the SHA1 and Base64 functions
are commonly available, other software can populate a database with encrypted passwords that are usable by Apache
basic authentication.

To create Apache SHA1-variant basic-authentication passwords in various languages:

PHP
’{SHA}’ . base64 encode(sha1($password, TRUE))

Java
"{SHA}" + new

sun.misc.BASE64Encoder().encode(java.security.MessageDigest.getInstance("SHA1").digest(password.getBytes()))

9.5. PASSWORD FORMATS 347

ColdFusion
"{SHA}" & ToBase64(BinaryDecode(Hash(password, "SHA1"), "Hex"))

Ruby
require ’digest/sha1’
require ’base64’

’{SHA}’ + Base64.encode64(Digest::SHA1.digest(password))

C or C++
Use the APR function: apr sha1 base64

PostgreSQL (with the contrib/pgcrypto functions installed)
’{SHA}’||encode(digest(password,’sha1’),’base64’)

Digest Authentication

Apache recognizes one format for digest-authentication passwords - the MD5 hash of the string
user:realm:password as a 32-character string of hexadecimal digits. realm is the Authorization
Realm argument to the AUTHNAME directive in httpd.conf.

Database password fields for mod dbd

Since the MD5 function is commonly available, other software can populate a database with encrypted passwords that
are usable by Apache digest authentication.

To create Apache digest-authentication passwords in various languages:

PHP
md5($user . ’:’ . $realm . ’:’ .$password)

Java
byte b[] = java.security.MessageDigest.getInstance("MD5").digest(
(user + ":" + realm + ":" + password).getBytes());
java.math.BigInteger bi = new java.math.BigInteger(1, b);
String s = bi.toString(16);
while (s.length() < 32)

s = "0" + s;

// String s is the encrypted password

ColdFusion
LCase(Hash((user & ":" & realm & ":" & password) , "MD5"))

348 CHAPTER 9. APACHE MISCELLANEOUS DOCUMENTATION

Ruby
require ’digest/md5’

Digest::MD5.hexdigest(user + ’:’ + realm + ’:’ + password)

PostgreSQL (with the contrib/pgcrypto functions installed)
encode(digest(user || ’:’ || realm || ’:’ || password , ’md5’),

’hex’)

Chapter 10

Apache modules

349

350 CHAPTER 10. APACHE MODULES

10.1 Terms Used to Describe Modules

This document describes the terms that are used to describe each Apache module (p. 1017) .

Description

A brief description of the purpose of the module.

Status

This indicates how tightly bound into the Apache Web server the module is; in other words, you may need to recompile
the server in order to gain access to the module and its functionality. Possible values for this attribute are:

MPM A module with status "MPM" is a Multi-Processing Module (p. 80) . Unlike the other types of modules,
Apache must have one and only one MPM in use at any time. This type of module is responsible for basic
request handling and dispatching.

Base A module labeled as having "Base" status is compiled and loaded into the server by default, and is therefore
normally available unless you have taken steps to remove the module from your configuration.

Extension A module with "Extension" status is not normally compiled and loaded into the server. To enable the
module and its functionality, you may need to change the server build configuration files and re-compile Apache.

Experimental "Experimental" status indicates that the module is available as part of the Apache kit, but you are
on your own if you try to use it. The module is being documented for completeness, and is not necessarily
supported.

External Modules which are not included with the base Apache distribution ("third-party modules") may use the
"External" status. We are not responsible for, nor do we support such modules.

Source File

This quite simply lists the name of the source file which contains the code for the module. This is also the name used
by the <IFMODULE> directive.

Module Identifier

This is a string which identifies the module for use in the LOADMODULE directive when dynamically loading modules.
In particular, it is the name of the external variable of type module in the source file.

Compatibility

If the module was not part of the original Apache version 2 distribution, the version in which it was introduced should
be listed here. In addition, if the module is limited to particular platforms, the details will be listed here.

10.2. TERMS USED TO DESCRIBE DIRECTIVES 351

10.2 Terms Used to Describe Directives

This document describes the terms that are used to describe each Apache configuration directive (p. 1022) .

See also

• Configuration files (p. 30)

Description

A brief description of the purpose of the directive.

Syntax

This indicates the format of the directive as it would appear in a configuration file. This syntax is extremely directive-
specific, and is described in detail in the directive’s definition. Generally, the directive name is followed by a series
of one or more space-separated arguments. If an argument contains a space, the argument must be enclosed in double
quotes. Optional arguments are enclosed in square brackets. Where an argument can take on more than one possible
value, the possible values are separated by vertical bars "—". Literal text is presented in the default font, while
argument-types for which substitution is necessary are emphasized. Directives which can take a variable number of
arguments will end in "..." indicating that the last argument is repeated.

Directives use a great number of different argument types. A few common ones are defined below.

URL A complete Uniform Resource Locator including a scheme, hostname, and optional pathname as in
http://www.example.com/path/to/file.html

URL-path The part of a url which follows the scheme and hostname as in /path/to/file.html. The url-path
represents a web-view of a resource, as opposed to a file-system view.

file-path The path to a file in the local file-system beginning with the root directory as in
/usr/local/apache/htdocs/path/to/file.html. Unless otherwise specified, a file-path which
does not begin with a slash will be treated as relative to the ServerRoot (p. 354) .

directory-path The path to a directory in the local file-system beginning with the root directory as in
/usr/local/apache/htdocs/path/to/.

filename The name of a file with no accompanying path information as in file.html.

regex A Perl-compatible regular expression. The directive definition will specify what the regex is matching against.

extension In general, this is the part of the filename which follows the last dot. However, Apache recognizes multiple
filename extensions, so if a filename contains more than one dot, each dot-separated part of the filename follow-
ing the first dot is an extension. For example, the filename file.html.en contains two extensions: .html
and .en. For Apache directives, you may specify extensions with or without the leading dot. In addition,
extensions are not case sensitive.

MIME-type A method of describing the format of a file which consists of a major format type and a minor format
type, separated by a slash as in text/html.

env-variable The name of an environment variable (p. 82) defined in the Apache configuration process. Note this is not
necessarily the same as an operating system environment variable. See the environment variable documentation
(p. 82) for more details.

352 CHAPTER 10. APACHE MODULES

Default

If the directive has a default value (i.e., if you omit it from your configuration entirely, the Apache Web server will
behave as though you set it to a particular value), it is described here. If there is no default value, this section should
say "None". Note that the default listed here is not necessarily the same as the value the directive takes in the default
httpd.conf distributed with the server.

Context

This indicates where in the server’s configuration files the directive is legal. It’s a comma-separated list of one or more
of the following values:

server config This means that the directive may be used in the server configuration files (e.g., httpd.conf), but
not within any <VIRTUALHOST> or <DIRECTORY> containers. It is not allowed in .htaccess files at all.

virtual host This context means that the directive may appear inside <VIRTUALHOST> containers in the server
configuration files.

directory A directive marked as being valid in this context may be used inside <DIRECTORY>, <LOCATION>,
<FILES>, <IF>, and <PROXY> containers in the server configuration files, subject to the restrictions outlined
in Configuration Sections (p. 33) .

.htaccess If a directive is valid in this context, it means that it can appear inside per-directory .htaccess files. It
may not be processed, though depending upon the overrides currently active.

The directive is only allowed within the designated context; if you try to use it elsewhere, you’ll get a configuration
error that will either prevent the server from handling requests in that context correctly, or will keep the server from
operating at all – i.e., the server won’t even start.

The valid locations for the directive are actually the result of a Boolean OR of all of the listed contexts. In other words,
a directive that is marked as being valid in "server config, .htaccess" can be used in the httpd.conf
file and in .htaccess files, but not within any <DIRECTORY> or <VIRTUALHOST> containers.

Override

This directive attribute indicates which configuration override must be active in order for the directive to be processed
when it appears in a .htaccess file. If the directive’s context doesn’t permit it to appear in .htaccess files, then
no context will be listed.

Overrides are activated by the ALLOWOVERRIDE directive, and apply to a particular scope (such as a directory) and
all descendants, unless further modified by other ALLOWOVERRIDE directives at lower levels. The documentation for
that directive also lists the possible override names available.

Status

This indicates how tightly bound into the Apache Web server the directive is; in other words, you may need to recom-
pile the server with an enhanced set of modules in order to gain access to the directive and its functionality. Possible
values for this attribute are:

Core If a directive is listed as having "Core" status, that means it is part of the innermost portions of the Apache Web
server, and is always available.

10.2. TERMS USED TO DESCRIBE DIRECTIVES 353

MPM A directive labeled as having "MPM" status is provided by a Multi-Processing Module (p. 80) . This type of
directive will be available if and only if you are using one of the MPMs listed on the Module line of the directive
definition.

Base A directive labeled as having "Base" status is supported by one of the standard Apache modules which is
compiled into the server by default, and is therefore normally available unless you’ve taken steps to remove the
module from your configuration.

Extension A directive with "Extension" status is provided by one of the modules included with the Apache server
kit, but the module isn’t normally compiled into the server. To enable the directive and its functionality, you will
need to change the server build configuration files and re-compile Apache.

Experimental "Experimental" status indicates that the directive is available as part of the Apache kit, but you’re
on your own if you try to use it. The directive is being documented for completeness, and is not necessarily
supported. The module which provides the directive may or may not be compiled in by default; check the top
of the page which describes the directive and its module to see if it remarks on the availability.

Module

This quite simply lists the name of the source module which defines the directive.

Compatibility

If the directive wasn’t part of the original Apache version 2 distribution, the version in which it was introduced should
be listed here. In addition, if the directive is available only on certain platforms, it will be noted here.

354 CHAPTER 10. APACHE MODULES

10.3 Apache Module core

Description: Core Apache HTTP Server features that are always available
Status: Core

Directives

• AcceptFilter

• AcceptPathInfo

• AccessFileName

• AddDefaultCharset

• AllowEncodedSlashes

• AllowOverride

• AllowOverrideList

• CGIMapExtension

• CGIPassAuth

• ContentDigest

• DefaultRuntimeDir

• DefaultType

• Define

• <Directory>

• <DirectoryMatch>

• DocumentRoot

• <Else>

• <ElseIf>

• EnableMMAP

• EnableSendfile

• Error

• ErrorDocument

• ErrorLog

• ErrorLogFormat

• ExtendedStatus

• FileETag

• <Files>

• <FilesMatch>

• ForceType

• GprofDir

• HostnameLookups

• <If>

• <IfDefine>

• <IfModule>

• Include

10.3. APACHE MODULE CORE 355

• IncludeOptional

• KeepAlive

• KeepAliveTimeout

• <Limit>

• <LimitExcept>

• LimitInternalRecursion

• LimitRequestBody

• LimitRequestFields

• LimitRequestFieldSize

• LimitRequestLine

• LimitXMLRequestBody

• <Location>

• <LocationMatch>

• LogLevel

• MaxKeepAliveRequests

• MaxRangeOverlaps

• MaxRangeReversals

• MaxRanges

• MergeTrailers

• Mutex

• NameVirtualHost

• Options

• Protocol

• RLimitCPU

• RLimitMEM

• RLimitNPROC

• ScriptInterpreterSource

• SeeRequestTail

• ServerAdmin

• ServerAlias

• ServerName

• ServerPath

• ServerRoot

• ServerSignature

• ServerTokens

• SetHandler

• SetInputFilter

• SetOutputFilter

• TimeOut

• TraceEnable

• UnDefine

356 CHAPTER 10. APACHE MODULES

• UseCanonicalName

• UseCanonicalPhysicalPort

• <VirtualHost>

AcceptFilter Directive

Description: Configures optimizations for a Protocol’s Listener Sockets
Syntax: AcceptFilter protocol accept filter
Context: server config
Status: Core
Module: core

This directive enables operating system specific optimizations for a listening socket by the PROTOCOL type. The basic
premise is for the kernel to not send a socket to the server process until either data is received or an entire HTTP
Request is buffered. Only FreeBSD’s Accept Filters1, Linux’s more primitive TCP DEFER ACCEPT, and Windows’
optimized AcceptEx() are currently supported.

Using none for an argument will disable any accept filters for that protocol. This is useful for protocols that require a
server send data first, such as ftp: or nntp:

AcceptFilter nntp none

The default protocol names are https for port 443 and http for all other ports. To specify that another protocol is
being used with a listening port, add the protocol argument to the LISTEN directive.

The default values on FreeBSD are:

AcceptFilter http httpready
AcceptFilter https dataready

The httpready accept filter buffers entire HTTP requests at the kernel level. Once an entire request is received, the
kernel then sends it to the server. See the

accf http(9)2 man page for more details. Since HTTPS requests are encrypted, only the accf data(9)3 filter is used.

The default values on Linux are:

AcceptFilter http data
AcceptFilter https data

Linux’s TCP DEFER ACCEPT does not support buffering http requests. Any value besides none will enable
TCP DEFER ACCEPT on that listener. For more details see the Linux

tcp(7)4 man page.

The default values on Windows are:

AcceptFilter http data
AcceptFilter https data

1http://www.freebsd.org/cgi/man.cgi?query=accept filter&sektion=9
2http://www.freebsd.org/cgi/man.cgi?query=accf http&sektion=9
3http://www.freebsd.org/cgi/man.cgi?query=accf data&sektion=9
4http://homepages.cwi.nl/˜aeb/linux/man2html/man7/tcp.7.html

http://www.freebsd.org/cgi/man.cgi?query=accept_filter&sektion=9
http://www.freebsd.org/cgi/man.cgi?query=accf_http&sektion=9
http://www.freebsd.org/cgi/man.cgi?query=accf_data&sektion=9
http://homepages.cwi.nl/~aeb/linux/man2html/man7/tcp.7.html

10.3. APACHE MODULE CORE 357

Window’s mpm winnt interprets the AcceptFilter to toggle the AcceptEx() API, and does not support http protocol
buffering. There are two values which utilize the Windows AcceptEx() API and will recycle network sockets between
connections. data waits until data has been transmitted as documented above, and the initial data buffer and network
endpoint addresses are all retrieved from the single AcceptEx() invocation. connect will use the AcceptEx() API,
also retrieve the network endpoint addresses, but like none the connect option does not wait for the initial data
transmission.

On Windows, none uses accept() rather than AcceptEx() and will not recycle sockets between connections. This is
useful for network adapters with broken driver support, as well as some virtual network providers such as vpn drivers,
or spam, virus or spyware filters.

See also

• PROTOCOL

AcceptPathInfo Directive

Description: Resources accept trailing pathname information
Syntax: AcceptPathInfo On|Off|Default
Default: AcceptPathInfo Default
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

This directive controls whether requests that contain trailing pathname information that follows an actual filename (or
non-existent file in an existing directory) will be accepted or rejected. The trailing pathname information can be made
available to scripts in the PATH INFO environment variable.

For example, assume the location /test/ points to a directory that contains only the single file here.html.
Then requests for /test/here.html/more and /test/nothere.html/more both collect /more as
PATH INFO.

The three possible arguments for the ACCEPTPATHINFO directive are:

Off A request will only be accepted if it maps to a literal path that exists. Therefore a request with trailing pathname
information after the true filename such as /test/here.html/more in the above example will return a 404
NOT FOUND error.

On A request will be accepted if a leading path component maps to a file that exists. The above example
/test/here.html/more will be accepted if /test/here.html maps to a valid file.

Default The treatment of requests with trailing pathname information is determined by the handler (p. 98) respon-
sible for the request. The core handler for normal files defaults to rejecting PATH INFO requests. Handlers that
serve scripts, such as cgi-script (p. 548) and isapi-handler (p. 635) , generally accept PATH INFO by default.

The primary purpose of the AcceptPathInfo directive is to allow you to override the handler’s choice of accepting
or rejecting PATH INFO. This override is required, for example, when you use a filter (p. 100) , such as INCLUDES
(p. 619) , to generate content based on PATH INFO. The core handler would usually reject the request, so you can use
the following configuration to enable such a script:

<Files "mypaths.shtml">
Options +Includes
SetOutputFilter INCLUDES
AcceptPathInfo On

</Files>

358 CHAPTER 10. APACHE MODULES

AccessFileName Directive

Description: Name of the distributed configuration file
Syntax: AccessFileName filename [filename] ...
Default: AccessFileName .htaccess
Context: server config, virtual host
Status: Core
Module: core

While processing a request, the server looks for the first existing configuration file from this list of names in every
directory of the path to the document, if distributed configuration files are enabled for that directory. For example:

AccessFileName .acl

Before returning the document /usr/local/web/index.html, the server will read /.acl, /usr/.acl,
/usr/local/.acl and /usr/local/web/.acl for directives unless they have been disabled with:

<Directory "/">
AllowOverride None

</Directory>

See also

• ALLOWOVERRIDE

• Configuration Files (p. 30)

• .htaccess Files (p. 239)

AddDefaultCharset Directive

Description: Default charset parameter to be added when a response content-type is text/plain or
text/html

Syntax: AddDefaultCharset On|Off|charset
Default: AddDefaultCharset Off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

This directive specifies a default value for the media type charset parameter (the name of a character encoding) to be
added to a response if and only if the response’s content-type is either text/plain or text/html. This should
override any charset specified in the body of the response via a META element, though the exact behavior is often
dependent on the user’s client configuration. A setting of AddDefaultCharset Off disables this functionality.
AddDefaultCharset On enables a default charset of iso-8859-1. Any other value is assumed to be the charset
to be used, which should be one of the IANA registered charset values5 for use in Internet media types (MIME types).
For example:

AddDefaultCharset utf-8

ADDDEFAULTCHARSET should only be used when all of the text resources to which it applies are known to be in that
character encoding and it is too inconvenient to label their charset individually. One such example is to add the charset
parameter to resources containing generated content, such as legacy CGI scripts, that might be vulnerable to cross-site

5http://www.iana.org/assignments/character-sets

http://www.iana.org/assignments/character-sets

10.3. APACHE MODULE CORE 359

scripting attacks due to user-provided data being included in the output. Note, however, that a better solution is to just
fix (or delete) those scripts, since setting a default charset does not protect users that have enabled the "auto-detect
character encoding" feature on their browser.

See also

• ADDCHARSET

AllowEncodedSlashes Directive

Description: Determines whether encoded path separators in URLs are allowed to be passed through
Syntax: AllowEncodedSlashes On|Off|NoDecode
Default: AllowEncodedSlashes Off
Context: server config, virtual host
Status: Core
Module: core
Compatibility: NoDecode option available in 2.3.12 and later.

The ALLOWENCODEDSLASHES directive allows URLs which contain encoded path separators (%2F for / and addi-
tionally %5C for \ on accordant systems) to be used in the path info.

With the default value, Off, such URLs are refused with a 404 (Not found) error.

With the value On, such URLs are accepted, and encoded slashes are decoded like all other encoded characters.

With the value NoDecode, such URLs are accepted, but encoded slashes are not decoded but left in their encoded
state.

Turning ALLOWENCODEDSLASHES On is mostly useful when used in conjunction with PATH INFO.

=⇒Note
If encoded slashes are needed in path info, use of NoDecode is strongly recommended as a
security measure. Allowing slashes to be decoded could potentially allow unsafe paths.

See also

• ACCEPTPATHINFO

AllowOverride Directive

Description: Types of directives that are allowed in .htaccess files
Syntax: AllowOverride All|None|directive-type [directive-type] ...
Default: AllowOverride None (2.3.9 and later), AllowOverride All (2.3.8

and earlier)
Context: directory
Status: Core
Module: core

When the server finds an .htaccess file (as specified by ACCESSFILENAME), it needs to know which directives
declared in that file can override earlier configuration directives.

=⇒Only available in <Directory> sections
ALLOWOVERRIDE is valid only in <DIRECTORY> sections specified without regular expres-
sions, not in <LOCATION>, <DIRECTORYMATCH> or <FILES> sections.

When this directive is set to None and ALLOWOVERRIDELIST is set to None .htaccess, files are completely ignored.
In this case, the server will not even attempt to read .htaccess files in the filesystem.

360 CHAPTER 10. APACHE MODULES

When this directive is set to All, then any directive which has the .htaccess Context (p. 351) is allowed in .htaccess
files.

The directive-type can be one of the following groupings of directives.

AuthConfig Allow use of the authorization directives (AUTHDBMGROUPFILE, AUTHDBMUSERFILE, AUTH-
GROUPFILE, AUTHNAME, AUTHTYPE, AUTHUSERFILE, REQUIRE, etc.).

FileInfo Allow use of the directives controlling document types (ERRORDOCUMENT, FORCETYPE, LAN-
GUAGEPRIORITY, SETHANDLER, SETINPUTFILTER, SETOUTPUTFILTER, and MOD MIME Add* and Re-
move* directives), document meta data (HEADER, REQUESTHEADER, SETENVIF, SETENVIFNOCASE,
BROWSERMATCH, COOKIEEXPIRES, COOKIEDOMAIN, COOKIESTYLE, COOKIETRACKING, COOKIEN-
AME), MOD REWRITE directives (REWRITEENGINE, REWRITEOPTIONS, REWRITEBASE, REWRITECOND,
REWRITERULE), MOD ALIAS directives (REDIRECT, REDIRECTTEMP, REDIRECTPERMANENT, REDIRECT-
MATCH), and ACTION from MOD ACTIONS.

Indexes Allow use of the directives controlling directory indexing (ADDDESCRIPTION, ADDICON, ADDICON-
BYENCODING, ADDICONBYTYPE, DEFAULTICON, DIRECTORYINDEX, FancyIndexing (p. 510) ,
HEADERNAME, INDEXIGNORE, INDEXOPTIONS, READMENAME, etc.).

Limit Allow use of the directives controlling host access (ALLOW, DENY and ORDER).

Nonfatal=[Override—Unknown—All] Allow use of AllowOverride option to treat syntax errors in .htaccess as
nonfatal. Instead of causing an Internal Server Error, disallowed or unrecognised directives will be ignored and
a warning logged:

• Nonfatal=Override treats directives forbidden by AllowOverride as nonfatal.
• Nonfatal=Unknown treats unknown directives as nonfatal. This covers typos and directives implemented

by a module that’s not present.
• Nonfatal=All treats both the above as nonfatal.

Note that a syntax error in a valid directive will still cause an internal server error.

! Security
Nonfatal errors may have security implications for .htaccess users. For example, if AllowOver-
ride disallows AuthConfig, users’ configuration designed to restrict access to a site will be
disabled.

Options[=Option,...] Allow use of the directives controlling specific directory features (OPTIONS and XBITHACK).
An equal sign may be given followed by a comma-separated list, without spaces, of options that may be set
using the OPTIONS command.

=⇒Implicit disabling of Options
Even though the list of options that may be used in .htaccess files can be limited with this di-
rective, as long as any OPTIONS directive is allowed any other inherited option can be disabled
by using the non-relative syntax. In other words, this mechanism cannot force a specific option
to remain set while allowing any others to be set.

AllowOverride Options=Indexes,MultiViews

Example:

AllowOverride AuthConfig Indexes

10.3. APACHE MODULE CORE 361

In the example above, all directives that are neither in the group AuthConfig nor Indexes cause an internal server
error.

=⇒For security and performance reasons, do not set AllowOverride to anything other than
None in your <Directory "/"> block. Instead, find (or create) the <Directory>
block that refers to the directory where you’re actually planning to place a .htaccess file.

See also

• ACCESSFILENAME

• ALLOWOVERRIDELIST

• Configuration Files (p. 30)

• .htaccess Files (p. 239)

AllowOverrideList Directive

Description: Individual directives that are allowed in .htaccess files
Syntax: AllowOverrideList None|directive [directive-type] ...
Default: AllowOverrideList None
Context: directory
Status: Core
Module: core

When the server finds an .htaccess file (as specified by ACCESSFILENAME), it needs to know which directives
declared in that file can override earlier configuration directives.

=⇒Only available in <Directory> sections
ALLOWOVERRIDELIST is valid only in <DIRECTORY> sections specified without regular
expressions, not in <LOCATION>, <DIRECTORYMATCH> or <FILES> sections.

When this directive is set to None and ALLOWOVERRIDE is set to None, then .htaccess files are completely ignored.
In this case, the server will not even attempt to read .htaccess files in the filesystem.

Example:

AllowOverride None
AllowOverrideList Redirect RedirectMatch

In the example above, only the Redirect and RedirectMatch directives are allowed. All others will cause an
internal server error.

Example:

AllowOverride AuthConfig
AllowOverrideList CookieTracking CookieName

In the example above, ALLOWOVERRIDE grants permission to the AuthConfig directive grouping and AL-
LOWOVERRIDELIST grants permission to only two directives from the FileInfo directive grouping. All others
will cause an internal server error.

See also

• ACCESSFILENAME

• ALLOWOVERRIDE

• Configuration Files (p. 30)

• .htaccess Files (p. 239)

362 CHAPTER 10. APACHE MODULES

CGIMapExtension Directive

Description: Technique for locating the interpreter for CGI scripts
Syntax: CGIMapExtension cgi-path .extension
Context: directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: NetWare only

This directive is used to control how Apache httpd finds the interpreter used to run CGI scripts. For example, setting
CGIMapExtension sys:\foo.nlm .foo will cause all CGI script files with a .foo extension to be passed to
the FOO interpreter.

CGIPassAuth Directive

Description: Enables passing HTTP authorization headers to scripts as CGI variables
Syntax: CGIPassAuth On|Off
Default: CGIPassAuth Off
Context: directory, .htaccess
Override: AuthConfig
Status: Core
Module: core
Compatibility: Available in Apache HTTP Server 2.4.13 and later

CGIPASSAUTH allows scripts access to HTTP authorization headers such as Authorization, which is required
for scripts that implement HTTP Basic authentication. Normally these HTTP headers are hidden from scripts. This
is to disallow scripts from seeing user ids and passwords used to access the server when HTTP Basic authentication
is enabled in the web server. This directive should be used when scripts are allowed to implement HTTP Basic
authentication.

This directive can be used instead of the compile-time setting SECURITY HOLE PASS AUTHORIZATION which
has been available in previous versions of Apache HTTP Server.

The setting is respected by any modules which use ap add common vars(), such as MOD CGI, MOD CGID,
MOD PROXY FCGI, MOD PROXY SCGI, and so on. Notably, it affects modules which don’t handle the request in the
usual sense but still use this API; examples of this are MOD INCLUDE and MOD EXT FILTER. Third-party modules
that don’t use ap add common vars() may choose to respect the setting as well.

ContentDigest Directive

Description: Enables the generation of Content-MD5 HTTP Response headers
Syntax: ContentDigest On|Off
Default: ContentDigest Off
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Core
Module: core

This directive enables the generation of Content-MD5 headers as defined in RFC1864 respectively RFC2616.

MD5 is an algorithm for computing a "message digest" (sometimes called "fingerprint") of arbitrary-length data,
with a high degree of confidence that any alterations in the data will be reflected in alterations in the message digest.

The Content-MD5 header provides an end-to-end message integrity check (MIC) of the entity-body. A proxy or
client may check this header for detecting accidental modification of the entity-body in transit. Example header:

10.3. APACHE MODULE CORE 363

Content-MD5: AuLb7Dp1rqtRtxz2m9kRpA==

Note that this can cause performance problems on your server since the message digest is computed on every request
(the values are not cached).

Content-MD5 is only sent for documents served by the CORE, and not by any module. For example, SSI documents,
output from CGI scripts, and byte range responses do not have this header.

DefaultRuntimeDir Directive

Description: Base directory for the server run-time files
Syntax: DefaultRuntimeDir directory-path
Default: DefaultRuntimeDir DEFAULT REL RUNTIMEDIR (logs/)
Context: server config
Status: Core
Module: core
Compatibility: Available in Apache 2.4.2 and later

The DEFAULTRUNTIMEDIR directive sets the directory in which the server will create various run-time files (shared
memory, locks, etc.). If set as a relative path, the full path will be relative to SERVERROOT.

Example

DefaultRuntimeDir scratch/

The default location of DEFAULTRUNTIMEDIR may be modified by changing the DEFAULT REL RUNTIMEDIR
#define at build time.

Note: SERVERROOT should be specified before this directive is used. Otherwise, the default value of SERVERROOT
would be used to set the base directory.

See also

• the security tips (p. 338) for information on how to properly set permissions on the SERVERROOT

DefaultType Directive

Description: This directive has no effect other than to emit warnings if the value is not none. In prior
versions, DefaultType would specify a default media type to assign to response content for
which no other media type configuration could be found.

Syntax: DefaultType media-type|none
Default: DefaultType none
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: The argument none is available in Apache httpd 2.2.7 and later. All other choices are DIS-

ABLED for 2.3.x and later.

This directive has been disabled. For backwards compatibility of configuration files, it may be specified with the value
none, meaning no default media type. For example:

DefaultType None

364 CHAPTER 10. APACHE MODULES

DefaultType None is only available in httpd-2.2.7 and later.

Use the mime.types configuration file and the ADDTYPE to configure media type assignments via file extensions,
or the FORCETYPE directive to configure the media type for specific resources. Otherwise, the server will send the
response without a Content-Type header field and the recipient may attempt to guess the media type.

Define Directive

Description: Define a variable
Syntax: Define parameter-name [parameter-value]
Context: server config, virtual host, directory
Status: Core
Module: core

In its one parameter form, DEFINE is equivalent to passing the -D argument to httpd. It can be used to toggle the
use of <IFDEFINE> sections without needing to alter -D arguments in any startup scripts.

In addition to that, if the second parameter is given, a config variable is set to this value. The variable can be used in
the configuration using the ${VAR} syntax. The variable is always globally defined and not limited to the scope of the
surrounding config section.

<IfDefine TEST>
Define servername test.example.com

</IfDefine>
<IfDefine !TEST>

Define servername www.example.com
Define SSL

</IfDefine>

DocumentRoot "/var/www/${servername}/htdocs"

Variable names may not contain colon ":" characters, to avoid clashes with REWRITEMAP’s syntax.

Directory Directive

Description: Enclose a group of directives that apply only to the named file-system directory, sub-
directories, and their contents.

Syntax: <Directory "directory-path"> ... </Directory>
Context: server config, virtual host
Status: Core
Module: core

<DIRECTORY> and </Directory> are used to enclose a group of directives that will apply only to the named
directory, sub-directories of that directory, and the files within the respective directories. Any directive that is al-
lowed in a directory context may be used. Directory-path is either the full path to a directory, or a wild-card
string using Unix shell-style matching. In a wild-card string, ? matches any single character, and * matches
any sequences of characters. You may also use [] character ranges. None of the wildcards match a ‘/’ charac-
ter, so <Directory "/*/public html"> will not match /home/user/public html, but <Directory
"/home/*/public html"> will match. Example:

<Directory "/usr/local/httpd/htdocs">
Options Indexes FollowSymLinks

</Directory>

10.3. APACHE MODULE CORE 365

Directory paths may be quoted, if you like, however, it must be quoted if the path contains spaces. This is because a
space would otherwise indicate the end of an argument.

=⇒Be careful with the directory-path arguments: They have to literally match the filesystem path
which Apache httpd uses to access the files. Directives applied to a particular <Directory>
will not apply to files accessed from that same directory via a different path, such as via differ-
ent symbolic links.

Regular expressions can also be used, with the addition of the ˜ character. For example:

<Directory ˜ "ˆ/www/[0-9]{3}">

</Directory>

would match directories in /www/ that consisted of three numbers.

If multiple (non-regular expression) <DIRECTORY> sections match the directory (or one of its parents) containing a
document, then the directives are applied in the order of shortest match first, interspersed with the directives from the
.htaccess files. For example, with

<Directory "/">
AllowOverride None

</Directory>

<Directory "/home">
AllowOverride FileInfo

</Directory>

for access to the document /home/web/dir/doc.html the steps are:

• Apply directive AllowOverride None (disabling .htaccess files).

• Apply directive AllowOverride FileInfo (for directory /home).

• Apply any FileInfo directives in /home/.htaccess, /home/web/.htaccess and
/home/web/dir/.htaccess in that order.

Regular expressions are not considered until after all of the normal sections have been applied. Then all of the regular
expressions are tested in the order they appeared in the configuration file. For example, with

<Directory ˜ "abc$">
... directives here ...

</Directory>

the regular expression section won’t be considered until after all normal <DIRECTORY>s and .htaccess files have
been applied. Then the regular expression will match on /home/abc/public html/abc and the corresponding
<DIRECTORY> will be applied.

Note that the default access for <Directory "/"> is to permit all access. This means that Apache httpd will
serve any file mapped from an URL. It is recommended that you change this with a block such as

<Directory "/">
Require all denied

</Directory>

366 CHAPTER 10. APACHE MODULES

and then override this for directories you want accessible. See the Security Tips (p. 338) page for more details.

The directory sections occur in the httpd.conf file. <DIRECTORY> directives cannot nest, and cannot appear in
a <LIMIT> or <LIMITEXCEPT> section.

See also

• How <Directory>, <Location> and <Files> sections work (p. 33) for an explanation of how these different
sections are combined when a request is received

DirectoryMatch Directive

Description: Enclose directives that apply to the contents of file-system directories matching a regular ex-
pression.

Syntax: <DirectoryMatch regex> ... </DirectoryMatch>
Context: server config, virtual host
Status: Core
Module: core

<DIRECTORYMATCH> and </DirectoryMatch> are used to enclose a group of directives which will apply
only to the named directory (and the files within), the same as <DIRECTORY>. However, it takes as an argument a
regular expression. For example:

<DirectoryMatch "ˆ/www/(.+/)?[0-9]{3}/">
...

</DirectoryMatch>

matches directories in /www/ (or any subdirectory thereof) that consist of three numbers.

=⇒Compatability
Prior to 2.3.9, this directive implicitly applied to sub-directories (like <DIRECTORY>) and
could not match the end of line symbol ($). In 2.3.9 and later, only directories that match the
expression are affected by the enclosed directives.

=⇒Trailing Slash
This directive applies to requests for directories that may or may not end in a trailing slash, so
expressions that are anchored to the end of line ($) must be written with care.

From 2.4.8 onwards, named groups and backreferences are captured and written to the environment with the corre-
sponding name prefixed with "MATCH " and in upper case. This allows elements of paths to be referenced from
within expressions (p. 89) and modules like MOD REWRITE. In order to prevent confusion, numbered (unnamed)
backreferences are ignored. Use named groups instead.

<DirectoryMatch "ˆ/var/www/combined/(?<sitename>[ˆ/]+)">
Require ldap-group cn=%{env:MATCH_SITENAME},ou=combined,o=Example

</DirectoryMatch>

See also

• <DIRECTORY> for a description of how regular expressions are mixed in with normal <DIRECTORY>s

• How <Directory>, <Location> and <Files> sections work (p. 33) for an explanation of how these different
sections are combined when a request is received

10.3. APACHE MODULE CORE 367

DocumentRoot Directive

Description: Directory that forms the main document tree visible from the web
Syntax: DocumentRoot directory-path
Default: DocumentRoot "/usr/local/apache/htdocs"
Context: server config, virtual host
Status: Core
Module: core

This directive sets the directory from which httpd will serve files. Unless matched by a directive like ALIAS, the
server appends the path from the requested URL to the document root to make the path to the document. Example:

DocumentRoot "/usr/web"

then an access to http://my.example.com/index.html refers to /usr/web/index.html. If the
directory-path is not absolute then it is assumed to be relative to the SERVERROOT.

The DOCUMENTROOT should be specified without a trailing slash.

See also

• Mapping URLs to Filesystem Locations (p. 61)

Else Directive

Description: Contains directives that apply only if the condition of a previous <IF> or <ELSEIF> section
is not satisfied by a request at runtime

Syntax: <Else> ... </Else>
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

The <ELSE> applies the enclosed directives if and only if the most recent <IF> or <ELSEIF> section in the same
scope has not been applied. For example: In

<If "-z req(’Host’)">
...

</If>
<Else>

...
</Else>

The <IF> would match HTTP/1.0 requests without a Host: header and the <ELSE> would match requests with a
Host: header.

See also

• <IF>

• <ELSEIF>

• How <Directory>, <Location>, <Files> sections work (p. 33) for an explanation of how these different
sections are combined when a request is received. <IF>, <ELSEIF>, and <ELSE> are applied last.

368 CHAPTER 10. APACHE MODULES

ElseIf Directive

Description: Contains directives that apply only if a condition is satisfied by a request at runtime while the
condition of a previous <IF> or <ELSEIF> section is not satisfied

Syntax: <ElseIf expression> ... </ElseIf>
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

The <ELSEIF> applies the enclosed directives if and only if both the given condition evaluates to true and the most
recent <IF> or <ELSEIF> section in the same scope has not been applied. For example: In

<If "-R ’10.1.0.0/16’">
#...

</If>
<ElseIf "-R ’10.0.0.0/8’">

#...
</ElseIf>
<Else>

#...
</Else>

The <ELSEIF> would match if the remote address of a request belongs to the subnet 10.0.0.0/8 but not to the subnet
10.1.0.0/16.

See also

• Expressions in Apache HTTP Server (p. 89) , for a complete reference and more examples.

• <IF>

• <ELSE>

• How <Directory>, <Location>, <Files> sections work (p. 33) for an explanation of how these different
sections are combined when a request is received. <IF>, <ELSEIF>, and <ELSE> are applied last.

EnableMMAP Directive

Description: Use memory-mapping to read files during delivery
Syntax: EnableMMAP On|Off
Default: EnableMMAP On
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

This directive controls whether the httpd may use memory-mapping if it needs to read the contents of a file during
delivery. By default, when the handling of a request requires access to the data within a file – for example, when
delivering a server-parsed file using MOD INCLUDE – Apache httpd memory-maps the file if the OS supports it.

This memory-mapping sometimes yields a performance improvement. But in some environments, it is better to disable
the memory-mapping to prevent operational problems:

• On some multiprocessor systems, memory-mapping can reduce the performance of the httpd.

• Deleting or truncating a file while httpd has it memory-mapped can cause httpd to crash with a segmentation
fault.

10.3. APACHE MODULE CORE 369

For server configurations that are vulnerable to these problems, you should disable memory-mapping of delivered files
by specifying:

EnableMMAP Off

For NFS mounted files, this feature may be disabled explicitly for the offending files by specifying:

<Directory "/path-to-nfs-files">
EnableMMAP Off

</Directory>

EnableSendfile Directive

Description: Use the kernel sendfile support to deliver files to the client
Syntax: EnableSendfile On|Off
Default: EnableSendfile Off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: Default changed to Off in version 2.3.9.

This directive controls whether httpd may use the sendfile support from the kernel to transmit file contents to the
client. By default, when the handling of a request requires no access to the data within a file – for example, when
delivering a static file – Apache httpd uses sendfile to deliver the file contents without ever reading the file if the OS
supports it.

This sendfile mechanism avoids separate read and send operations, and buffer allocations. But on some platforms or
within some filesystems, it is better to disable this feature to avoid operational problems:

• Some platforms may have broken sendfile support that the build system did not detect, especially if the binaries
were built on another box and moved to such a machine with broken sendfile support.

• On Linux the use of sendfile triggers TCP-checksum offloading bugs on certain networking cards when using
IPv6.

• On Linux on Itanium, sendfile may be unable to handle files over 2GB in size.

• With a network-mounted DOCUMENTROOT (e.g., NFS, SMB, CIFS, FUSE), the kernel may be unable to serve
the network file through its own cache.

For server configurations that are not vulnerable to these problems, you may enable this feature by specifying:

EnableSendfile On

For network mounted files, this feature may be disabled explicitly for the offending files by specifying:

<Directory "/path-to-nfs-files">
EnableSendfile Off

</Directory>

Please note that the per-directory and .htaccess configuration of ENABLESENDFILE is not supported by
MOD CACHE DISK. Only global definition of ENABLESENDFILE is taken into account by the module.

370 CHAPTER 10. APACHE MODULES

Error Directive

Description: Abort configuration parsing with a custom error message
Syntax: Error message
Context: server config, virtual host, directory, .htaccess
Status: Core
Module: core
Compatibility: 2.3.9 and later

If an error can be detected within the configuration, this directive can be used to generate a custom error message, and
halt configuration parsing. The typical use is for reporting required modules which are missing from the configuration.

Example
ensure that mod_include is loaded
<IfModule !include_module>

Error "mod_include is required by mod_foo. Load it with LoadModule."
</IfModule>

ensure that exactly one of SSL,NOSSL is defined
<IfDefine SSL>
<IfDefine NOSSL>

Error "Both SSL and NOSSL are defined. Define only one of them."
</IfDefine>
</IfDefine>
<IfDefine !SSL>
<IfDefine !NOSSL>

Error "Either SSL or NOSSL must be defined."
</IfDefine>
</IfDefine>

ErrorDocument Directive

Description: What the server will return to the client in case of an error
Syntax: ErrorDocument error-code document
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

In the event of a problem or error, Apache httpd can be configured to do one of four things,

1. output a simple hardcoded error message

2. output a customized message

3. internally redirect to a local URL-path to handle the problem/error

4. redirect to an external URL to handle the problem/error

The first option is the default, while options 2-4 are configured using the ERRORDOCUMENT directive, which is fol-
lowed by the HTTP response code and a URL or a message. Apache httpd will sometimes offer additional information
regarding the problem/error.

From 2.4.13, expression syntax (p. 89) can be used inside the directive to produce dynamic strings and URLs.

10.3. APACHE MODULE CORE 371

URLs can begin with a slash (/) for local web-paths (relative to the DOCUMENTROOT), or be a full URL which the
client can resolve. Alternatively, a message can be provided to be displayed by the browser. Note that deciding whether
the parameter is an URL, a path or a message is performed before any expression is parsed. Examples:

ErrorDocument 500 http://foo.example.com/cgi-bin/tester
ErrorDocument 404 /cgi-bin/bad_urls.pl
ErrorDocument 401 /subscription_info.html
ErrorDocument 403 "Sorry can’t allow you access today"
ErrorDocument 403 Forbidden!
ErrorDocument 403 /cgi-bin/forbidden.pl?referrer=%{escape:%{HTTP_REFERER}}

Additionally, the special value default can be used to specify Apache httpd’s simple hardcoded message. While
not required under normal circumstances, default will restore Apache httpd’s simple hardcoded message for con-
figurations that would otherwise inherit an existing ERRORDOCUMENT.

ErrorDocument 404 /cgi-bin/bad_urls.pl

<Directory "/web/docs">
ErrorDocument 404 default

</Directory>

Note that when you specify an ERRORDOCUMENT that points to a remote URL (ie. anything with a method such as
http in front of it), Apache HTTP Server will send a redirect to the client to tell it where to find the document, even if
the document ends up being on the same server. This has several implications, the most important being that the client
will not receive the original error status code, but instead will receive a redirect status code. This in turn can confuse
web robots and other clients which try to determine if a URL is valid using the status code. In addition, if you use a
remote URL in an ErrorDocument 401, the client will not know to prompt the user for a password since it will
not receive the 401 status code. Therefore, if you use an ErrorDocument 401 directive, then it must refer to a
local document.

Microsoft Internet Explorer (MSIE) will by default ignore server-generated error messages when they are "too small"
and substitute its own "friendly" error messages. The size threshold varies depending on the type of error, but in
general, if you make your error document greater than 512 bytes, then MSIE will show the server-generated error
rather than masking it. More information is available in Microsoft Knowledge Base article Q2948076.

Although most error messages can be overridden, there are certain circumstances where the internal messages are
used regardless of the setting of ERRORDOCUMENT. In particular, if a malformed request is detected, normal request
processing will be immediately halted and the internal error message returned. This is necessary to guard against
security problems caused by bad requests.

If you are using mod proxy, you may wish to enable PROXYERROROVERRIDE so that you can provide custom error
messages on behalf of your Origin servers. If you don’t enable ProxyErrorOverride, Apache httpd will not generate
custom error documents for proxied content.

See also

• documentation of customizable responses (p. 75)

6http://support.microsoft.com/default.aspx?scid=kb;en-us;Q294807

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q294807

372 CHAPTER 10. APACHE MODULES

ErrorLog Directive

Description: Location where the server will log errors
Syntax: ErrorLog file-path|syslog[:facility]
Default: ErrorLog logs/error log (Unix) ErrorLog logs/error.log (Windows

and OS/2)
Context: server config, virtual host
Status: Core
Module: core

The ERRORLOG directive sets the name of the file to which the server will log any errors it encounters. If the file-path
is not absolute then it is assumed to be relative to the SERVERROOT.

ErrorLog "/var/log/httpd/error_log"

If the file-path begins with a pipe character "|" then it is assumed to be a command to spawn to handle the error log.

ErrorLog "|/usr/local/bin/httpd_errors"

See the notes on piped logs (p. 53) for more information.

Using syslog instead of a filename enables logging via syslogd(8) if the system supports it. The default is to use
syslog facility local7, but you can override this by using the syslog:facility syntax where facility can be
one of the names usually documented in syslog(1). The facility is effectively global, and if it is changed in individual
virtual hosts, the final facility specified affects the entire server.

ErrorLog syslog:user

Additional modules can provide their own ErrorLog providers. The syntax is similar to the syslog example above.

SECURITY: See the security tips (p. 338) document for details on why your security could be compromised if the
directory where log files are stored is writable by anyone other than the user that starts the server.

! Note
When entering a file path on non-Unix platforms, care should be taken to make sure that only
forward slashes are used even though the platform may allow the use of back slashes. In
general it is a good idea to always use forward slashes throughout the configuration files.

See also

• LOGLEVEL

• Apache HTTP Server Log Files (p. 53)

ErrorLogFormat Directive

Description: Format specification for error log entries
Syntax: ErrorLogFormat [connection|request] format
Context: server config, virtual host
Status: Core
Module: core

ERRORLOGFORMAT allows to specify what supplementary information is logged in the error log in addition to the
actual log message.

10.3. APACHE MODULE CORE 373

#Simple example
ErrorLogFormat "[%t] [%l] [pid %P] %F: %E: [client %a] %M"

Specifying connection or request as first parameter allows to specify additional formats, causing additional
information to be logged when the first message is logged for a specific connection or request, respectively. This
additional information is only logged once per connection/request. If a connection or request is processed without
causing any log message, the additional information is not logged either.

It can happen that some format string items do not produce output. For example, the Referer header is only present if
the log message is associated to a request and the log message happens at a time when the Referer header has already
been read from the client. If no output is produced, the default behavior is to delete everything from the preceding
space character to the next space character. This means the log line is implicitly divided into fields on non-whitespace
to whitespace transitions. If a format string item does not produce output, the whole field is omitted. For example,
if the remote address %a in the log format [%t] [%l] [%a] %M is not available, the surrounding brackets are
not logged either. Space characters can be escaped with a backslash to prevent them from delimiting a field. The
combination ’%’ (percent space) is a zero-width field delimiter that does not produce any output.

The above behavior can be changed by adding modifiers to the format string item. A - (minus) modifier causes a
minus to be logged if the respective item does not produce any output. In once-per-connection/request formats, it is
also possible to use the + (plus) modifier. If an item with the plus modifier does not produce any output, the whole
line is omitted.

A number as modifier can be used to assign a log severity level to a format item. The item will only be logged if the
severity of the log message is not higher than the specified log severity level. The number can range from 1 (alert)
over 4 (warn) and 7 (debug) to 15 (trace8).

For example, here’s what would happen if you added modifiers to the %{Referer}i token, which logs the Referer
request header.

Modified Token Meaning
%-{Referer}i Logs a - if Referer is not set.
%+{Referer}i Omits the entire line if Referer is not set.
%4{Referer}i Logs the Referer only if the log message severity is higher than 4.

Some format string items accept additional parameters in braces.

FormatString Description
%% The percent sign
%a Client IP address and port of the request
%{c}a Underlying peer IP address and port of the connection (see the MOD REMOTEIP module)
%A Local IP-address and port
%{name}e Request environment variable name
%E APR/OS error status code and string
%F Source file name and line number of the log call
%{name}i Request header name
%k Number of keep-alive requests on this connection
%l Loglevel of the message
%L Log ID of the request
%{c}L Log ID of the connection
%{C}L Log ID of the connection if used in connection scope, empty otherwise
%m Name of the module logging the message
%M The actual log message
%{name}n Request note name
%P Process ID of current process
%T Thread ID of current thread
%{g}T System unique thread ID of current thread (the same ID as displayed by e.g. top; currently Linux only)

374 CHAPTER 10. APACHE MODULES

%t The current time
%{u}t The current time including micro-seconds
%{cu}t The current time in compact ISO 8601 format, including micro-seconds
%v The canonical SERVERNAME of the current server.
%V The server name of the server serving the request according to the USECANONICALNAME setting.
\ (backslash space) Non-field delimiting space
% (percent space) Field delimiter (no output)

The log ID format %L produces a unique id for a connection or request. This can be used to correlate which log lines
belong to the same connection or request, which request happens on which connection. A %L format string is also
available in MOD LOG CONFIG to allow to correlate access log entries with error log lines. If MOD UNIQUE ID is
loaded, its unique id will be used as log ID for requests.

#Example (default format for threaded MPMs)
ErrorLogFormat "[%{u}t] [%-m:%l] [pid %P:tid %T] %7F: %E: [client\ %a] %M%,\referer\%{Referer}i"

This would result in error messages such as:

[Thu May 12 08:28:57.652118 2011] [core:error] [pid 8777:tid

4326490112] [client ::1:58619] File does not exist:

/usr/local/apache2/htdocs/favicon.ico

Notice that, as discussed above, some fields are omitted entirely because they are not defined.

#Example (similar to the 2.2.x format)
ErrorLogFormat "[%t] [%l] %7F: %E: [client\ %a] %M%,\referer\%{Referer}i"

#Advanced example with request/connection log IDs
ErrorLogFormat "[%{uc}t] [%-m:%-l] [R:%L] [C:%{C}L] %7F: %E: %M"
ErrorLogFormat request "[%{uc}t] [R:%L] Request %k on C:%{c}L pid:%P tid:%T"
ErrorLogFormat request "[%{uc}t] [R:%L] UA:’%+{User-Agent}i’"
ErrorLogFormat request "[%{uc}t] [R:%L] Referer:’%+{Referer}i’"
ErrorLogFormat connection "[%{uc}t] [C:%{c}L] local\ %a remote\ %A"

See also

• ERRORLOG

• LOGLEVEL

• Apache HTTP Server Log Files (p. 53)

ExtendedStatus Directive

Description: Keep track of extended status information for each request
Syntax: ExtendedStatus On|Off
Default: ExtendedStatus Off[*]
Context: server config
Status: Core
Module: core

10.3. APACHE MODULE CORE 375

This option tracks additional data per worker about the currently executing request and creates a utilization summary.
You can see these variables during runtime by configuring MOD STATUS. Note that other modules may rely on this
scoreboard.

This setting applies to the entire server and cannot be enabled or disabled on a virtualhost-by-virtualhost basis. The
collection of extended status information can slow down the server. Also note that this setting cannot be changed
during a graceful restart.

=⇒Note that loading MOD STATUS will change the default behavior to ExtendedStatus On, while
other third party modules may do the same. Such modules rely on collecting detailed infor-
mation about the state of all workers. The default is changed by MOD STATUS beginning with
version 2.3.6. The previous default was always Off.

FileETag Directive

Description: File attributes used to create the ETag HTTP response header for static files
Syntax: FileETag component ...
Default: FileETag MTime Size
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: The default used to be "INodeMTimeSize" in 2.3.14 and earlier.

The FILEETAG directive configures the file attributes that are used to create the ETag (entity tag) response header
field when the document is based on a static file. (The ETag value is used in cache management to save network
bandwidth.) The FILEETAG directive allows you to choose which of these – if any – should be used. The recognized
keywords are:

INode The file’s i-node number will be included in the calculation

MTime The date and time the file was last modified will be included

Size The number of bytes in the file will be included

All All available fields will be used. This is equivalent to:

FileETag INode MTime Size

None If a document is file-based, no ETag field will be included in the response

The INode, MTime, and Size keywords may be prefixed with either + or -, which allow changes to be made to
the default setting inherited from a broader scope. Any keyword appearing without such a prefix immediately and
completely cancels the inherited setting.

If a directory’s configuration includes FileETagINodeMTimeSize, and a subdirectory’s includes
FileETag-INode, the setting for that subdirectory (which will be inherited by any sub-subdirectories that don’t
override it) will be equivalent to FileETagMTimeSize.

! Warning
Do not change the default for directories or locations that have WebDAV enabled and use
MOD DAV FS as a storage provider. MOD DAV FS uses MTimeSize as a fixed format for
ETag comparisons on conditional requests. These conditional requests will break if the ETag
format is changed via FILEETAG.

376 CHAPTER 10. APACHE MODULES

=⇒Server Side Includes
An ETag is not generated for responses parsed by MOD INCLUDE since the response entity can
change without a change of the INode, MTime, or Size of the static file with embedded SSI
directives.

Files Directive

Description: Contains directives that apply to matched filenames
Syntax: <Files "filename"> ... </Files>
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

The <FILES> directive limits the scope of the enclosed directives by filename. It is comparable to the <DIREC-
TORY> and <LOCATION> directives. It should be matched with a </Files> directive. The directives given
within this section will be applied to any object with a basename (last component of filename) matching the specified
filename. <FILES> sections are processed in the order they appear in the configuration file, after the <DIRECTORY>
sections and .htaccess files are read, but before <LOCATION> sections. Note that <FILES> can be nested inside
<DIRECTORY> sections to restrict the portion of the filesystem they apply to.

The filename argument should include a filename, or a wild-card string, where ? matches any single character, and *
matches any sequences of characters.

<Files "cat.html">
Insert stuff that applies to cat.html here

</Files>

<Files "?at.*">
This would apply to cat.html, bat.html, hat.php and so on.

</Files>

Regular expressions can also be used, with the addition of the ˜ character. For example:

<Files ˜ "\.(gif|jpe?g|png)$">
#...

</Files>

would match most common Internet graphics formats. <FILESMATCH> is preferred, however.

Note that unlike <DIRECTORY> and <LOCATION> sections, <FILES> sections can be used inside .htaccess
files. This allows users to control access to their own files, at a file-by-file level.

See also

• How <Directory>, <Location> and <Files> sections work (p. 33) for an explanation of how these different
sections are combined when a request is received

FilesMatch Directive

Description: Contains directives that apply to regular-expression matched filenames
Syntax: <FilesMatch regex> ... </FilesMatch>
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

10.3. APACHE MODULE CORE 377

The <FILESMATCH> directive limits the scope of the enclosed directives by filename, just as the <FILES> directive
does. However, it accepts a regular expression. For example:

<FilesMatch ".+\.(gif|jpe?g|png)$">
...

</FilesMatch>

would match most common Internet graphics formats.

=⇒The .+ at the start of the regex ensures that files named .png, or .gif, for example, are not
matched.

From 2.4.8 onwards, named groups and backreferences are captured and written to the environment with the corre-
sponding name prefixed with "MATCH " and in upper case. This allows elements of files to be referenced from
within expressions (p. 89) and modules like MOD REWRITE. In order to prevent confusion, numbered (unnamed)
backreferences are ignored. Use named groups instead.

<FilesMatch "ˆ(?<sitename>[ˆ/]+)">
require ldap-group cn=%{env:MATCH_SITENAME},ou=combined,o=Example

</FilesMatch>

See also

• How <Directory>, <Location> and <Files> sections work (p. 33) for an explanation of how these different
sections are combined when a request is received

ForceType Directive

Description: Forces all matching files to be served with the specified media type in the HTTP Content-Type
header field

Syntax: ForceType media-type|None
Context: directory, .htaccess
Override: FileInfo
Status: Core
Module: core

When placed into an .htaccess file or a <DIRECTORY>, or <LOCATION> or <FILES> section, this directive
forces all matching files to be served with the content type identification given by media-type. For example, if you had
a directory full of GIF files, but did not want to label them all with .gif, you might want to use:

ForceType image/gif

Note that this directive overrides other indirect media type associations defined in mime.types or via the ADDTYPE.

You can also override more general FORCETYPE settings by using the value of None:

force all files to be image/gif:
<Location "/images">

ForceType image/gif
</Location>

but normal mime-type associations here:
<Location "/images/mixed">

ForceType None
</Location>

378 CHAPTER 10. APACHE MODULES

This directive primarily overrides the content types generated for static files served out of the filesystem. For resources
other than static files, where the generator of the response typically specifies a Content-Type, this directive has no
effect.

=⇒Note
When explicit directives such as SETHANDLER or ADDHANDLER do not apply to the current
request, the internal handler name normally set by those directives is set to match the content
type specified by this directive. This is a historical behavior that some third-party modules
(such as mod php) may use "magic" content types used only to signal the module to take
responsibility for the matching request. Configurations that rely on such "magic" types should
be avoided by the use of SETHANDLER or ADDHANDLER.

GprofDir Directive

Description: Directory to write gmon.out profiling data to.
Syntax: GprofDir /tmp/gprof/|/tmp/gprof/%
Context: server config, virtual host
Status: Core
Module: core

When the server has been compiled with gprof profiling support, GPROFDIR causes gmon.out files to be written to
the specified directory when the process exits. If the argument ends with a percent symbol (’%’), subdirectories are
created for each process id.

This directive currently only works with the PREFORK MPM.

HostnameLookups Directive

Description: Enables DNS lookups on client IP addresses
Syntax: HostnameLookups On|Off|Double
Default: HostnameLookups Off
Context: server config, virtual host, directory
Status: Core
Module: core

This directive enables DNS lookups so that host names can be logged (and passed to CGIs/SSIs in REMOTE HOST).
The value Double refers to doing double-reverse DNS lookup. That is, after a reverse lookup is performed, a forward
lookup is then performed on that result. At least one of the IP addresses in the forward lookup must match the original
address. (In "tcpwrappers" terminology this is called PARANOID.)

Regardless of the setting, when MOD AUTHZ HOST is used for controlling access by hostname, a double reverse
lookup will be performed. This is necessary for security. Note that the result of this double-reverse isn’t generally
available unless you set HostnameLookups Double. For example, if only HostnameLookups On and a
request is made to an object that is protected by hostname restrictions, regardless of whether the double-reverse fails
or not, CGIs will still be passed the single-reverse result in REMOTE HOST.

The default is Off in order to save the network traffic for those sites that don’t truly need the reverse lookups done.
It is also better for the end users because they don’t have to suffer the extra latency that a lookup entails. Heavily
loaded sites should leave this directive Off, since DNS lookups can take considerable amounts of time. The utility
logresolve, compiled by default to the bin subdirectory of your installation directory, can be used to look up host
names from logged IP addresses offline.

Finally, if you have hostname-based Require directives (p. 504) , a hostname lookup will be performed regardless of
the setting of HostnameLookups.

10.3. APACHE MODULE CORE 379

If Directive

Description: Contains directives that apply only if a condition is satisfied by a request at runtime
Syntax: <If expression> ... </If>
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

The <IF> directive evaluates an expression at runtime, and applies the enclosed directives if and only if the expression
evaluates to true. For example:

<If "-z req(’Host’)">

would match HTTP/1.0 requests without a Host: header. Expressions may contain various shell-like operators for
string comparison (==, !=, <, ...), integer comparison (-eq, -ne, ...), and others (-n, -z, -f, ...). It is also possible
to use regular expressions,

<If "%{QUERY_STRING} =˜ /(delete|commit)=.*?elem/">

shell-like pattern matches and many other operations. These operations can be done on request headers (req), envi-
ronment variables (env), and a large number of other properties. The full documentation is available in Expressions
in Apache HTTP Server (p. 89) .

Only directives that support the directory context (p. 351) can be used within this configuration section.

! Certain variables, such as CONTENT TYPE and other response headers, are set after <If>
conditions have already been evaluated, and so will not be available to use in this directive.

See also

• Expressions in Apache HTTP Server (p. 89) , for a complete reference and more examples.

• <ELSEIF>

• <ELSE>

• How <Directory>, <Location>, <Files> sections work (p. 33) for an explanation of how these different
sections are combined when a request is received. <IF>, <ELSEIF>, and <ELSE> are applied last.

IfDefine Directive

Description: Encloses directives that will be processed only if a test is true at startup
Syntax: <IfDefine [!]parameter-name> ... </IfDefine>
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

The <IfDefine test>...</IfDefine> section is used to mark directives that are conditional. The direc-
tives within an <IFDEFINE> section are only processed if the test is true. If test is false, everything between the start
and end markers is ignored.

The test in the <IFDEFINE> section directive can be one of two forms:

• parameter-name

380 CHAPTER 10. APACHE MODULES

• !parameter-name

In the former case, the directives between the start and end markers are only processed if the parameter named
parameter-name is defined. The second format reverses the test, and only processes the directives if parameter-name
is not defined.

The parameter-name argument is a define as given on the httpd command line via -Dparameter at the time the
server was started or by the DEFINE directive.

<IFDEFINE> sections are nest-able, which can be used to implement simple multiple-parameter tests. Example:

httpd -DReverseProxy -DUseCache -DMemCache ...

<IfDefine ReverseProxy>
LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_http_module modules/mod_proxy_http.so
<IfDefine UseCache>

LoadModule cache_module modules/mod_cache.so
<IfDefine MemCache>

LoadModule mem_cache_module modules/mod_mem_cache.so
</IfDefine>
<IfDefine !MemCache>

LoadModule cache_disk_module modules/mod_cache_disk.so
</IfDefine>

</IfDefine>
</IfDefine>

IfModule Directive

Description: Encloses directives that are processed conditional on the presence or absence of a specific
module

Syntax: <IfModule [!]module-file|module-identifier> ... </IfModule>
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core
Compatibility: Module identifiers are available in version 2.1 and later.

The <IfModule test>...</IfModule> section is used to mark directives that are conditional on the pres-
ence of a specific module. The directives within an <IFMODULE> section are only processed if the test is true. If test
is false, everything between the start and end markers is ignored.

The test in the <IFMODULE> section directive can be one of two forms:

• module

• !module

In the former case, the directives between the start and end markers are only processed if the module named module
is included in Apache httpd – either compiled in or dynamically loaded using LOADMODULE. The second format
reverses the test, and only processes the directives if module is not included.

The module argument can be either the module identifier or the file name of the module, at the time it was compiled.
For example, rewrite module is the identifier and mod rewrite.c is the file name. If a module consists of
several source files, use the name of the file containing the string STANDARD20 MODULE STUFF.

10.3. APACHE MODULE CORE 381

<IFMODULE> sections are nest-able, which can be used to implement simple multiple-module tests.

=⇒This section should only be used if you need to have one configuration file that works whether
or not a specific module is available. In normal operation, directives need not be placed in
<IFMODULE> sections.

Include Directive

Description: Includes other configuration files from within the server configuration files
Syntax: Include file-path|directory-path|wildcard
Context: server config, virtual host, directory
Status: Core
Module: core
Compatibility: Directory wildcard matching available in 2.3.6 and later

This directive allows inclusion of other configuration files from within the server configuration files.

Shell-style (fnmatch()) wildcard characters can be used in the filename or directory parts of the path to include
several files at once, in alphabetical order. In addition, if INCLUDE points to a directory, rather than a file, Apache httpd
will read all files in that directory and any subdirectory. However, including entire directories is not recommended,
because it is easy to accidentally leave temporary files in a directory that can cause httpd to fail. Instead, we
encourage you to use the wildcard syntax shown below, to include files that match a particular pattern, such as *.conf,
for example.

The INCLUDE directive will fail with an error if a wildcard expression does not match any file. The INCLUDEOP-
TIONAL directive can be used if non-matching wildcards should be ignored.

The file path specified may be an absolute path, or may be relative to the SERVERROOT directory.

Examples:

Include /usr/local/apache2/conf/ssl.conf
Include /usr/local/apache2/conf/vhosts/*.conf

Or, providing paths relative to your SERVERROOT directory:

Include conf/ssl.conf
Include conf/vhosts/*.conf

Wildcards may be included in the directory or file portion of the path. This example will fail if there is no subdirectory
in conf/vhosts that contains at least one *.conf file:

Include conf/vhosts/*/*.conf

Alternatively, the following command will just be ignored in case of missing files or directories:

IncludeOptional conf/vhosts/*/*.conf

See also

• INCLUDEOPTIONAL

• apachectl

382 CHAPTER 10. APACHE MODULES

IncludeOptional Directive

Description: Includes other configuration files from within the server configuration files
Syntax: IncludeOptional file-path|directory-path|wildcard
Context: server config, virtual host, directory
Status: Core
Module: core
Compatibility: Available in 2.3.6 and later

This directive allows inclusion of other configuration files from within the server configuration files. It works iden-
tically to the INCLUDE directive, with the exception that if wildcards do not match any file or directory, the IN-
CLUDEOPTIONAL directive will be silently ignored instead of causing an error.

See also

• INCLUDE

• apachectl

KeepAlive Directive

Description: Enables HTTP persistent connections
Syntax: KeepAlive On|Off
Default: KeepAlive On
Context: server config, virtual host
Status: Core
Module: core

The Keep-Alive extension to HTTP/1.0 and the persistent connection feature of HTTP/1.1 provide long-lived HTTP
sessions which allow multiple requests to be sent over the same TCP connection. In some cases this has been shown
to result in an almost 50% speedup in latency times for HTML documents with many images. To enable Keep-Alive
connections, set KeepAlive On.

For HTTP/1.0 clients, Keep-Alive connections will only be used if they are specifically requested by a client. In
addition, a Keep-Alive connection with an HTTP/1.0 client can only be used when the length of the content is known
in advance. This implies that dynamic content such as CGI output, SSI pages, and server-generated directory listings
will generally not use Keep-Alive connections to HTTP/1.0 clients. For HTTP/1.1 clients, persistent connections are
the default unless otherwise specified. If the client requests it, chunked encoding will be used in order to send content
of unknown length over persistent connections.

When a client uses a Keep-Alive connection, it will be counted as a single "request" for the MAXCONNECTION-
SPERCHILD directive, regardless of how many requests are sent using the connection.

See also

• MAXKEEPALIVEREQUESTS

KeepAliveTimeout Directive

Description: Amount of time the server will wait for subsequent requests on a persistent connection
Syntax: KeepAliveTimeout num[ms]
Default: KeepAliveTimeout 5
Context: server config, virtual host
Status: Core
Module: core

10.3. APACHE MODULE CORE 383

The number of seconds Apache httpd will wait for a subsequent request before closing the connection. By adding a
postfix of ms the timeout can be also set in milliseconds. Once a request has been received, the timeout value specified
by the TIMEOUT directive applies.

Setting KEEPALIVETIMEOUT to a high value may cause performance problems in heavily loaded servers. The higher
the timeout, the more server processes will be kept occupied waiting on connections with idle clients.

If KEEPALIVETIMEOUT is not set for a name-based virtual host, the value of the first defined virtual host best match-
ing the local IP and port will be used.

Limit Directive

Description: Restrict enclosed access controls to only certain HTTP methods
Syntax: <Limit method [method] ... > ... </Limit>
Context: directory, .htaccess
Override: AuthConfig, Limit
Status: Core
Module: core

Access controls are normally effective for all access methods, and this is the usual desired behavior. In the general
case, access control directives should not be placed within a <LIMIT> section.

The purpose of the <LIMIT> directive is to restrict the effect of the access controls to the nominated HTTP methods.
For all other methods, the access restrictions that are enclosed in the <LIMIT> bracket will have no effect. The
following example applies the access control only to the methods POST, PUT, and DELETE, leaving all other methods
unprotected:

<Limit POST PUT DELETE>
Require valid-user

</Limit>

The method names listed can be one or more of: GET, POST, PUT, DELETE, CONNECT, OPTIONS, PATCH,
PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, LOCK, and UNLOCK. The method name is case-sensitive. If
GET is used, it will also restrict HEAD requests. The TRACE method cannot be limited (see TRACEENABLE).

! A <LIMITEXCEPT> section should always be used in preference to a <LIMIT> section
when restricting access, since a <LIMITEXCEPT> section provides protection against arbi-
trary methods.

The <LIMIT> and <LIMITEXCEPT> directives may be nested. In this case, each successive level of <LIMIT> or
<LIMITEXCEPT> directives must further restrict the set of methods to which access controls apply.

! When using <LIMIT> or <LIMITEXCEPT> directives with the REQUIRE directive, note that
the first REQUIRE to succeed authorizes the request, regardless of the presence of other RE-
QUIRE directives.

For example, given the following configuration, all users will be authorized for POST requests, and the Require
group editors directive will be ignored in all cases:

<LimitExcept GET>
Require valid-user

</LimitExcept>
<Limit POST>

Require group editors
</Limit>

384 CHAPTER 10. APACHE MODULES

LimitExcept Directive

Description: Restrict access controls to all HTTP methods except the named ones
Syntax: <LimitExcept method [method] ... > ... </LimitExcept>
Context: directory, .htaccess
Override: AuthConfig, Limit
Status: Core
Module: core

<LIMITEXCEPT> and </LimitExcept> are used to enclose a group of access control directives which will then
apply to any HTTP access method not listed in the arguments; i.e., it is the opposite of a <LIMIT> section and can be
used to control both standard and nonstandard/unrecognized methods. See the documentation for <LIMIT> for more
details.

For example:

<LimitExcept POST GET>
Require valid-user

</LimitExcept>

LimitInternalRecursion Directive

Description: Determine maximum number of internal redirects and nested subrequests
Syntax: LimitInternalRecursion number [number]
Default: LimitInternalRecursion 10
Context: server config, virtual host
Status: Core
Module: core

An internal redirect happens, for example, when using the ACTION directive, which internally redirects the original
request to a CGI script. A subrequest is Apache httpd’s mechanism to find out what would happen for some URI
if it were requested. For example, MOD DIR uses subrequests to look for the files listed in the DIRECTORYINDEX
directive.

LIMITINTERNALRECURSION prevents the server from crashing when entering an infinite loop of internal redirects or
subrequests. Such loops are usually caused by misconfigurations.

The directive stores two different limits, which are evaluated on per-request basis. The first number is the maximum
number of internal redirects that may follow each other. The second number determines how deeply subrequests may
be nested. If you specify only one number, it will be assigned to both limits.

LimitInternalRecursion 5

LimitRequestBody Directive

Description: Restricts the total size of the HTTP request body sent from the client
Syntax: LimitRequestBody bytes
Default: LimitRequestBody 0
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

This directive specifies the number of bytes from 0 (meaning unlimited) to 2147483647 (2GB) that are allowed in a
request body. See the note below for the limited applicability to proxy requests.

10.3. APACHE MODULE CORE 385

The LIMITREQUESTBODY directive allows the user to set a limit on the allowed size of an HTTP request message
body within the context in which the directive is given (server, per-directory, per-file or per-location). If the client
request exceeds that limit, the server will return an error response instead of servicing the request. The size of a
normal request message body will vary greatly depending on the nature of the resource and the methods allowed on
that resource. CGI scripts typically use the message body for retrieving form information. Implementations of the PUT
method will require a value at least as large as any representation that the server wishes to accept for that resource.

This directive gives the server administrator greater control over abnormal client request behavior, which may be
useful for avoiding some forms of denial-of-service attacks.

If, for example, you are permitting file upload to a particular location and wish to limit the size of the uploaded file to
100K, you might use the following directive:

LimitRequestBody 102400

=⇒For a full description of how this directive is interpreted by proxy requests, see the MOD PROXY
documentation.

LimitRequestFields Directive

Description: Limits the number of HTTP request header fields that will be accepted from the client
Syntax: LimitRequestFields number
Default: LimitRequestFields 100
Context: server config, virtual host
Status: Core
Module: core

Number is an integer from 0 (meaning unlimited) to 32767. The default value is defined by the compile-time constant
DEFAULT LIMIT REQUEST FIELDS (100 as distributed).

The LIMITREQUESTFIELDS directive allows the server administrator to modify the limit on the number of request
header fields allowed in an HTTP request. A server needs this value to be larger than the number of fields that a normal
client request might include. The number of request header fields used by a client rarely exceeds 20, but this may vary
among different client implementations, often depending upon the extent to which a user has configured their browser
to support detailed content negotiation. Optional HTTP extensions are often expressed using request header fields.

This directive gives the server administrator greater control over abnormal client request behavior, which may be
useful for avoiding some forms of denial-of-service attacks. The value should be increased if normal clients see an
error response from the server that indicates too many fields were sent in the request.

For example:

LimitRequestFields 50

! Warning
When name-based virtual hosting is used, the value for this directive is taken from the default
(first-listed) virtual host for the local IP and port combination.

386 CHAPTER 10. APACHE MODULES

LimitRequestFieldSize Directive

Description: Limits the size of the HTTP request header allowed from the client
Syntax: LimitRequestFieldSize bytes
Default: LimitRequestFieldSize 8190
Context: server config, virtual host
Status: Core
Module: core

This directive specifies the number of bytes that will be allowed in an HTTP request header.

The LIMITREQUESTFIELDSIZE directive allows the server administrator to set the limit on the allowed size of an
HTTP request header field. A server needs this value to be large enough to hold any one header field from a normal
client request. The size of a normal request header field will vary greatly among different client implementations,
often depending upon the extent to which a user has configured their browser to support detailed content negotiation.
SPNEGO authentication headers can be up to 12392 bytes.

This directive gives the server administrator greater control over abnormal client request behavior, which may be
useful for avoiding some forms of denial-of-service attacks.

For example:

LimitRequestFieldSize 4094

=⇒Under normal conditions, the value should not be changed from the default.

! Warning
When name-based virtual hosting is used, the value for this directive is taken from the default
(first-listed) virtual host best matching the current IP address and port combination.

LimitRequestLine Directive

Description: Limit the size of the HTTP request line that will be accepted from the client
Syntax: LimitRequestLine bytes
Default: LimitRequestLine 8190
Context: server config, virtual host
Status: Core
Module: core

This directive sets the number of bytes that will be allowed on the HTTP request-line.

The LIMITREQUESTLINE directive allows the server administrator to set the limit on the allowed size of a client’s
HTTP request-line. Since the request-line consists of the HTTP method, URI, and protocol version, the LIMITRE-
QUESTLINE directive places a restriction on the length of a request-URI allowed for a request on the server. A server
needs this value to be large enough to hold any of its resource names, including any information that might be passed
in the query part of a GET request.

This directive gives the server administrator greater control over abnormal client request behavior, which may be
useful for avoiding some forms of denial-of-service attacks.

For example:

LimitRequestLine 4094

=⇒Under normal conditions, the value should not be changed from the default.

10.3. APACHE MODULE CORE 387

! Warning
When name-based virtual hosting is used, the value for this directive is taken from the default
(first-listed) virtual host best matching the current IP address and port combination.

LimitXMLRequestBody Directive

Description: Limits the size of an XML-based request body
Syntax: LimitXMLRequestBody bytes
Default: LimitXMLRequestBody 1000000
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

Limit (in bytes) on maximum size of an XML-based request body. A value of 0 will disable any checking.

Example:

LimitXMLRequestBody 0

Location Directive

Description: Applies the enclosed directives only to matching URLs
Syntax: <Location "URL-path|URL"> ... </Location>
Context: server config, virtual host
Status: Core
Module: core

The <LOCATION> directive limits the scope of the enclosed directives by URL. It is similar to the <DIRECTORY>
directive, and starts a subsection which is terminated with a </Location> directive. <LOCATION> sections are
processed in the order they appear in the configuration file, after the <DIRECTORY> sections and .htaccess files
are read, and after the <FILES> sections.

<LOCATION> sections operate completely outside the filesystem. This has several consequences. Most importantly,
<LOCATION> directives should not be used to control access to filesystem locations. Since several different URLs
may map to the same filesystem location, such access controls may by circumvented.

The enclosed directives will be applied to the request if the path component of the URL meets any of the following
criteria:

• The specified location matches exactly the path component of the URL.

• The specified location, which ends in a forward slash, is a prefix of the path component of the URL (treated as
a context root).

• The specified location, with the addition of a trailing slash, is a prefix of the path component of the URL (also
treated as a context root).

In the example below, where no trailing slash is used, requests to /private1, /private1/ and /private1/file.txt will have
the enclosed directives applied, but /private1other would not.

<Location "/private1">
...

</Location>

388 CHAPTER 10. APACHE MODULES

In the example below, where a trailing slash is used, requests to /private2/ and /private2/file.txt will have the enclosed
directives applied, but /private2 and /private2other would not.

<Location "/private2/">
...

</Location>

=⇒When to use <LOCATION>

Use <LOCATION> to apply directives to content that lives outside the filesystem. For content
that lives in the filesystem, use <DIRECTORY> and <FILES>. An exception is <Location
"/">, which is an easy way to apply a configuration to the entire server.

For all origin (non-proxy) requests, the URL to be matched is a URL-path of the form /path/. No scheme,
hostname, port, or query string may be included. For proxy requests, the URL to be matched is of the form
scheme://servername/path, and you must include the prefix.

The URL may use wildcards. In a wild-card string, ? matches any single character, and * matches any sequences of
characters. Neither wildcard character matches a / in the URL-path.

Regular expressions can also be used, with the addition of the ˜ character. For example:

<Location ˜ "/(extra|special)/data">
#...

</Location>

would match URLs that contained the substring /extra/data or /special/data. The directive <LOCATION-
MATCH> behaves identical to the regex version of <LOCATION>, and is preferred, for the simple reason that ˜ is
hard to distinguish from - in many fonts.

The <LOCATION> functionality is especially useful when combined with the SETHANDLER directive. For example,
to enable status requests but allow them only from browsers at example.com, you might use:

<Location "/status">
SetHandler server-status
Require host example.com

</Location>

=⇒Note about / (slash)
The slash character has special meaning depending on where in a URL it appears. People
may be used to its behavior in the filesystem where multiple adjacent slashes are frequently
collapsed to a single slash (i.e., /home///foo is the same as /home/foo). In URL-space
this is not necessarily true. The <LOCATIONMATCH> directive and the regex version of
<LOCATION> require you to explicitly specify multiple slashes if that is your intention.
For example, <LocationMatch "ˆ/abc"> would match the request URL /abc but
not the request URL //abc. The (non-regex) <LOCATION> directive behaves similarly
when used for proxy requests. But when (non-regex) <LOCATION> is used for non-proxy re-
quests it will implicitly match multiple slashes with a single slash. For example, if you specify
<Location "/abc/def"> and the request is to /abc//def then it will match.

See also

• How <Directory>, <Location> and <Files> sections work (p. 33) for an explanation of how these different
sections are combined when a request is received.

• LOCATIONMATCH

10.3. APACHE MODULE CORE 389

LocationMatch Directive

Description: Applies the enclosed directives only to regular-expression matching URLs
Syntax: <LocationMatch regex> ... </LocationMatch>
Context: server config, virtual host
Status: Core
Module: core

The <LOCATIONMATCH> directive limits the scope of the enclosed directives by URL, in an identical manner to
<LOCATION>. However, it takes a regular expression as an argument instead of a simple string. For example:

<LocationMatch "/(extra|special)/data">
...

</LocationMatch>

would match URLs that contained the substring /extra/data or /special/data.

=⇒If the intent is that a URL starts with /extra/data, rather than merely contains
/extra/data, prefix the regular expression with a ˆ to require this.

<LocationMatch "ˆ/(extra|special)/data">

From 2.4.8 onwards, named groups and backreferences are captured and written to the environment with the corre-
sponding name prefixed with "MATCH " and in upper case. This allows elements of URLs to be referenced from
within expressions (p. 89) and modules like MOD REWRITE. In order to prevent confusion, numbered (unnamed)
backreferences are ignored. Use named groups instead.

<LocationMatch "ˆ/combined/(?<sitename>[ˆ/]+)">
require ldap-group cn=%{env:MATCH_SITENAME},ou=combined,o=Example

</LocationMatch>

See also

• How <Directory>, <Location> and <Files> sections work (p. 33) for an explanation of how these different
sections are combined when a request is received

LogLevel Directive

Description: Controls the verbosity of the ErrorLog
Syntax: LogLevel [module:]level [module:level] ...
Default: LogLevel warn
Context: server config, virtual host, directory
Status: Core
Module: core
Compatibility: Per-module and per-directory configuration is available in Apache HTTP Server 2.3.6 and later

LOGLEVEL adjusts the verbosity of the messages recorded in the error logs (see ERRORLOG directive). The following
levels are available, in order of decreasing significance:

Level Description Example
emerg Emergencies - system is unusable. "Child cannot open lock file. Exiting"
alert Action must be taken immediately. "getpwuid: couldn’t determine user name from uid"
crit Critical Conditions. "socket: Failed to get a socket, exiting child"
error Error conditions. "Premature end of script headers"

390 CHAPTER 10. APACHE MODULES

warn Warning conditions. "child process 1234 did not exit, sending another SIGHUP"
notice Normal but significant condition. "httpd: caught SIGBUS, attempting to dump core in ..."
info Informational. "Server seems busy, (you may need to increase StartServers, or

Min/MaxSpareServers)..."
debug Debug-level messages "Opening config file ..."
trace1 Trace messages "proxy: FTP: control connection complete"
trace2 Trace messages "proxy: CONNECT: sending the CONNECT request to the re-

mote proxy"
trace3 Trace messages "openssl: Handshake: start"
trace4 Trace messages "read from buffered SSL brigade, mode 0, 17 bytes"
trace5 Trace messages "map lookup FAILED: map=rewritemap key=keyname"
trace6 Trace messages "cache lookup FAILED, forcing new map lookup"
trace7 Trace messages, dumping large

amounts of data
"— 0000: 02 23 44 30 13 40 ac 34 df 3d bf 9a 19 49 39 15 —"

trace8 Trace messages, dumping large
amounts of data

"— 0000: 02 23 44 30 13 40 ac 34 df 3d bf 9a 19 49 39 15 —"

When a particular level is specified, messages from all other levels of higher significance will be reported as well. E.g.,
when LogLevel info is specified, then messages with log levels of notice and warn will also be posted.

Using a level of at least crit is recommended.

For example:

LogLevel notice

=⇒Note
When logging to a regular file, messages of the level notice cannot be suppressed and thus
are always logged. However, this doesn’t apply when logging is done using syslog.

Specifying a level without a module name will reset the level for all modules to that level. Specifying a level with a
module name will set the level for that module only. It is possible to use the module source file name, the module iden-
tifier, or the module identifier with the trailing module omitted as module specification. This means the following
three specifications are equivalent:

LogLevel info ssl:warn
LogLevel info mod_ssl.c:warn
LogLevel info ssl_module:warn

It is also possible to change the level per directory:

LogLevel info
<Directory "/usr/local/apache/htdocs/app">

LogLevel debug
</Directory>

=⇒Per directory loglevel configuration only affects messages that are logged after the request has
been parsed and that are associated with the request. Log messages which are associated with
the connection or the server are not affected.

See also

• ERRORLOG

• ERRORLOGFORMAT

• Apache HTTP Server Log Files (p. 53)

10.3. APACHE MODULE CORE 391

MaxKeepAliveRequests Directive

Description: Number of requests allowed on a persistent connection
Syntax: MaxKeepAliveRequests number
Default: MaxKeepAliveRequests 100
Context: server config, virtual host
Status: Core
Module: core

The MAXKEEPALIVEREQUESTS directive limits the number of requests allowed per connection when KEEPALIVE
is on. If it is set to 0, unlimited requests will be allowed. We recommend that this setting be kept to a high value for
maximum server performance.

For example:

MaxKeepAliveRequests 500

MaxRangeOverlaps Directive

Description: Number of overlapping ranges (eg: 100-200,150-300) allowed before returning the com-
plete resource

Syntax: MaxRangeOverlaps default | unlimited | none | number-of-ranges
Default: MaxRangeOverlaps 20
Context: server config, virtual host, directory
Status: Core
Module: core
Compatibility: Available in Apache HTTP Server 2.3.15 and later

The MAXRANGEOVERLAPS directive limits the number of overlapping HTTP ranges the server is willing to return
to the client. If more overlapping ranges than permitted are requested, the complete resource is returned instead.

default Limits the number of overlapping ranges to a compile-time default of 20.

none No overlapping Range headers are allowed.

unlimited The server does not limit the number of overlapping ranges it is willing to satisfy.

number-of-ranges A positive number representing the maximum number of overlapping ranges the server is willing
to satisfy.

MaxRangeReversals Directive

Description: Number of range reversals (eg: 100-200,50-70) allowed before returning the complete
resource

Syntax: MaxRangeReversals default | unlimited | none |
number-of-ranges

Default: MaxRangeReversals 20
Context: server config, virtual host, directory
Status: Core
Module: core
Compatibility: Available in Apache HTTP Server 2.3.15 and later

The MAXRANGEREVERSALS directive limits the number of HTTP Range reversals the server is willing to return to
the client. If more ranges reversals than permitted are requested, the complete resource is returned instead.

392 CHAPTER 10. APACHE MODULES

default Limits the number of range reversals to a compile-time default of 20.

none No Range reversals headers are allowed.

unlimited The server does not limit the number of range reversals it is willing to satisfy.

number-of-ranges A positive number representing the maximum number of range reversals the server is willing to
satisfy.

MaxRanges Directive

Description: Number of ranges allowed before returning the complete resource
Syntax: MaxRanges default | unlimited | none | number-of-ranges
Default: MaxRanges 200
Context: server config, virtual host, directory
Status: Core
Module: core
Compatibility: Available in Apache HTTP Server 2.3.15 and later

The MAXRANGES directive limits the number of HTTP ranges the server is willing to return to the client. If more
ranges than permitted are requested, the complete resource is returned instead.

default Limits the number of ranges to a compile-time default of 200.

none Range headers are ignored.

unlimited The server does not limit the number of ranges it is willing to satisfy.

number-of-ranges A positive number representing the maximum number of ranges the server is willing to satisfy.

MergeTrailers Directive

Description: Determines whether trailers are merged into headers
Syntax: MergeTrailers [on|off]
Default: MergeTrailers off
Context: server config, virtual host
Status: Core
Module: core
Compatibility: 2.4.11 and later

This directive controls whether HTTP trailers are copied into the internal representation of HTTP headers. This
merging occurs when the request body has been completely consumed, long after most header processing would have
a chance to examine or modify request headers.

This option is provided for compatibility with releases prior to 2.4.11, where trailers were always merged.

Mutex Directive

Description: Configures mutex mechanism and lock file directory for all or specified mutexes
Syntax: Mutex mechanism [default|mutex-name] ... [OmitPID]
Default: Mutex default
Context: server config
Status: Core
Module: core
Compatibility: Available in Apache HTTP Server 2.3.4 and later

10.3. APACHE MODULE CORE 393

The MUTEX directive sets the mechanism, and optionally the lock file location, that httpd and modules use to serialize
access to resources. Specify default as the second argument to change the settings for all mutexes; specify a mutex
name (see table below) as the second argument to override defaults only for that mutex.

The MUTEX directive is typically used in the following exceptional situations:

• change the mutex mechanism when the default mechanism selected by APR has a functional or performance
problem

• change the directory used by file-based mutexes when the default directory does not support locking

=⇒Supported modules
This directive only configures mutexes which have been registered with the core server using
the ap mutex register() API. All modules bundled with httpd support the MUTEX di-
rective, but third-party modules may not. Consult the documentation of the third-party module,
which must indicate the mutex name(s) which can be configured if this directive is supported.

The following mutex mechanisms are available:

• default | yes This selects the default locking implementation, as determined by APR. The default locking
implementation can be displayed by running httpd with the -V option.

• none | no This effectively disables the mutex, and is only allowed for a mutex if the module indicates that it
is a valid choice. Consult the module documentation for more information.

• posixsem This is a mutex variant based on a Posix semaphore.

! Warning
The semaphore ownership is not recovered if a thread in the process holding the mutex seg-
faults, resulting in a hang of the web server.

• sysvsem This is a mutex variant based on a SystemV IPC semaphore.

! Warning
It is possible to "leak" SysV semaphores if processes crash before the semaphore is removed.

! Security
The semaphore API allows for a denial of service attack by any CGIs running under the same
uid as the webserver (i.e., all CGIs, unless you use something like suexec or cgiwrapper).

• sem This selects the "best" available semaphore implementation, choosing between Posix and SystemV IPC
semaphores, in that order.

• pthread This is a mutex variant based on cross-process Posix thread mutexes.

! Warning
On most systems, if a child process terminates abnormally while holding a mutex that uses this
implementation, the server will deadlock and stop responding to requests. When this occurs,
the server will require a manual restart to recover.
Solaris is a notable exception as it provides a mechanism which usually allows the mutex to be
recovered after a child process terminates abnormally while holding a mutex.
If your system implements the pthread mutexattr setrobust np() function, you
may be able to use the pthread option safely.

394 CHAPTER 10. APACHE MODULES

• fcntl:/path/to/mutex This is a mutex variant where a physical (lock-)file and the fcntl() function
are used as the mutex.

! Warning
When multiple mutexes based on this mechanism are used within multi-threaded, multi-
process environments, deadlock errors (EDEADLK) can be reported for valid mutex opera-
tions if fcntl() is not thread-aware, such as on Solaris.

• flock:/path/to/mutex This is similar to the fcntl:/path/to/mutex method with the exception
that the flock() function is used to provide file locking.

• file:/path/to/mutex This selects the "best" available file locking implementation, choosing between
fcntl and flock, in that order.

Most mechanisms are only available on selected platforms, where the underlying platform and APR support it. Mech-
anisms which aren’t available on all platforms are posixsem, sysvsem, sem, pthread, fcntl, flock, and file.

With the file-based mechanisms fcntl and flock, the path, if provided, is a directory where the lock file will be created.
The default directory is httpd’s run-time file directory relative to SERVERROOT. Always use a local disk filesystem
for /path/to/mutex and never a directory residing on a NFS- or AFS-filesystem. The basename of the file will
be the mutex type, an optional instance string provided by the module, and unless the OmitPID keyword is specified,
the process id of the httpd parent process will be appended to make the file name unique, avoiding conflicts when
multiple httpd instances share a lock file directory. For example, if the mutex name is mpm-accept and the lock file
directory is /var/httpd/locks, the lock file name for the httpd instance with parent process id 12345 would be
/var/httpd/locks/mpm-accept.12345.

! Security
It is best to avoid putting mutex files in a world-writable directory such as /var/tmp because
someone could create a denial of service attack and prevent the server from starting by creating
a lockfile with the same name as the one the server will try to create.

The following table documents the names of mutexes used by httpd and bundled modules.

Mutex name Module(s) Protected resource
mpm-accept PREFORK and WORKER MPMs incoming connections, to avoid the thun-

dering herd problem; for more informa-
tion, refer to the performance tuning (p.
327) documentation

authdigest-client MOD AUTH DIGEST client list in shared memory
authdigest-opaque MOD AUTH DIGEST counter in shared memory
ldap-cache MOD LDAP LDAP result cache
rewrite-map MOD REWRITE communication with external mapping

programs, to avoid intermixed I/O from
multiple requests

ssl-cache MOD SSL SSL session cache
ssl-stapling MOD SSL OCSP stapling response cache
watchdog-callback MOD WATCHDOG callback function of a particular client

module
The OmitPID keyword suppresses the addition of the httpd parent process id from the lock file name.

In the following example, the mutex mechanism for the MPM accept mutex will be changed from the compiled-in
default to fcntl, with the associated lock file created in directory /var/httpd/locks. The mutex mechanism
for all other mutexes will be changed from the compiled-in default to sysvsem.

Mutex sysvsem default
Mutex fcntl:/var/httpd/locks mpm-accept

10.3. APACHE MODULE CORE 395

NameVirtualHost Directive

Description: DEPRECATED: Designates an IP address for name-virtual hosting
Syntax: NameVirtualHost addr[:port]
Context: server config
Status: Core
Module: core

Prior to 2.3.11, NAMEVIRTUALHOST was required to instruct the server that a particular IP address and port combi-
nation was usable as a name-based virtual host. In 2.3.11 and later, any time an IP address and port combination is
used in multiple virtual hosts, name-based virtual hosting is automatically enabled for that address.

This directive currently has no effect.

See also

• Virtual Hosts documentation (p. 114)

Options Directive

Description: Configures what features are available in a particular directory
Syntax: Options [+|-]option [[+|-]option] ...
Default: Options FollowSymlinks
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Core
Module: core
Compatibility: The default was changed from All to FollowSymlinks in 2.3.11

The OPTIONS directive controls which server features are available in a particular directory.

option can be set to None, in which case none of the extra features are enabled, or one or more of the following:

All All options except for MultiViews.

ExecCGI Execution of CGI scripts using MOD CGI is permitted.

FollowSymLinks The server will follow symbolic links in this directory. This is the default setting.

=⇒Even though the server follows the symlink it does not change the pathname used to match
against <DIRECTORY> sections.
The FollowSymLinks and SymLinksIfOwnerMatch OPTIONS work only in <DIREC-
TORY> sections or .htaccess files.
Omitting this option should not be considered a security restriction, since symlink testing is
subject to race conditions that make it circumventable.

Includes Server-side includes provided by MOD INCLUDE are permitted.

IncludesNOEXEC Server-side includes are permitted, but the #exec cmd and #exec cgi are disabled. It is
still possible to #include virtual CGI scripts from SCRIPTALIASed directories.

Indexes If a URL which maps to a directory is requested and there is no DIRECTORYINDEX (e.g., index.html)
in that directory, then MOD AUTOINDEX will return a formatted listing of the directory.

MultiViews Content negotiated (p. 68) "MultiViews" are allowed using MOD NEGOTIATION.

=⇒Note
This option gets ignored if set anywhere other than <DIRECTORY>, as MOD NEGOTIATION
needs real resources to compare against and evaluate from.

396 CHAPTER 10. APACHE MODULES

SymLinksIfOwnerMatch The server will only follow symbolic links for which the target file or directory is
owned by the same user id as the link.

=⇒Note
The FollowSymLinks and SymLinksIfOwnerMatch OPTIONS work only in <DIREC-
TORY> sections or .htaccess files.
This option should not be considered a security restriction, since symlink testing is subject to
race conditions that make it circumventable.

Normally, if multiple OPTIONS could apply to a directory, then the most specific one is used and others are ignored;
the options are not merged. (See how sections are merged (p. 33) .) However if all the options on the OPTIONS
directive are preceded by a + or - symbol, the options are merged. Any options preceded by a + are added to the
options currently in force, and any options preceded by a - are removed from the options currently in force.

=⇒Note
Mixing OPTIONS with a + or - with those without is not valid syntax and will be rejected
during server startup by the syntax check with an abort.

For example, without any + and - symbols:

<Directory "/web/docs">
Options Indexes FollowSymLinks

</Directory>

<Directory "/web/docs/spec">
Options Includes

</Directory>

then only Includes will be set for the /web/docs/spec directory. However if the second OPTIONS directive
uses the + and - symbols:

<Directory "/web/docs">
Options Indexes FollowSymLinks

</Directory>

<Directory "/web/docs/spec">
Options +Includes -Indexes

</Directory>

then the options FollowSymLinks and Includes are set for the /web/docs/spec directory.

=⇒Note
Using -IncludesNOEXEC or -Includes disables server-side includes completely regard-
less of the previous setting.

The default in the absence of any other settings is FollowSymlinks.

Protocol Directive

Description: Protocol for a listening socket
Syntax: Protocol protocol
Context: server config, virtual host
Status: Core
Module: core
Compatibility: Available in Apache 2.1.5 and later. On Windows, from Apache 2.3.3 and later.

10.3. APACHE MODULE CORE 397

This directive specifies the protocol used for a specific listening socket. The protocol is used to determine which
module should handle a request and to apply protocol specific optimizations with the ACCEPTFILTER directive.

You only need to set the protocol if you are running on non-standard ports; otherwise, http is assumed for port 80
and https for port 443.

For example, if you are running https on a non-standard port, specify the protocol explicitly:

Protocol https

You can also specify the protocol using the LISTEN directive.

See also

• ACCEPTFILTER

• LISTEN

RLimitCPU Directive

Description: Limits the CPU consumption of processes launched by Apache httpd children
Syntax: RLimitCPU seconds|max [seconds|max]
Default: Unset; uses operating system defaults
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

Takes 1 or 2 parameters. The first parameter sets the soft resource limit for all processes and the second parameter sets
the maximum resource limit. Either parameter can be a number, or max to indicate to the server that the limit should
be set to the maximum allowed by the operating system configuration. Raising the maximum resource limit requires
that the server is running as root or in the initial startup phase.

This applies to processes forked from Apache httpd children servicing requests, not the Apache httpd children them-
selves. This includes CGI scripts and SSI exec commands, but not any processes forked from the Apache httpd parent,
such as piped logs.

CPU resource limits are expressed in seconds per process.

See also

• RLIMITMEM

• RLIMITNPROC

RLimitMEM Directive

Description: Limits the memory consumption of processes launched by Apache httpd children
Syntax: RLimitMEM bytes|max [bytes|max]
Default: Unset; uses operating system defaults
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

Takes 1 or 2 parameters. The first parameter sets the soft resource limit for all processes and the second parameter sets
the maximum resource limit. Either parameter can be a number, or max to indicate to the server that the limit should

398 CHAPTER 10. APACHE MODULES

be set to the maximum allowed by the operating system configuration. Raising the maximum resource limit requires
that the server is running as root or in the initial startup phase.

This applies to processes forked from Apache httpd children servicing requests, not the Apache httpd children them-
selves. This includes CGI scripts and SSI exec commands, but not any processes forked from the Apache httpd parent,
such as piped logs.

Memory resource limits are expressed in bytes per process.

See also

• RLIMITCPU

• RLIMITNPROC

RLimitNPROC Directive

Description: Limits the number of processes that can be launched by processes launched by Apache httpd
children

Syntax: RLimitNPROC number|max [number|max]
Default: Unset; uses operating system defaults
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

Takes 1 or 2 parameters. The first parameter sets the soft resource limit for all processes, and the second parameter
sets the maximum resource limit. Either parameter can be a number, or max to indicate to the server that the limit
should be set to the maximum allowed by the operating system configuration. Raising the maximum resource limit
requires that the server is running as root or in the initial startup phase.

This applies to processes forked from Apache httpd children servicing requests, not the Apache httpd children them-
selves. This includes CGI scripts and SSI exec commands, but not any processes forked from the Apache httpd parent,
such as piped logs.

Process limits control the number of processes per user.

=⇒Note
If CGI processes are not running under user ids other than the web server user id, this directive
will limit the number of processes that the server itself can create. Evidence of this situation
will be indicated by cannot fork messages in the error log.

See also

• RLIMITMEM

• RLIMITCPU

ScriptInterpreterSource Directive

Description: Technique for locating the interpreter for CGI scripts
Syntax: ScriptInterpreterSource Registry|Registry-Strict|Script
Default: ScriptInterpreterSource Script
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: Win32 only.

10.3. APACHE MODULE CORE 399

This directive is used to control how Apache httpd finds the interpreter used to run CGI scripts. The default setting is
Script. This causes Apache httpd to use the interpreter pointed to by the shebang line (first line, starting with #!)
in the script. On Win32 systems this line usually looks like:

#!C:/Perl/bin/perl.exe

or, if perl is in the PATH, simply:

#!perl

Setting ScriptInterpreterSource Registrywill cause the Windows Registry tree HKEY CLASSES ROOT
to be searched using the script file extension (e.g., .pl) as a search key. The command defined by the registry subkey
Shell\ExecCGI\Command or, if it does not exist, by the subkey Shell\Open\Command is used to open the
script file. If the registry keys cannot be found, Apache httpd falls back to the behavior of the Script option.

! Security
Be careful when using ScriptInterpreterSource Registry with SCRIPTALIAS’ed
directories, because Apache httpd will try to execute every file within this directory. The
Registry setting may cause undesired program calls on files which are typically not exe-
cuted. For example, the default open command on .htm files on most Windows systems will
execute Microsoft Internet Explorer, so any HTTP request for an .htm file existing within the
script directory would start the browser in the background on the server. This is a good way to
crash your system within a minute or so.

The option Registry-Strict which is new in Apache HTTP Server 2.0 does the same thing as Registry but
uses only the subkey Shell\ExecCGI\Command. The ExecCGI key is not a common one. It must be configured
manually in the windows registry and hence prevents accidental program calls on your system.

SeeRequestTail Directive

Description: Determine if mod status displays the first 63 characters of a request or the last 63, assuming
the request itself is greater than 63 chars.

Syntax: SeeRequestTail On|Off
Default: SeeRequestTail Off
Context: server config
Status: Core
Module: core
Compatibility: Available in Apache httpd 2.2.7 and later.

mod status with ExtendedStatus On displays the actual request being handled. For historical purposes, only 63
characters of the request are actually stored for display purposes. This directive controls whether the 1st 63 characters
are stored (the previous behavior and the default) or if the last 63 characters are. This is only applicable, of course, if
the length of the request is 64 characters or greater.

If Apache httpd is handling GET/disk1/storage/apache/htdocs/images/imagestore1/food/apples.jpgHTTP/1.1
mod status displays as follows:

Off (default) GET/disk1/storage/apache/htdocs/images/imagestore1/food/apples
On orage/apache/htdocs/images/imagestore1/food/apples.jpgHTTP/1.1

400 CHAPTER 10. APACHE MODULES

ServerAdmin Directive

Description: Email address that the server includes in error messages sent to the client
Syntax: ServerAdmin email-address|URL
Context: server config, virtual host
Status: Core
Module: core

The SERVERADMIN sets the contact address that the server includes in any error messages it returns to the client. If
the httpd doesn’t recognize the supplied argument as an URL, it assumes, that it’s an email-address and prepends
it with mailto: in hyperlink targets. However, it’s recommended to actually use an email address, since there are a
lot of CGI scripts that make that assumption. If you want to use an URL, it should point to another server under your
control. Otherwise users may not be able to contact you in case of errors.

It may be worth setting up a dedicated address for this, e.g.

ServerAdmin www-admin@foo.example.com

as users do not always mention that they are talking about the server!

ServerAlias Directive

Description: Alternate names for a host used when matching requests to name-virtual hosts
Syntax: ServerAlias hostname [hostname] ...
Context: virtual host
Status: Core
Module: core

The SERVERALIAS directive sets the alternate names for a host, for use with name-based virtual hosts (p. 115) . The
SERVERALIAS may include wildcards, if appropriate.

<VirtualHost *:80>
ServerName server.example.com
ServerAlias server server2.example.com server2
ServerAlias *.example.com
UseCanonicalName Off
...

</VirtualHost>

Name-based virtual hosts for the best-matching set of <VIRTUALHOST>s are processed in the order they appear in the
configuration. The first matching SERVERNAME or SERVERALIAS is used, with no different precedence for wildcards
(nor for ServerName vs. ServerAlias).

The complete list of names in the VIRTUALHOST directive are treated just like a (non wildcard) SERVERALIAS.

See also

• USECANONICALNAME

• Apache HTTP Server Virtual Host documentation (p. 114)

10.3. APACHE MODULE CORE 401

ServerName Directive

Description: Hostname and port that the server uses to identify itself
Syntax: ServerName [scheme://]fully-qualified-domain-name[:port]
Context: server config, virtual host
Status: Core
Module: core

The SERVERNAME directive sets the request scheme, hostname and port that the server uses to identify itself. This is
used when creating redirection URLs.

Additionally, SERVERNAME is used (possibly in conjunction with SERVERALIAS) to uniquely identify a virtual host,
when using name-based virtual hosts (p. 115) .

For example, if the name of the machine hosting the web server is simple.example.com, but the machine also has
the DNS alias www.example.com and you wish the web server to be so identified, the following directive should
be used:

ServerName www.example.com

The SERVERNAME directive may appear anywhere within the definition of a server. However, each appearance
overrides the previous appearance (within that server).

If no SERVERNAME is specified, then the server attempts to deduce the client visible hostname by performing a reverse
lookup on an IP address of the systems hostname.

If no port is specified in the SERVERNAME, then the server will use the port from the incoming request. For optimal
reliability and predictability, you should specify an explicit hostname and port using the SERVERNAME directive.

If you are using name-based virtual hosts (p. 115) , the SERVERNAME inside a <VIRTUALHOST> section specifies
what hostname must appear in the request’s Host: header to match this virtual host.

Sometimes, the server runs behind a device that processes SSL, such as a reverse proxy, load balancer or SSL offload
appliance. When this is the case, specify the https:// scheme and the port number to which the clients connect in
the SERVERNAME directive to make sure that the server generates the correct self-referential URLs.

See the description of the USECANONICALNAME and USECANONICALPHYSICALPORT directives for settings which
determine whether self-referential URLs (e.g., by the MOD DIR module) will refer to the specified port, or to the port
number given in the client’s request.

! Failure to set SERVERNAME to a name that your server can resolve to an IP address will result
in a startup warning. httpd will then use whatever hostname it can determine, using the
system’s hostname command. This will almost never be the hostname you actually want.

httpd: Could not reliably determine the server’s fully

qualified domain name, using rocinante.local for

ServerName

See also

• Issues Regarding DNS and Apache HTTP Server (p. 111)

• Apache HTTP Server virtual host documentation (p. 114)

• USECANONICALNAME

• USECANONICALPHYSICALPORT

• SERVERALIAS

402 CHAPTER 10. APACHE MODULES

ServerPath Directive

Description: Legacy URL pathname for a name-based virtual host that is accessed by an incompatible
browser

Syntax: ServerPath URL-path
Context: virtual host
Status: Core
Module: core

The SERVERPATH directive sets the legacy URL pathname for a host, for use with name-based virtual hosts (p. 114) .

See also

• Apache HTTP Server Virtual Host documentation (p. 114)

ServerRoot Directive

Description: Base directory for the server installation
Syntax: ServerRoot directory-path
Default: ServerRoot /usr/local/apache
Context: server config
Status: Core
Module: core

The SERVERROOT directive sets the directory in which the server lives. Typically it will contain the subdirecto-
ries conf/ and logs/. Relative paths in other configuration directives (such as INCLUDE or LOADMODULE, for
example) are taken as relative to this directory.

ServerRoot "/home/httpd"

The default location of SERVERROOT may be modified by using the --prefix argument to configure (p. 295) ,
and most third-party distributions of the server have a different default location from the one listed above.

See also

• the -d option to httpd (p. 25)

• the security tips (p. 338) for information on how to properly set permissions on the SERVERROOT

ServerSignature Directive

Description: Configures the footer on server-generated documents
Syntax: ServerSignature On|Off|EMail
Default: ServerSignature Off
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Core
Module: core

The SERVERSIGNATURE directive allows the configuration of a trailing footer line under server-generated documents
(error messages, MOD PROXY ftp directory listings, MOD INFO output, ...). The reason why you would want to enable
such a footer line is that in a chain of proxies, the user often has no possibility to tell which of the chained servers
actually produced a returned error message.

The Off setting, which is the default, suppresses the footer line (and is therefore compatible with the behavior of
Apache-1.2 and below). The On setting simply adds a line with the server version number and SERVERNAME of the

10.3. APACHE MODULE CORE 403

serving virtual host, and the EMail setting additionally creates a "mailto:" reference to the SERVERADMIN of the
referenced document.

After version 2.0.44, the details of the server version number presented are controlled by the SERVERTOKENS direc-
tive.

See also

• SERVERTOKENS

ServerTokens Directive

Description: Configures the Server HTTP response header
Syntax: ServerTokens Major|Minor|Min[imal]|Prod[uctOnly]|OS|Full
Default: ServerTokens Full
Context: server config
Status: Core
Module: core

This directive controls whether Server response header field which is sent back to clients includes a description of
the generic OS-type of the server as well as information about compiled-in modules.

ServerTokens Full (or not specified) Server sends (e.g.): Server: Apache/2.4.2 (Unix)
PHP/4.2.2 MyMod/1.2

ServerTokens Prod[uctOnly] Server sends (e.g.): Server: Apache

ServerTokens Major Server sends (e.g.): Server: Apache/2

ServerTokens Minor Server sends (e.g.): Server: Apache/2.4

ServerTokens Min[imal] Server sends (e.g.): Server: Apache/2.4.2

ServerTokens OS Server sends (e.g.): Server: Apache/2.4.2 (Unix)

This setting applies to the entire server, and cannot be enabled or disabled on a virtualhost-by-virtualhost basis.

After version 2.0.44, this directive also controls the information presented by the SERVERSIGNATURE directive.

=⇒Setting SERVERTOKENS to less than minimal is not recommended because it makes it more
difficult to debug interoperational problems. Also note that disabling the Server: header does
nothing at all to make your server more secure. The idea of "security through obscurity" is a
myth and leads to a false sense of safety.

See also

• SERVERSIGNATURE

SetHandler Directive

Description: Forces all matching files to be processed by a handler
Syntax: SetHandler handler-name|None
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

404 CHAPTER 10. APACHE MODULES

When placed into an .htaccess file or a <DIRECTORY> or <LOCATION> section, this directive forces all match-
ing files to be parsed through the handler (p. 98) given by handler-name. For example, if you had a directory you
wanted to be parsed entirely as imagemap rule files, regardless of extension, you might put the following into an
.htaccess file in that directory:

SetHandler imap-file

Another example: if you wanted to have the server display a status report whenever a URL of
http://servername/status was called, you might put the following into httpd.conf:

<Location "/status">
SetHandler server-status

</Location>

You could also use this directive to configure a particular handler for files with a particular file extension. For example:

<FilesMatch "\.php$">
SetHandler application/x-httpd-php

</FilesMatch>

You can override an earlier defined SETHANDLER directive by using the value None.

=⇒Note
Because SETHANDLER overrides default handlers, normal behavior such as handling of URLs
ending in a slash (/) as directories or index files is suppressed.

See also

• ADDHANDLER

SetInputFilter Directive

Description: Sets the filters that will process client requests and POST input
Syntax: SetInputFilter filter[;filter...]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

The SETINPUTFILTER directive sets the filter or filters which will process client requests and POST input when
they are received by the server. This is in addition to any filters defined elsewhere, including the ADDINPUTFILTER
directive.

If more than one filter is specified, they must be separated by semicolons in the order in which they should process the
content.

See also

• Filters (p. 100) documentation

10.3. APACHE MODULE CORE 405

SetOutputFilter Directive

Description: Sets the filters that will process responses from the server
Syntax: SetOutputFilter filter[;filter...]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Core
Module: core

The SETOUTPUTFILTER directive sets the filters which will process responses from the server before they are sent to
the client. This is in addition to any filters defined elsewhere, including the ADDOUTPUTFILTER directive.

For example, the following configuration will process all files in the /www/data/ directory for server-side includes.

<Directory "/www/data/">
SetOutputFilter INCLUDES

</Directory>

If more than one filter is specified, they must be separated by semicolons in the order in which they should process the
content.

See also

• Filters (p. 100) documentation

TimeOut Directive

Description: Amount of time the server will wait for certain events before failing a request
Syntax: TimeOut seconds
Default: TimeOut 60
Context: server config, virtual host
Status: Core
Module: core

The TIMEOUT directive defines the length of time Apache httpd will wait for I/O in various circumstances:

1. When reading data from the client, the length of time to wait for a TCP packet to arrive if the read buffer is
empty.

2. When writing data to the client, the length of time to wait for an acknowledgement of a packet if the send buffer
is full.

3. In MOD CGI, the length of time to wait for output from a CGI script.

4. In MOD EXT FILTER, the length of time to wait for output from a filtering process.

5. In MOD PROXY, the default timeout value if PROXYTIMEOUT is not configured.

TraceEnable Directive

Description: Determines the behavior on TRACE requests
Syntax: TraceEnable [on|off|extended]
Default: TraceEnable on
Context: server config, virtual host
Status: Core
Module: core

406 CHAPTER 10. APACHE MODULES

This directive overrides the behavior of TRACE for both the core server and MOD PROXY. The default TraceEnable
on permits TRACE requests per RFC 2616, which disallows any request body to accompany the request.
TraceEnable off causes the core server and MOD PROXY to return a 405 (Method not allowed) error to the
client.

Finally, for testing and diagnostic purposes only, request bodies may be allowed using the non-compliant
TraceEnable extended directive. The core (as an origin server) will restrict the request body to 64k (plus
8k for chunk headers if Transfer-Encoding: chunked is used). The core will reflect the full headers and all
chunk headers with the response body. As a proxy server, the request body is not restricted to 64k.

=⇒Note
Despite claims to the contrary, TRACE is not a security vulnerability, and there is no viable
reason for it to be disabled. Doing so necessarily makes your server noncompliant.

UnDefine Directive

Description: Undefine the existence of a variable
Syntax: UnDefine parameter-name
Context: server config
Status: Core
Module: core

Undoes the effect of a DEFINE or of passing a -D argument to httpd.

This directive can be used to toggle the use of <IFDEFINE> sections without needing to alter -D arguments in any
startup scripts.

While this directive is supported in virtual host context, the changes it makes are visible to any later configuration
directives, beyond any enclosing virtual host.

UseCanonicalName Directive

Description: Configures how the server determines its own name and port
Syntax: UseCanonicalName On|Off|DNS
Default: UseCanonicalName Off
Context: server config, virtual host, directory
Status: Core
Module: core

In many situations Apache httpd must construct a self-referential URL – that is, a URL that refers back to the same
server. With UseCanonicalName On Apache httpd will use the hostname and port specified in the SERVERNAME
directive to construct the canonical name for the server. This name is used in all self-referential URLs, and for the
values of SERVER NAME and SERVER PORT in CGIs.

With UseCanonicalName Off Apache httpd will form self-referential URLs using the hostname and port sup-
plied by the client if any are supplied (otherwise it will use the canonical name, as defined above). These values are
the same that are used to implement name-based virtual hosts (p. 115) and are available with the same clients. The
CGI variables SERVER NAME and SERVER PORT will be constructed from the client supplied values as well.

An example where this may be useful is on an intranet server where you have users connecting to the ma-
chine using short names such as www. You’ll notice that if the users type a shortname and a URL which is
a directory, such as http://www/splat, without the trailing slash, then Apache httpd will redirect them to
http://www.example.com/splat/. If you have authentication enabled, this will cause the user to have to
authenticate twice (once for www and once again for www.example.com – see the FAQ on this subject for more
information7). But if USECANONICALNAME is set Off, then Apache httpd will redirect to http://www/splat/.

7http://wiki.apache.org/httpd/FAQ#Why does Apache ask for my password twice before serving a file.3F

http://wiki.apache.org/httpd/FAQ#Why_does_Apache_ask_for_my_password_twice_before_serving_a_file.3F

10.3. APACHE MODULE CORE 407

There is a third option, UseCanonicalName DNS, which is intended for use with mass IP-based virtual hosting
to support ancient clients that do not provide a Host: header. With this option, Apache httpd does a reverse DNS
lookup on the server IP address that the client connected to in order to work out self-referential URLs.

! Warning
If CGIs make assumptions about the values of SERVER NAME, they may be broken by this
option. The client is essentially free to give whatever value they want as a hostname. But if
the CGI is only using SERVER NAME to construct self-referential URLs, then it should be just
fine.

See also

• USECANONICALPHYSICALPORT

• SERVERNAME

• LISTEN

UseCanonicalPhysicalPort Directive

Description: Configures how the server determines its own port
Syntax: UseCanonicalPhysicalPort On|Off
Default: UseCanonicalPhysicalPort Off
Context: server config, virtual host, directory
Status: Core
Module: core

In many situations Apache httpd must construct a self-referential URL – that is, a URL that refers back to the same
server. With UseCanonicalPhysicalPort On, Apache httpd will, when constructing the canonical port for
the server to honor the USECANONICALNAME directive, provide the actual physical port number being used by this
request as a potential port. With UseCanonicalPhysicalPort Off, Apache httpd will not ever use the actual
physical port number, instead relying on all configured information to construct a valid port number.

=⇒Note
The ordering of the lookup when the physical port is used is as follows:

UseCanonicalName On 1. Port provided in SERVERNAME

2. Physical port

3. Default port

UseCanonicalName Off | DNS 1. Parsed port from Host: header

2. Physical port

3. Port provided in SERVERNAME

4. Default port

With UseCanonicalPhysicalPort Off, the physical ports are removed from the or-
dering.

See also

• USECANONICALNAME

• SERVERNAME

• LISTEN

408 CHAPTER 10. APACHE MODULES

VirtualHost Directive

Description: Contains directives that apply only to a specific hostname or IP address
Syntax: <VirtualHost addr[:port] [addr[:port]] ...> ...

</VirtualHost>
Context: server config
Status: Core
Module: core

<VIRTUALHOST> and </VirtualHost> are used to enclose a group of directives that will apply only to a par-
ticular virtual host. Any directive that is allowed in a virtual host context may be used. When the server receives a
request for a document on a particular virtual host, it uses the configuration directives enclosed in the <VIRTUAL-
HOST> section. Addr can be any of the following, optionally followed by a colon and a port number (or *):

• The IP address of the virtual host;

• A fully qualified domain name for the IP address of the virtual host (not recommended);

• The character *, which acts as a wildcard and matches any IP address.

• The string default , which is an alias for *

<VirtualHost 10.1.2.3:80>
ServerAdmin webmaster@host.example.com
DocumentRoot "/www/docs/host.example.com"
ServerName host.example.com
ErrorLog "logs/host.example.com-error_log"
TransferLog "logs/host.example.com-access_log"

</VirtualHost>

IPv6 addresses must be specified in square brackets because the optional port number could not be determined other-
wise. An IPv6 example is shown below:

<VirtualHost [2001:db8::a00:20ff:fea7:ccea]:80>
ServerAdmin webmaster@host.example.com
DocumentRoot "/www/docs/host.example.com"
ServerName host.example.com
ErrorLog "logs/host.example.com-error_log"
TransferLog "logs/host.example.com-access_log"

</VirtualHost>

Each Virtual Host must correspond to a different IP address, different port number, or a different host name for the
server, in the former case the server machine must be configured to accept IP packets for multiple addresses. (If
the machine does not have multiple network interfaces, then this can be accomplished with the ifconfig alias
command – if your OS supports it).

=⇒Note
The use of <VIRTUALHOST> does not affect what addresses Apache httpd listens on. You
may need to ensure that Apache httpd is listening on the correct addresses using LISTEN.

A SERVERNAME should be specified inside each <VIRTUALHOST> block. If it is absent, the SERVERNAME from
the "main" server configuration will be inherited.

When a request is received, the server first maps it to the best matching <VIRTUALHOST> based on the local IP
address and port combination only. Non-wildcards have a higher precedence. If no match based on IP and port occurs
at all, the "main" server configuration is used.

10.3. APACHE MODULE CORE 409

If multiple virtual hosts contain the best matching IP address and port, the server selects from these virtual hosts the
best match based on the requested hostname. If no matching name-based virtual host is found, then the first listed
virtual host that matched the IP address will be used. As a consequence, the first listed virtual host for a given IP
address and port combination is the default virtual host for that IP and port combination.

! Security
See the security tips (p. 338) document for details on why your security could be compromised
if the directory where log files are stored is writable by anyone other than the user that starts
the server.

See also

• Apache HTTP Server Virtual Host documentation (p. 114)

• Issues Regarding DNS and Apache HTTP Server (p. 111)

• Setting which addresses and ports Apache HTTP Server uses (p. 78)

• How <Directory>, <Location> and <Files> sections work (p. 33) for an explanation of how these different
sections are combined when a request is received

410 CHAPTER 10. APACHE MODULES

10.4 Apache Module mod access compat

Description: Group authorizations based on host (name or IP address)
Status: Extension
ModuleIdentifier: access compat module
SourceFile: mod access compat.c
Compatibility: Available in Apache HTTP Server 2.3 as a compatibility module with previous versions

of Apache httpd 2.x. The directives provided by this module have been deprecated by
the new authz refactoring. Please see MOD AUTHZ HOST

Summary

The directives provided by MOD ACCESS COMPAT are used in <DIRECTORY>, <FILES>, and <LOCATION> sec-
tions as well as .htaccess (p. 354) files to control access to particular parts of the server. Access can be
controlled based on the client hostname, IP address, or other characteristics of the client request, as captured in envi-
ronment variables (p. 82) . The ALLOW and DENY directives are used to specify which clients are or are not allowed
access to the server, while the ORDER directive sets the default access state, and configures how the ALLOW and
DENY directives interact with each other.

Both host-based access restrictions and password-based authentication may be implemented simultaneously. In that
case, the SATISFY directive is used to determine how the two sets of restrictions interact.

! Note
The directives provided by MOD ACCESS COMPAT have been deprecated by the new authz
refactoring. Please see MOD AUTHZ HOST.

In general, access restriction directives apply to all access methods (GET, PUT, POST, etc). This is the desired behavior
in most cases. However, it is possible to restrict some methods, while leaving other methods unrestricted, by enclosing
the directives in a <LIMIT> section.

=⇒Merging of configuration sections
When any directive provided by this module is used in a new configuration section, no direc-
tives provided by this module are inherited from previous configuration sections.

Directives

• Allow

• Deny

• Order

• Satisfy

See also

• REQUIRE

• MOD AUTHZ HOST

• MOD AUTHZ CORE

10.4. APACHE MODULE MOD ACCESS COMPAT 411

Allow Directive

Description: Controls which hosts can access an area of the server
Syntax: Allow from all|host|env=[!]env-variable [host|env=[!]env-variable]

...
Context: directory, .htaccess
Override: Limit
Status: Extension
Module: mod access compat

The ALLOW directive affects which hosts can access an area of the server. Access can be controlled by hostname, IP
address, IP address range, or by other characteristics of the client request captured in environment variables.

The first argument to this directive is always from. The subsequent arguments can take three different forms. If
Allow from all is specified, then all hosts are allowed access, subject to the configuration of the DENY and
ORDER directives as discussed below. To allow only particular hosts or groups of hosts to access the server, the host
can be specified in any of the following formats:

A (partial) domain-name Allow from example.org
Allow from .net example.edu

Hosts whose names match, or end in, this string are allowed access. Only complete components are matched, so
the above example will match foo.example.org but it will not match fooexample.org. This configura-
tion will cause Apache httpd to perform a double DNS lookup on the client IP address, regardless of the setting
of the HOSTNAMELOOKUPS directive. It will do a reverse DNS lookup on the IP address to find the associated
hostname, and then do a forward lookup on the hostname to assure that it matches the original IP address. Only
if the forward and reverse DNS are consistent and the hostname matches will access be allowed.

A full IP address Allow from 10.1.2.3
Allow from 192.168.1.104 192.168.1.205

An IP address of a host allowed access

A partial IP address Allow from 10.1
Allow from 10 172.20 192.168.2

The first 1 to 3 bytes of an IP address, for subnet restriction.

A network/netmask pair Allow from 10.1.0.0/255.255.0.0

A network a.b.c.d, and a netmask w.x.y.z. For more fine-grained subnet restriction.

A network/nnn CIDR specification Allow from 10.1.0.0/16

Similar to the previous case, except the netmask consists of nnn high-order 1 bits.

Note that the last three examples above match exactly the same set of hosts.

IPv6 addresses and IPv6 subnets can be specified as shown below:

Allow from 2001:db8::a00:20ff:fea7:ccea
Allow from 2001:db8::a00:20ff:fea7:ccea/10

The third format of the arguments to the ALLOW directive allows access to the server to be controlled based on the exis-
tence of an environment variable (p. 82) . When Allow from env=env-variable is specified, then the request
is allowed access if the environment variable env-variable exists. When Allow from env=!env-variable is
specified, then the request is allowed access if the environment variable env-variable doesn’t exist. The server pro-
vides the ability to set environment variables in a flexible way based on characteristics of the client request using the
directives provided by MOD SETENVIF. Therefore, this directive can be used to allow access based on such factors as
the clients User-Agent (browser type), Referer, or other HTTP request header fields.

412 CHAPTER 10. APACHE MODULES

SetEnvIf User-Agent ˆKnockKnock/2\.0 let_me_in
<Directory "/docroot">

Order Deny,Allow
Deny from all
Allow from env=let_me_in

</Directory>

In this case, browsers with a user-agent string beginning with KnockKnock/2.0 will be allowed access, and all
others will be denied.

=⇒Merging of configuration sections
When any directive provided by this module is used in a new configuration section, no direc-
tives provided by this module are inherited from previous configuration sections.

Deny Directive

Description: Controls which hosts are denied access to the server
Syntax: Deny from all|host|env=[!]env-variable [host|env=[!]env-variable]

...
Context: directory, .htaccess
Override: Limit
Status: Extension
Module: mod access compat

This directive allows access to the server to be restricted based on hostname, IP address, or environment variables.
The arguments for the DENY directive are identical to the arguments for the ALLOW directive.

Order Directive

Description: Controls the default access state and the order in which ALLOW and DENY are evaluated.
Syntax: Order ordering
Default: Order Deny,Allow
Context: directory, .htaccess
Override: Limit
Status: Extension
Module: mod access compat

The ORDER directive, along with the ALLOW and DENY directives, controls a three-pass access control system. The
first pass processes either all ALLOW or all DENY directives, as specified by the ORDER directive. The second pass
parses the rest of the directives (DENY or ALLOW). The third pass applies to all requests which do not match either of
the first two.

Note that all ALLOW and DENY directives are processed, unlike a typical firewall, where only the first match is
used. The last match is effective (also unlike a typical firewall). Additionally, the order in which lines appear in the
configuration files is not significant – all ALLOW lines are processed as one group, all DENY lines are considered as
another, and the default state is considered by itself.

Ordering is one of:

Allow,Deny First, all ALLOW directives are evaluated; at least one must match, or the request is rejected. Next, all
DENY directives are evaluated. If any matches, the request is rejected. Last, any requests which do not match
an ALLOW or a DENY directive are denied by default.

Deny,Allow First, all DENY directives are evaluated; if any match, the request is denied unless it also matches an
ALLOW directive. Any requests which do not match any ALLOW or DENY directives are permitted.

10.4. APACHE MODULE MOD ACCESS COMPAT 413

Mutual-failure This order has the same effect as Order Allow,Deny and is deprecated in its favor.

Keywords may only be separated by a comma; no whitespace is allowed between them.

Match Allow,Deny result Deny,Allow result
Match Allow only Request allowed Request allowed
Match Deny only Request denied Request denied
No match Default to second directive: Denied Default to second directive: Allowed
Match both Allow & Deny Final match controls: Denied Final match controls: Allowed

In the following example, all hosts in the example.org domain are allowed access; all other hosts are denied access.

Order Deny,Allow
Deny from all
Allow from example.org

In the next example, all hosts in the example.org domain are allowed access, except for the hosts which are in the
foo.example.org subdomain, who are denied access. All hosts not in the example.org domain are denied access because
the default state is to DENY access to the server.

Order Allow,Deny
Allow from example.org
Deny from foo.example.org

On the other hand, if the ORDER in the last example is changed to Deny,Allow, all hosts will be allowed access.
This happens because, regardless of the actual ordering of the directives in the configuration file, the Allow from
example.org will be evaluated last and will override the Deny from foo.example.org. All hosts not in the
example.org domain will also be allowed access because the default state is ALLOW.

The presence of an ORDER directive can affect access to a part of the server even in the absence of accompanying
ALLOW and DENY directives because of its effect on the default access state. For example,

<Directory "/www">
Order Allow,Deny

</Directory>

will Deny all access to the /www directory because the default access state is set to DENY.

The ORDER directive controls the order of access directive processing only within each phase of the server’s configu-
ration processing. This implies, for example, that an ALLOW or DENY directive occurring in a <LOCATION> section
will always be evaluated after an ALLOW or DENY directive occurring in a <DIRECTORY> section or .htaccess
file, regardless of the setting of the ORDER directive. For details on the merging of configuration sections, see the
documentation on How Directory, Location and Files sections work (p. 33) .

=⇒Merging of configuration sections
When any directive provided by this module is used in a new configuration section, no direc-
tives provided by this module are inherited from previous configuration sections.

414 CHAPTER 10. APACHE MODULES

Satisfy Directive

Description: Interaction between host-level access control and user authentication
Syntax: Satisfy Any|All
Default: Satisfy All
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod access compat
Compatibility: Influenced by <LIMIT> and <LIMITEXCEPT> in version 2.0.51 and later

Access policy if both ALLOW and REQUIRE used. The parameter can be either All or Any. This directive is only
useful if access to a particular area is being restricted by both username/password and client host address. In this case
the default behavior (All) is to require that the client passes the address access restriction and enters a valid username
and password. With the Any option the client will be granted access if they either pass the host restriction or enter a
valid username and password. This can be used to password restrict an area, but to let clients from particular addresses
in without prompting for a password.

For example, if you wanted to let people on your network have unrestricted access to a portion of your website, but
require that people outside of your network provide a password, you could use a configuration similar to the following:

Require valid-user
Allow from 192.168.1
Satisfy Any

Another frequent use of the SATISFY directive is to relax access restrictions for a subdirectory:

<Directory "/var/www/private">
Require valid-user

</Directory>

<Directory "/var/www/private/public">
Allow from all
Satisfy Any

</Directory>

In the above example, authentication will be required for the /var/www/private directory, but will not be required
for the /var/www/private/public directory.

Since version 2.0.51 SATISFY directives can be restricted to particular methods by <LIMIT> and <LIMITEXCEPT>
sections.

=⇒Merging of configuration sections
When any directive provided by this module is used in a new configuration section, no direc-
tives provided by this module are inherited from previous configuration sections.

See also

• ALLOW

• REQUIRE

10.5. APACHE MODULE MOD ACTIONS 415

10.5 Apache Module mod actions

Description: Execute CGI scripts based on media type or request method.
Status: Base
ModuleIdentifier: actions module
SourceFile: mod actions.c

Summary

This module has two directives. The ACTION directive lets you run CGI scripts whenever a file of a certain MIME
content type is requested. The SCRIPT directive lets you run CGI scripts whenever a particular method is used in a
request. This makes it much easier to execute scripts that process files.

Directives

• Action

• Script

See also

• MOD CGI

• Dynamic Content with CGI (p. 226)

• Apache httpd’s Handler Use (p. 98)

Action Directive

Description: Activates a CGI script for a particular handler or content-type
Syntax: Action action-type cgi-script [virtual]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod actions
Compatibility: The virtual modifier and handler passing were introduced in Apache 2.1

This directive adds an action, which will activate cgi-script when action-type is triggered by the request. The cgi-script
is the URL-path to a resource that has been designated as a CGI script using SCRIPTALIAS or ADDHANDLER. The
action-type can be either a handler (p. 98) or a MIME content type. It sends the URL and file path of the requested
document using the standard CGI PATH INFO and PATH TRANSLATED environment variables. The handler used
for the particular request is passed using the REDIRECT HANDLER variable.

Example: MIME type

Requests for files of a particular MIME content type:
Action image/gif /cgi-bin/images.cgi

In this example, requests for files with a MIME content type of image/gif will be handled by the specified cgi
script /cgi-bin/images.cgi.

Example: File extension

Files of a particular file extension
AddHandler my-file-type .xyz
Action my-file-type "/cgi-bin/program.cgi"

416 CHAPTER 10. APACHE MODULES

In this example, requests for files with a file extension of .xyz are handled by the specified cgi script
/cgi-bin/program.cgi.

The optional virtualmodifier turns off the check whether the requested file really exists. This is useful, for example,
if you want to use the ACTION directive in virtual locations.

<Location "/news">
SetHandler news-handler
Action news-handler "/cgi-bin/news.cgi" virtual

</Location>

See also

• ADDHANDLER

Script Directive

Description: Activates a CGI script for a particular request method.
Syntax: Script method cgi-script
Context: server config, virtual host, directory
Status: Base
Module: mod actions

This directive adds an action, which will activate cgi-script when a file is requested using the method of method.
The cgi-script is the URL-path to a resource that has been designated as a CGI script using SCRIPTALIAS or AD-
DHANDLER. The URL and file path of the requested document is sent using the standard CGI PATH INFO and
PATH TRANSLATED environment variables.

=⇒Any arbitrary method name may be used. Method names are case-sensitive, so Script
PUT and Script put have two entirely different effects.

Note that the SCRIPT command defines default actions only. If a CGI script is called, or some other resource that is
capable of handling the requested method internally, it will do so. Also note that SCRIPT with a method of GET will
only be called if there are query arguments present (e.g., foo.html?hi). Otherwise, the request will proceed normally.

All GET requests go here
Script GET "/cgi-bin/search"

A CGI PUT handler
Script PUT "/˜bob/put.cgi"

10.6. APACHE MODULE MOD ALIAS 417

10.6 Apache Module mod alias

Description: Provides for mapping different parts of the host filesystem in the document tree and for
URL redirection

Status: Base
ModuleIdentifier: alias module
SourceFile: mod alias.c

Summary

The directives contained in this module allow for manipulation and control of URLs as requests arrive at the server.
The ALIAS and SCRIPTALIAS directives are used to map between URLs and filesystem paths. This allows for con-
tent which is not directly under the DOCUMENTROOT served as part of the web document tree. The SCRIPTALIAS
directive has the additional effect of marking the target directory as containing only CGI scripts.

The REDIRECT directives are used to instruct clients to make a new request with a different URL. They are often used
when a resource has moved to a new location.

MOD ALIAS is designed to handle simple URL manipulation tasks. For more complicated tasks such as manipulating
the query string, use the tools provided by MOD REWRITE.

Directives

• Alias

• AliasMatch

• Redirect

• RedirectMatch

• RedirectPermanent

• RedirectTemp

• ScriptAlias

• ScriptAliasMatch

See also

• MOD REWRITE

• Mapping URLs to the filesystem (p. 61)

Order of Processing

Aliases and Redirects occurring in different contexts are processed like other directives according to standard merging
rules (p. 33) . But when multiple Aliases or Redirects occur in the same context (for example, in the same <VIRTU-
ALHOST> section) they are processed in a particular order.

First, all Redirects are processed before Aliases are processed, and therefore a request that matches a REDIRECT or
REDIRECTMATCH will never have Aliases applied. Second, the Aliases and Redirects are processed in the order they
appear in the configuration files, with the first match taking precedence.

For this reason, when two or more of these directives apply to the same sub-path, you must list the most specific path
first in order for all the directives to have an effect. For example, the following configuration will work as expected:

Alias "/foo/bar" "/baz"
Alias "/foo" "/gaq"

418 CHAPTER 10. APACHE MODULES

But if the above two directives were reversed in order, the /foo ALIAS would always match before the /foo/bar
ALIAS, so the latter directive would be ignored.

Alias Directive

Description: Maps URLs to filesystem locations
Syntax: Alias URL-path file-path|directory-path
Context: server config, virtual host
Status: Base
Module: mod alias

The ALIAS directive allows documents to be stored in the local filesystem other than under the DOCUMENTROOT.
URLs with a (%-decoded) path beginning with URL-path will be mapped to local files beginning with directory-path.
The URL-path is case-sensitive, even on case-insensitive file systems.

Alias "/image" "/ftp/pub/image"

A request for http://example.com/image/foo.gif would cause the server to return the file
/ftp/pub/image/foo.gif. Only complete path segments are matched, so the above alias would not match
a request for http://example.com/imagefoo.gif. For more complex matching using regular expressions,
see the ALIASMATCH directive.

Note that if you include a trailing / on the URL-path then the server will require a trailing / in order to expand the alias.
That is, if you use

Alias "/icons/" "/usr/local/apache/icons/"

then the URL /icons will not be aliased, as it lacks that trailing /. Likewise, if you omit the slash on the URL-path
then you must also omit it from the file-path.

Note that you may need to specify additional <DIRECTORY> sections which cover the destination of aliases. Aliasing
occurs before <DIRECTORY> sections are checked, so only the destination of aliases are affected. (Note however
<LOCATION> sections are run through once before aliases are performed, so they will apply.)

In particular, if you are creating an Alias to a directory outside of your DOCUMENTROOT, you may need to explicitly
permit access to the target directory.

Alias "/image" "/ftp/pub/image"
<Directory "/ftp/pub/image">

Require all granted
</Directory>

Any number slashes in the URL-path parameter matches any number of slashes in the requested URL-path.

AliasMatch Directive

Description: Maps URLs to filesystem locations using regular expressions
Syntax: AliasMatch regex file-path|directory-path
Context: server config, virtual host
Status: Base
Module: mod alias

This directive is equivalent to ALIAS, but makes use of regular expressions, instead of simple prefix matching. The
supplied regular expression is matched against the URL-path, and if it matches, the server will substitute any paren-
thesized matches into the given string and use it as a filename. For example, to activate the /icons directory, one
might use:

10.6. APACHE MODULE MOD ALIAS 419

AliasMatch "ˆ/icons(/|$)(.*)" "/usr/local/apache/icons$1$2"

The full range of regular expression power is available. For example, it is possible to construct an alias with case-
insensitive matching of the URL-path:

AliasMatch "(?i)ˆ/image(.*)" "/ftp/pub/image$1"

One subtle difference between ALIAS and ALIASMATCH is that ALIAS will automatically copy any additional part of
the URI, past the part that matched, onto the end of the file path on the right side, while ALIASMATCH will not. This
means that in almost all cases, you will want the regular expression to match the entire request URI from beginning to
end, and to use substitution on the right side.

In other words, just changing ALIAS to ALIASMATCH will not have the same effect. At a minimum, you need to add
ˆ to the beginning of the regular expression and add (.*)$ to the end, and add $1 to the end of the replacement.

For example, suppose you want to replace this with AliasMatch:

Alias "/image/" "/ftp/pub/image/"

This is NOT equivalent - don’t do this! This will send all requests that have /image/ anywhere in them to
/ftp/pub/image/:

AliasMatch "/image/" "/ftp/pub/image/"

This is what you need to get the same effect:

AliasMatch "ˆ/image/(.*)$" "/ftp/pub/image/$1"

Of course, there’s no point in using ALIASMATCH where ALIAS would work. ALIASMATCH lets you do more
complicated things. For example, you could serve different kinds of files from different directories:

AliasMatch "ˆ/image/(.*)\.jpg$" "/files/jpg.images/$1.jpg"
AliasMatch "ˆ/image/(.*)\.gif$" "/files/gif.images/$1.gif"

Multiple leading slashes in the requested URL are discarded by the server before directives from this module compares
against the requested URL-path.

Redirect Directive

Description: Sends an external redirect asking the client to fetch a different URL
Syntax: Redirect [status] URL-path URL
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod alias

The Redirect directive maps an old URL into a new one by asking the client to refetch the resource at the new location.

The old URL-path is a case-sensitive (%-decoded) path beginning with a slash. A relative path is not allowed.

The new URL may be either an absolute URL beginning with a scheme and hostname, or a URL-path beginning with
a slash. In this latter case the scheme and hostname of the current server will be added.

Then any request beginning with URL-Path will return a redirect request to the client at the location of the target URL.
Additional path information beyond the matched URL-Path will be appended to the target URL.

420 CHAPTER 10. APACHE MODULES

Redirect to a URL on a different host
Redirect "/service" "http://foo2.example.com/service"

Redirect to a URL on the same host
Redirect "/one" "/two"

If the client requests http://example.com/service/foo.txt, it will be told to access
http://foo2.example.com/service/foo.txt instead. This includes requests with GET pa-
rameters, such as http://example.com/service/foo.pl?q=23&a=42, it will be redirected to
http://foo2.example.com/service/foo.pl?q=23&a=42. Note that POSTs will be discarded.
Only complete path segments are matched, so the above example would not match a request for
http://example.com/servicefoo.txt. For more complex matching using regular expressions,
see the REDIRECTMATCH directive.

=⇒Note
Redirect directives take precedence over Alias and ScriptAlias directives, irrespective of their
ordering in the configuration file.

If no status argument is given, the redirect will be "temporary" (HTTP status 302). This indicates to the client that
the resource has moved temporarily. The status argument can be used to return other HTTP status codes:

permanent Returns a permanent redirect status (301) indicating that the resource has moved permanently.

temp Returns a temporary redirect status (302). This is the default.

seeother Returns a "See Other" status (303) indicating that the resource has been replaced.

gone Returns a "Gone" status (410) indicating that the resource has been permanently removed. When this status is
used the URL argument should be omitted.

Other status codes can be returned by giving the numeric status code as the value of status. If the status is between
300 and 399, the URL argument must be present. If the status is not between 300 and 399, the URL argument must
be omitted. The status must be a valid HTTP status code, known to the Apache HTTP Server (see the function
send error response in http protocol.c).

Redirect permanent "/one" "http://example.com/two"
Redirect 303 "/three" "http://example.com/other"

RedirectMatch Directive

Description: Sends an external redirect based on a regular expression match of the current URL
Syntax: RedirectMatch [status] regex URL
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod alias

This directive is equivalent to REDIRECT, but makes use of regular expressions, instead of simple prefix matching.
The supplied regular expression is matched against the URL-path, and if it matches, the server will substitute any
parenthesized matches into the given string and use it as a filename. For example, to redirect all GIF files to like-
named JPEG files on another server, one might use:

RedirectMatch "(.*)\.gif$" "http://other.example.com$1.jpg"

The considerations related to the difference between ALIAS and ALIASMATCH also apply to the difference between
REDIRECT and REDIRECTMATCH. See ALIASMATCH for details.

10.6. APACHE MODULE MOD ALIAS 421

RedirectPermanent Directive

Description: Sends an external permanent redirect asking the client to fetch a different URL
Syntax: RedirectPermanent URL-path URL
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod alias

This directive makes the client know that the Redirect is permanent (status 301). Exactly equivalent to Redirect
permanent.

RedirectTemp Directive

Description: Sends an external temporary redirect asking the client to fetch a different URL
Syntax: RedirectTemp URL-path URL
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod alias

This directive makes the client know that the Redirect is only temporary (status 302). Exactly equivalent to Redirect
temp.

ScriptAlias Directive

Description: Maps a URL to a filesystem location and designates the target as a CGI script
Syntax: ScriptAlias URL-path file-path|directory-path
Context: server config, virtual host
Status: Base
Module: mod alias

The SCRIPTALIAS directive has the same behavior as the ALIAS directive, except that in addition it marks the target
directory as containing CGI scripts that will be processed by MOD CGI’s cgi-script handler. URLs with a case-sensitive
(%-decoded) path beginning with URL-path will be mapped to scripts beginning with the second argument, which is
a full pathname in the local filesystem.

ScriptAlias "/cgi-bin/" "/web/cgi-bin/"

A request for http://example.com/cgi-bin/foo would cause the server to run the script
/web/cgi-bin/foo. This configuration is essentially equivalent to:

Alias "/cgi-bin/" "/web/cgi-bin/"
<Location "/cgi-bin" >

SetHandler cgi-script
Options +ExecCGI

</Location>

SCRIPTALIAS can also be used in conjunction with a script or handler you have. For example:

ScriptAlias "/cgi-bin/" "/web/cgi-handler.pl"

422 CHAPTER 10. APACHE MODULES

In this scenario all files requested in /cgi-bin/ will be handled by the file you have configured, this allows you to
use your own custom handler. You may want to use this as a wrapper for CGI so that you can add content, or some
other bespoke action.

! It is safer to avoid placing CGI scripts under the DOCUMENTROOT in order to avoid acci-
dentally revealing their source code if the configuration is ever changed. The SCRIPTALIAS
makes this easy by mapping a URL and designating CGI scripts at the same time. If you do
choose to place your CGI scripts in a directory already accessible from the web, do not use
SCRIPTALIAS. Instead, use <DIRECTORY>, SETHANDLER, and OPTIONS as in:

<Directory "/usr/local/apache2/htdocs/cgi-bin">
SetHandler cgi-script
Options ExecCGI

</Directory>

This is necessary since multiple URL-paths can map to the same filesystem location, potentially
bypassing the SCRIPTALIAS and revealing the source code of the CGI scripts if they are not
restricted by a DIRECTORY section.

See also

• CGI Tutorial (p. 226)

ScriptAliasMatch Directive

Description: Maps a URL to a filesystem location using a regular expression and designates the target as a
CGI script

Syntax: ScriptAliasMatch regex file-path|directory-path
Context: server config, virtual host
Status: Base
Module: mod alias

This directive is equivalent to SCRIPTALIAS, but makes use of regular expressions, instead of simple prefix matching.
The supplied regular expression is matched against the URL-path, and if it matches, the server will substitute any
parenthesized matches into the given string and use it as a filename. For example, to activate the standard /cgi-bin,
one might use:

ScriptAliasMatch "ˆ/cgi-bin(.*)" "/usr/local/apache/cgi-bin$1"

As for AliasMatch, the full range of regular expression power is available. For example, it is possible to construct an
alias with case-insensitive matching of the URL-path:

ScriptAliasMatch "(?i)ˆ/cgi-bin(.*)" "/usr/local/apache/cgi-bin$1"

The considerations related to the difference between ALIAS and ALIASMATCH also apply to the difference between
SCRIPTALIAS and SCRIPTALIASMATCH. See ALIASMATCH for details.

10.7. APACHE MODULE MOD ALLOWMETHODS 423

10.7 Apache Module mod allowmethods

Description: Easily restrict what HTTP methods can be used on the server
Status: Experimental
ModuleIdentifier: allowmethods module
SourceFile: mod allowmethods.c

Summary

This module makes it easy to restrict what HTTP methods can used on an server. The most common configuration
would be:

<Location "/">
AllowMethods GET POST OPTIONS

</Location>

Directives

• AllowMethods

AllowMethods Directive

Description: Restrict access to the listed HTTP methods
Syntax: AllowMethods reset|HTTP-method [HTTP-method]...
Default: AllowMethods reset
Context: directory
Status: Experimental
Module: mod allowmethods

The HTTP-methods are case sensitive, and are generally as per RFC given in upper case. The GET and HEAD
methods are treated as equivalent. The reset keyword can be used turn off MOD ALLOWMETHODS in a deeper
nested context:

<Location "/svn">
AllowMethods reset

</Location>

=⇒Caution
The TRACE method can not be denied by this module, use TRACEENABLE instead.

MOD ALLOWMETHODS was written to replace the rather kludgy implementation of LIMIT and LIMITEXCEPT.

424 CHAPTER 10. APACHE MODULES

10.8 Apache Module mod asis

Description: Sends files that contain their own HTTP headers
Status: Base
ModuleIdentifier: asis module
SourceFile: mod asis.c

Summary

This module provides the handler send-as-is which causes Apache HTTP Server to send the document without
adding most of the usual HTTP headers.

This can be used to send any kind of data from the server, including redirects and other special HTTP responses,
without requiring a cgi-script or an nph script.

For historical reasons, this module will also process any file with the mime type httpd/send-as-is.

Directives This module provides no directives.

See also

• MOD HEADERS

• MOD CERN META

• Apache httpd’s Handler Use (p. 98)

Usage

In the server configuration file, associate files with the send-as-is handler e.g.

AddHandler send-as-is asis

The contents of any file with a .asis extension will then be sent by Apache httpd to the client with almost no
changes. In particular, HTTP headers are derived from the file itself according to MOD CGI rules, so an asis file
must include valid headers, and may also use the CGI Status: header to determine the HTTP response code. The
Content-Length: header will automatically be inserted or, if included, corrected by httpd.

Here’s an example of a file whose contents are sent as is so as to tell the client that a file has redirected.

Status: 301 Now where did I leave that URL
Location: http://xyz.example.com/foo/bar.html
Content-type: text/html

<html>
<head>
<title>Lame excuses’R’us</title>
</head>
<body>
<h1>Fred’s exceptionally wonderful page has moved to
Joe’s site.
</h1>
</body>

</html>

10.8. APACHE MODULE MOD ASIS 425

=⇒Notes:
The server always adds a Date: and Server: header to the data returned to the client, so
these should not be included in the file. The server does not add a Last-Modified header;
it probably should.

426 CHAPTER 10. APACHE MODULES

10.9 Apache Module mod auth basic

Description: Basic HTTP authentication
Status: Base
ModuleIdentifier: auth basic module
SourceFile: mod auth basic.c
Compatibility: Available in Apache 2.1 and later

Summary

This module allows the use of HTTP Basic Authentication to restrict access by looking up users in the given providers.
HTTP Digest Authentication is provided by MOD AUTH DIGEST. This module should usually be combined with at
least one authentication module such as MOD AUTHN FILE and one authorization module such as MOD AUTHZ USER.

Directives

• AuthBasicAuthoritative

• AuthBasicFake

• AuthBasicProvider

• AuthBasicUseDigestAlgorithm

See also

• AUTHNAME

• AUTHTYPE

• REQUIRE

• Authentication howto (p. 217)

AuthBasicAuthoritative Directive

Description: Sets whether authorization and authentication are passed to lower level modules
Syntax: AuthBasicAuthoritative On|Off
Default: AuthBasicAuthoritative On
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod auth basic

Normally, each authorization module listed in AUTHBASICPROVIDER will attempt to verify the user, and if the user is
not found in any provider, access will be denied. Setting the AUTHBASICAUTHORITATIVE directive explicitly to Off
allows for both authentication and authorization to be passed on to other non-provider-based modules if there is no
userID or rule matching the supplied userID. This should only be necessary when combining MOD AUTH BASIC with
third-party modules that are not configured with the AUTHBASICPROVIDER directive. When using such modules, the
order of processing is determined in the modules’ source code and is not configurable.

10.9. APACHE MODULE MOD AUTH BASIC 427

AuthBasicFake Directive

Description: Fake basic authentication using the given expressions for username and password
Syntax: AuthBasicFake off|username [password]
Default: none
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod auth basic
Compatibility: Apache HTTP Server 2.4.5 and later

The username and password specified are combined into an Authorization header, which is passed to the server or
service behind the webserver. Both the username and password fields are interpreted using the expression parser (p.
89) , which allows both the username and password to be set based on request parameters.

If the password is not specified, the default value "password" will be used. To disable fake basic authentication for an
URL space, specify "AuthBasicFake off".

In this example, we pass a fixed username and password to a backend server.

Fixed Example

<Location "/demo">
AuthBasicFake demo demopass

</Location>

In this example, we pass the email address extracted from a client certificate, extending the functionality of the Fake-
BasicAuth option within the SSLOPTIONS directive. Like the FakeBasicAuth option, the password is set to the fixed
string "password".

Certificate Example

<Location "/secure">
AuthBasicFake "%{SSL_CLIENT_S_DN_Email}"

</Location>

Extending the above example, we generate a password by hashing the email address with a fixed passphrase, and
passing the hash to the backend server. This can be used to gate into legacy systems that do not support client
certificates.

Password Example

<Location "/secure">
AuthBasicFake "%{SSL_CLIENT_S_DN_Email}" "%{sha1:passphrase-%{SSL_CLIENT_S_DN_Email}}"

</Location>

Exclusion Example

<Location "/public">
AuthBasicFake off

</Location>

428 CHAPTER 10. APACHE MODULES

AuthBasicProvider Directive

Description: Sets the authentication provider(s) for this location
Syntax: AuthBasicProvider provider-name [provider-name] ...
Default: AuthBasicProvider file
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod auth basic

The AUTHBASICPROVIDER directive sets which provider is used to authenticate the users for this location. The
default file provider is implemented by the MOD AUTHN FILE module. Make sure that the chosen provider module
is present in the server.

Example

<Location "/secure">
AuthType basic
AuthName "private area"
AuthBasicProvider dbm
AuthDBMType SDBM
AuthDBMUserFile "/www/etc/dbmpasswd"
Require valid-user

</Location>

Providers are queried in order until a provider finds a match for the requested username, at which point this sole
provider will attempt to check the password. A failure to verify the password does not result in control being passed
on to subsequent providers.

Providers are implemented by MOD AUTHN DBM, MOD AUTHN FILE, MOD AUTHN DBD, MOD AUTHNZ LDAP and
MOD AUTHN SOCACHE.

AuthBasicUseDigestAlgorithm Directive

Description: Check passwords against the authentication providers as if Digest Authentication was in force
instead of Basic Authentication.

Syntax: AuthBasicUseDigestAlgorithm MD5|Off
Default: AuthBasicUseDigestAlgorithm Off
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod auth basic
Compatibility: Apache HTTP Server 2.4.7 and later

Normally, when using Basic Authentication, the providers listed in AUTHBASICPROVIDER attempt to verify a user
by checking their data stores for a matching username and associated password. The stored passwords are usually
encrypted, but not necessarily so; each provider may choose its own storage scheme for passwords.

When using AUTHDIGESTPROVIDER and Digest Authentication, providers perform a similar check to find a matching
username in their data stores. However, unlike in the Basic Authentication case, the value associated with each stored
username must be an encrypted string composed from the username, realm name, and password. (See

RFC 2617, Section 3.2.2.28 for more details on the format used for this encrypted string.)

As a consequence of the difference in the stored values between Basic and Digest Authentication, converting from
Digest Authentication to Basic Authentication generally requires that all users be assigned new passwords, as their

8http://tools.ietf.org/html/rfc2617#section-3.2.2.2

http://tools.ietf.org/html/rfc2617#section-3.2.2.2

10.9. APACHE MODULE MOD AUTH BASIC 429

existing passwords cannot be recovered from the password storage scheme imposed on those providers which support
Digest Authentication.

Setting the AUTHBASICUSEDIGESTALGORITHM directive to MD5 will cause the user’s Basic Authentication pass-
word to be checked using the same encrypted format as for Digest Authentication. First a string composed from the
username, realm name, and password is hashed with MD5; then the username and this encrypted string are passed to
the providers listed in AUTHBASICPROVIDER as if AUTHTYPE was set to Digest and Digest Authentication was in
force.

Through the use of AUTHBASICUSEDIGESTALGORITHM a site may switch from Digest to Basic Authentication
without requiring users to be assigned new passwords.

=⇒The inverse process of switching from Basic to Digest Authentication without assigning new
passwords is generally not possible. Only if the Basic Authentication passwords have been
stored in plain text or with a reversable encryption scheme will it be possible to recover them
and generate a new data store following the Digest Authentication password storage scheme.

=⇒Only providers which support Digest Authentication will be able to authenticate users when
AUTHBASICUSEDIGESTALGORITHM is set to MD5. Use of other providers will result in an
error response and the client will be denied access.

430 CHAPTER 10. APACHE MODULES

10.10 Apache Module mod auth digest

Description: User authentication using MD5 Digest Authentication
Status: Extension
ModuleIdentifier: auth digest module
SourceFile: mod auth digest.c

Summary

This module implements HTTP Digest Authentication (RFC26179), and provides an alternative to MOD AUTH BASIC
where the password is not transmitted as cleartext. However, this does not lead to a significant security advantage
over basic authentication. On the other hand, the password storage on the server is much less secure with digest
authentication than with basic authentication. Therefore, using basic auth and encrypting the whole connection using
MOD SSL is a much better alternative.

Directives

• AuthDigestAlgorithm

• AuthDigestDomain

• AuthDigestNonceLifetime

• AuthDigestProvider

• AuthDigestQop

• AuthDigestShmemSize

See also

• AUTHNAME

• AUTHTYPE

• REQUIRE

• Authentication howto (p. 217)

Using Digest Authentication

To use MD5 Digest authentication, simply change the normal AuthType Basic and AUTHBASICPROVIDER to
AuthType Digest and AUTHDIGESTPROVIDER, when setting up authentication, then add a AUTHDIGESTDO-
MAIN directive containing at least the root URI(s) for this protection space.

Appropriate user (text) files can be created using the htdigest tool.

Example:

<Location "/private/">
AuthType Digest
AuthName "private area"
AuthDigestDomain "/private/" "http://mirror.my.dom/private2/"

AuthDigestProvider file
AuthUserFile "/web/auth/.digest_pw"
Require valid-user

</Location>

9http://www.faqs.org/rfcs/rfc2617.html

http://www.faqs.org/rfcs/rfc2617.html

10.10. APACHE MODULE MOD AUTH DIGEST 431

=⇒Note
Digest authentication was intended to be more secure than basic authentication, but no longer
fulfills that design goal. A man-in-the-middle attacker can trivially force the browser to down-
grade to basic authentication. And even a passive eavesdropper can brute-force the password
using today’s graphics hardware, because the hashing algorithm used by digest authentication
is too fast. Another problem is that the storage of the passwords on the server is insecure. The
contents of a stolen htdigest file can be used directly for digest authentication. Therefore using
MOD SSL to encrypt the whole connection is strongly recommended.
MOD AUTH DIGEST only works properly on platforms where APR supports shared memory.

AuthDigestAlgorithm Directive

Description: Selects the algorithm used to calculate the challenge and response hashes in digest authentica-
tion

Syntax: AuthDigestAlgorithm MD5|MD5-sess
Default: AuthDigestAlgorithm MD5
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod auth digest

The AUTHDIGESTALGORITHM directive selects the algorithm used to calculate the challenge and response hashes.

=⇒MD5-sess is not correctly implemented yet.

AuthDigestDomain Directive

Description: URIs that are in the same protection space for digest authentication
Syntax: AuthDigestDomain URI [URI] ...
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod auth digest

The AUTHDIGESTDOMAIN directive allows you to specify one or more URIs which are in the same protection space
(i.e. use the same realm and username/password info). The specified URIs are prefixes; the client will assume that all
URIs "below" these are also protected by the same username/password. The URIs may be either absolute URIs (i.e.
including a scheme, host, port, etc.) or relative URIs.

This directive should always be specified and contain at least the (set of) root URI(s) for this space. Omitting to do so
will cause the client to send the Authorization header for every request sent to this server.

The URIs specified can also point to different servers, in which case clients (which understand this) will then share
username/password info across multiple servers without prompting the user each time.

AuthDigestNonceLifetime Directive

Description: How long the server nonce is valid
Syntax: AuthDigestNonceLifetime seconds
Default: AuthDigestNonceLifetime 300
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod auth digest

432 CHAPTER 10. APACHE MODULES

The AUTHDIGESTNONCELIFETIME directive controls how long the server nonce is valid. When the client contacts
the server using an expired nonce the server will send back a 401 with stale=true. If seconds is greater than 0 then
it specifies the amount of time for which the nonce is valid; this should probably never be set to less than 10 seconds.
If seconds is less than 0 then the nonce never expires.

AuthDigestProvider Directive

Description: Sets the authentication provider(s) for this location
Syntax: AuthDigestProvider provider-name [provider-name] ...
Default: AuthDigestProvider file
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod auth digest

The AUTHDIGESTPROVIDER directive sets which provider is used to authenticate the users for this location. The
default file provider is implemented by the MOD AUTHN FILE module. Make sure that the chosen provider module
is present in the server.

See MOD AUTHN DBM, MOD AUTHN FILE, MOD AUTHN DBD and MOD AUTHN SOCACHE for providers.

AuthDigestQop Directive

Description: Determines the quality-of-protection to use in digest authentication
Syntax: AuthDigestQop none|auth|auth-int [auth|auth-int]
Default: AuthDigestQop auth
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod auth digest

The AUTHDIGESTQOP directive determines the quality-of-protection to use. auth will only do authentication (user-
name/password); auth-int is authentication plus integrity checking (an MD5 hash of the entity is also computed
and checked); none will cause the module to use the old RFC-2069 digest algorithm (which does not include integrity
checking). Both auth and auth-int may be specified, in which the case the browser will choose which of these to
use. none should only be used if the browser for some reason does not like the challenge it receives otherwise.

=⇒auth-int is not implemented yet.

AuthDigestShmemSize Directive

Description: The amount of shared memory to allocate for keeping track of clients
Syntax: AuthDigestShmemSize size
Default: AuthDigestShmemSize 1000
Context: server config
Status: Extension
Module: mod auth digest

The AUTHDIGESTSHMEMSIZE directive defines the amount of shared memory, that will be allocated at the server
startup for keeping track of clients. Note that the shared memory segment cannot be set less than the space that is
necessary for tracking at least one client. This value is dependent on your system. If you want to find out the exact
value, you may simply set AUTHDIGESTSHMEMSIZE to the value of 0 and read the error message after trying to start
the server.

10.10. APACHE MODULE MOD AUTH DIGEST 433

The size is normally expressed in Bytes, but you may follow the number with a K or an M to express your value as
KBytes or MBytes. For example, the following directives are all equivalent:

AuthDigestShmemSize 1048576
AuthDigestShmemSize 1024K
AuthDigestShmemSize 1M

434 CHAPTER 10. APACHE MODULES

10.11 Apache Module mod auth form

Description: Form authentication
Status: Base
ModuleIdentifier: auth form module
SourceFile: mod auth form.c
Compatibility: Available in Apache 2.3 and later

Summary

! Warning
Form authentication depends on the MOD SESSION modules, and these modules make use of
HTTP cookies, and as such can fall victim to Cross Site Scripting attacks, or expose potentially
private information to clients. Please ensure that the relevant risks have been taken into account
before enabling the session functionality on your server.

This module allows the use of an HTML login form to restrict access by looking up users in the given providers. HTML
forms require significantly more configuration than the alternatives, however an HTML login form can provide a much
friendlier experience for end users.

HTTP basic authentication is provided by MOD AUTH BASIC, and HTTP digest authentication is provided
by MOD AUTH DIGEST. This module should be combined with at least one authentication module such as
MOD AUTHN FILE and one authorization module such as MOD AUTHZ USER.

Once the user has been successfully authenticated, the user’s login details will be stored in a session provided by
MOD SESSION.

Directives

• AuthFormAuthoritative

• AuthFormBody

• AuthFormDisableNoStore

• AuthFormFakeBasicAuth

• AuthFormLocation

• AuthFormLoginRequiredLocation

• AuthFormLoginSuccessLocation

• AuthFormLogoutLocation

• AuthFormMethod

• AuthFormMimetype

• AuthFormPassword

• AuthFormProvider

• AuthFormSitePassphrase

• AuthFormSize

• AuthFormUsername

See also

• MOD SESSION

10.11. APACHE MODULE MOD AUTH FORM 435

• AUTHNAME

• AUTHTYPE

• REQUIRE

• Authentication howto (p. 217)

Basic Configuration

To protect a particular URL with MOD AUTH FORM, you need to decide where you will store your session, and you
will need to decide what method you will use to authenticate. In this simple example, the login details will be stored in a
session based on MOD SESSION COOKIE, and authentication will be attempted against a file using MOD AUTHN FILE.
If authentication is unsuccessful, the user will be redirected to the form login page.

Basic example

AuthFormProvider file
AuthUserFile "conf/passwd"
AuthType form
AuthName realm
AuthFormLoginRequiredLocation "http://example.com/login.html"
Session On
SessionCookieName session path=/
SessionCryptoPassphrase secret

The directive AUTHTYPE will enable the MOD AUTH FORM authentication when set to the value form. The directives
AUTHFORMPROVIDER and AUTHUSERFILE specify that usernames and passwords should be checked against the
chosen file.

The directives SESSION, SESSIONCOOKIENAME and SESSIONCRYPTOPASSPHRASE create an encrypted session
stored within an HTTP cookie on the browser. For more information on the different options for configuring a session,
read the documentation for MOD SESSION.

In the simple example above, a URL has been protected by MOD AUTH FORM, but the user has yet to be given an
opportunity to enter their username and password. Options for doing so include providing a dedicated standalone login
page for this purpose, or for providing the login page inline.

Standalone Login

The login form can be hosted as a standalone page, or can be provided inline on the same page.

When configuring the login as a standalone page, unsuccessful authentication attempts should be redirected to a login
form created by the website for this purpose, using the AUTHFORMLOGINREQUIREDLOCATION directive. Typically
this login page will contain an HTML form, asking the user to provide their usename and password.

Example login form

<form method="POST" action="/dologin.html">
Username: <input type="text" name="httpd_username" value="" />
Password: <input type="password" name="httpd_password" value="" />
<input type="submit" name="login" value="Login" />

</form>

The part that does the actual login is handled by the form-login-handler. The action of the form should point at this
handler, which is configured within Apache httpd as follows:

436 CHAPTER 10. APACHE MODULES

Form login handler example

<Location "/dologin.html">
SetHandler form-login-handler
AuthFormLoginRequiredLocation "http://example.com/login.html"
AuthFormLoginSuccessLocation "http://example.com/success.html"
AuthFormProvider file
AuthUserFile "conf/passwd"
AuthType form
AuthName realm
Session On
SessionCookieName session path=/
SessionCryptoPassphrase secret

</Location>

The URLs specified by the AUTHFORMLOGINREQUIREDLOCATION directive will typically point to a page explain-
ing to the user that their login attempt was unsuccessful, and they should try again. The AUTHFORMLOGINSUCCESS-
LOCATION directive specifies the URL the user should be redirected to upon successful login.

Alternatively, the URL to redirect the user to on success can be embedded within the login form, as in the example
below. As a result, the same form-login-handler can be reused for different areas of a website.

Example login form with location

<form method="POST" action="/dologin.html">
Username: <input type="text" name="httpd_username" value="" />
Password: <input type="password" name="httpd_password" value="" />
<input type="submit" name="login" value="Login" />
<input type="hidden" name="httpd_location" value="http://example.com/success.html" />

</form>

Inline Login

! Warning
A risk exists that under certain circumstances, the login form configured using inline login may
be submitted more than once, revealing login credentials to the application running underneath.
The administrator must ensure that the underlying application is properly secured to prevent
abuse. If in doubt, use the standalone login configuration.

As an alternative to having a dedicated login page for a website, it is possible to configure MOD AUTH FORM to
authenticate users inline, without being redirected to another page. This allows the state of the current page to be
preserved during the login attempt. This can be useful in a situation where a time limited session is in force, and the
session times out in the middle of the user request. The user can be re-authenticated in place, and they can continue
where they left off.

If a non-authenticated user attempts to access a page protected by MOD AUTH FORM that isn’t configured with a
AUTHFORMLOGINREQUIREDLOCATION directive, a HTTP UNAUTHORIZED status code is returned to the browser
indicating to the user that they are not authorized to view the page.

To configure inline authentication, the administrator overrides the error document returned by the
HTTP UNAUTHORIZED status code with a custom error document containing the login form, as follows:

10.11. APACHE MODULE MOD AUTH FORM 437

Basic inline example

AuthFormProvider file
ErrorDocument 401 "/login.shtml"
AuthUserFile "conf/passwd"
AuthType form
AuthName realm
AuthFormLoginRequiredLocation "http://example.com/login.html"
Session On
SessionCookieName session path=/
SessionCryptoPassphrase secret

The error document page should contain a login form with an empty action property, as per the example below. This
has the effect of submitting the form to the original protected URL, without the page having to know what that URL
is.

Example inline login form

<form method="POST" action="">
Username: <input type="text" name="httpd_username" value="" />
Password: <input type="password" name="httpd_password" value="" />
<input type="submit" name="login" value="Login" />

</form>

When the end user has filled in their login details, the form will make an HTTP POST request to the original password
protected URL. MOD AUTH FORM will intercept this POST request, and if HTML fields are found present for the
username and password, the user will be logged in, and the original password protected URL will be returned to the
user as a GET request.

Inline Login with Body Preservation

A limitation of the inline login technique described above is that should an HTML form POST have resulted in
the request to authenticate or reauthenticate, the contents of the original form posted by the browser will be lost.
Depending on the function of the website, this could present significant inconvenience for the end user.

MOD AUTH FORM addresses this by allowing the method and body of the original request to be embedded in the login
form. If authentication is successful, the original method and body will be retried by Apache httpd, preserving the
state of the original request.

To enable body preservation, add three additional fields to the login form as per the example below.

Example with body preservation

<form method="POST" action="">
Username: <input type="text" name="httpd_username" value="" />
Password: <input type="password" name="httpd_password" value="" />
<input type="submit" name="login" value="Login" />
<input type="hidden" name="httpd_method" value="POST" />

<input type="hidden" name="httpd_mimetype" value="application/x-www-form-urlencoded" />
<input type="hidden" name="httpd_body" value="name1=value1&name2=value2" />

</form>

How the method, mimetype and body of the original request are embedded within the login form will depend on the
platform and technology being used within the website.

One option is to use the MOD INCLUDE module along with the KEPTBODYSIZE directive, along with a suitable CGI
script to embed the variables in the form.

438 CHAPTER 10. APACHE MODULES

Another option is to render the login form using a CGI script or other dynamic technology.

CGI example

AuthFormProvider file
ErrorDocument 401 "/cgi-bin/login.cgi"
...

Logging Out

To enable a user to log out of a particular session, configure a page to be handled by the form-logout-handler. Any
attempt to access this URL will cause the username and password to be removed from the current session, effectively
logging the user out.

By setting the AUTHFORMLOGOUTLOCATION directive, a URL can be specified that the browser will be redirected
to on successful logout. This URL might explain to the user that they have been logged out, and give the user the
option to log in again.

Basic logout example

SetHandler form-logout-handler
AuthName realm
AuthFormLogoutLocation "http://example.com/loggedout.html"
Session On
SessionCookieName session path=/
SessionCryptoPassphrase secret

Note that logging a user out does not delete the session; it merely removes the username and password from the
session. If this results in an empty session, the net effect will be the removal of that session, but this is not guaranteed.
If you want to guarantee the removal of a session, set the SESSIONMAXAGE directive to a small value, like 1 (setting
the directive to zero would mean no session age limit).

Basic session expiry example

SetHandler form-logout-handler
AuthFormLogoutLocation "http://example.com/loggedout.html"
Session On
SessionMaxAge 1
SessionCookieName session path=/
SessionCryptoPassphrase secret

Usernames and Passwords

Note that form submission involves URLEncoding the form data: in this case the username and password. You should
therefore pick usernames and passwords that avoid characters that are URLencoded in form submission, or you may
get unexpected results.

10.11. APACHE MODULE MOD AUTH FORM 439

AuthFormAuthoritative Directive

Description: Sets whether authorization and authentication are passed to lower level modules
Syntax: AuthFormAuthoritative On|Off
Default: AuthFormAuthoritative On
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod auth form

Normally, each authorization module listed in AUTHFORMPROVIDER will attempt to verify the user, and if the user is
not found in any provider, access will be denied. Setting the AUTHFORMAUTHORITATIVE directive explicitly to Off
allows for both authentication and authorization to be passed on to other non-provider-based modules if there is no
userID or rule matching the supplied userID. This should only be necessary when combining MOD AUTH FORM with
third-party modules that are not configured with the AUTHFORMPROVIDER directive. When using such modules, the
order of processing is determined in the modules’ source code and is not configurable.

AuthFormBody Directive

Description: The name of a form field carrying the body of the request to attempt on successful login
Syntax: AuthFormBody fieldname
Default: httpd body
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later

The AUTHFORMMETHOD directive specifies the name of an HTML field which, if present, will contain the method
of the request to to submit should login be successful.

By populating the form with fields described by AUTHFORMMETHOD, AUTHFORMMIMETYPE and AUTHFORM-
BODY, a website can retry a request that may have been interrupted by the login screen, or by a session timeout.

AuthFormDisableNoStore Directive

Description: Disable the CacheControl no-store header on the login page
Syntax: AuthFormDisableNoStore On|Off
Default: AuthFormDisableNoStore Off
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later

The AUTHFORMDISABLENOSTORE flag disables the sending of a Cache-Control no-store header with the
error 401 page returned when the user is not yet logged in. The purpose of the header is to make it difficult for an
ecmascript application to attempt to resubmit the login form, and reveal the username and password to the backend
application. Disable at your own risk.

440 CHAPTER 10. APACHE MODULES

AuthFormFakeBasicAuth Directive

Description: Fake a Basic Authentication header
Syntax: AuthFormFakeBasicAuth On|Off
Default: AuthFormFakeBasicAuth Off
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later

The AUTHFORMFAKEBASICAUTH flag determines whether a Basic Authentication header will be added to
the request headers. This can be used to expose the username and password to an underlying application, without the
underlying application having to be aware of how the login was achieved.

AuthFormLocation Directive

Description: The name of a form field carrying a URL to redirect to on successful login
Syntax: AuthFormLocation fieldname
Default: httpd location
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later

The AUTHFORMLOCATION directive specifies the name of an HTML field which, if present, will contain a URL to
redirect the browser to should login be successful.

AuthFormLoginRequiredLocation Directive

Description: The URL of the page to be redirected to should login be required
Syntax: AuthFormLoginRequiredLocation url
Default: none
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later. The use of the expression parser has been

added in 2.4.4.

The AUTHFORMLOGINREQUIREDLOCATION directive specifies the URL to redirect to should the user not be autho-
rised to view a page. The value is parsed using the ap expr (p. 89) parser before being sent to the client. By default,
if a user is not authorised to view a page, the HTTP response code HTTP UNAUTHORIZED will be returned with the
page specified by the ERRORDOCUMENT directive. This directive overrides this default.

Use this directive if you have a dedicated login page to redirect users to.

10.11. APACHE MODULE MOD AUTH FORM 441

AuthFormLoginSuccessLocation Directive

Description: The URL of the page to be redirected to should login be successful
Syntax: AuthFormLoginSuccessLocation url
Default: none
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later. The use of the expression parser has been

added in 2.4.4.

The AUTHFORMLOGINSUCCESSLOCATION directive specifies the URL to redirect to should the user have logged in
successfully. The value is parsed using the ap expr (p. 89) parser before being sent to the client. This directive can be
overridden if a form field has been defined containing another URL using the AUTHFORMLOCATION directive.

Use this directive if you have a dedicated login URL, and you have not embedded the destination page in the login
form.

AuthFormLogoutLocation Directive

Description: The URL to redirect to after a user has logged out
Syntax: AuthFormLogoutLocation uri
Default: none
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later. The use of the expression parser has been

added in 2.4.4.

The AUTHFORMLOGOUTLOCATION directive specifies the URL of a page on the server to redirect to should the user
attempt to log out. The value is parsed using the ap expr (p. 89) parser before being sent to the client.

When a URI is accessed that is served by the handler form-logout-handler, the page specified by this directive
will be shown to the end user. For example:

Example

<Location "/logout">
SetHandler form-logout-handler
AuthFormLogoutLocation "http://example.com/loggedout.html"
Session on
#...

</Location>

An attempt to access the URI /logout/ will result in the user being logged out, and the page /loggedout.html will be
displayed. Make sure that the page loggedout.html is not password protected, otherwise the page will not be displayed.

AuthFormMethod Directive

Description: The name of a form field carrying the method of the request to attempt on successful login
Syntax: AuthFormMethod fieldname
Default: httpd method
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later

442 CHAPTER 10. APACHE MODULES

The AUTHFORMMETHOD directive specifies the name of an HTML field which, if present, will contain the method
of the request to to submit should login be successful.

By populating the form with fields described by AUTHFORMMETHOD, AUTHFORMMIMETYPE and AUTHFORM-
BODY, a website can retry a request that may have been interrupted by the login screen, or by a session timeout.

AuthFormMimetype Directive

Description: The name of a form field carrying the mimetype of the body of the request to attempt on
successful login

Syntax: AuthFormMimetype fieldname
Default: httpd mimetype
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later

The AUTHFORMMETHOD directive specifies the name of an HTML field which, if present, will contain the mimetype
of the request to to submit should login be successful.

By populating the form with fields described by AUTHFORMMETHOD, AUTHFORMMIMETYPE and AUTHFORM-
BODY, a website can retry a request that may have been interrupted by the login screen, or by a session timeout.

AuthFormPassword Directive

Description: The name of a form field carrying the login password
Syntax: AuthFormPassword fieldname
Default: httpd password
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later

The AUTHFORMPASSWORD directive specifies the name of an HTML field which, if present, will contain the pass-
word to be used to log in.

AuthFormProvider Directive

Description: Sets the authentication provider(s) for this location
Syntax: AuthFormProvider provider-name [provider-name] ...
Default: AuthFormProvider file
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod auth form

The AUTHFORMPROVIDER directive sets which provider is used to authenticate the users for this location. The
default file provider is implemented by the MOD AUTHN FILE module. Make sure that the chosen provider module
is present in the server.

10.11. APACHE MODULE MOD AUTH FORM 443

Example

<Location "/secure">
AuthType form
AuthName "private area"
AuthFormProvider dbm
AuthDBMType SDBM
AuthDBMUserFile "/www/etc/dbmpasswd"
Require valid-user
#...

</Location>

Providers are implemented by MOD AUTHN DBM, MOD AUTHN FILE, MOD AUTHN DBD, MOD AUTHNZ LDAP and
MOD AUTHN SOCACHE.

AuthFormSitePassphrase Directive

Description: Bypass authentication checks for high traffic sites
Syntax: AuthFormSitePassphrase secret
Default: none
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later

The AUTHFORMSITEPASSPHRASE directive specifies a passphrase which, if present in the user session, causes
Apache httpd to bypass authentication checks for the given URL. It can be used on high traffic websites to reduce
the load induced on authentication infrastructure.

The passphrase can be inserted into a user session by adding this directive to the configuration for the form-login-
handler. The form-login-handler itself will always run the authentication checks, regardless of whether a passphrase
is specified or not.

! Warning
If the session is exposed to the user through the use of MOD SESSION COOKIE, and the session
is not protected with MOD SESSION CRYPTO, the passphrase is open to potential exposure
through a dictionary attack. Regardless of how the session is configured, ensure that this
directive is not used within URL spaces where private user data could be exposed, or sensitive
transactions can be conducted. Use at own risk.

AuthFormSize Directive

Description: The largest size of the form in bytes that will be parsed for the login details
Syntax: AuthFormSize size
Default: 8192
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later

The AUTHFORMSIZE directive specifies the maximum size of the body of the request that will be parsed to find the
login form.

If a login request arrives that exceeds this size, the whole request will be aborted with the HTTP response code
HTTP REQUEST TOO LARGE.

444 CHAPTER 10. APACHE MODULES

If you have populated the form with fields described by AUTHFORMMETHOD, AUTHFORMMIMETYPE and AUTH-
FORMBODY, you probably want to set this field to a similar size as the KEPTBODYSIZE directive.

AuthFormUsername Directive

Description: The name of a form field carrying the login username
Syntax: AuthFormUsername fieldname
Default: httpd username
Context: directory
Status: Base
Module: mod auth form
Compatibility: Available in Apache HTTP Server 2.3.0 and later

The AUTHFORMUSERNAME directive specifies the name of an HTML field which, if present, will contain the user-
name to be used to log in.

10.12. APACHE MODULE MOD AUTHN ANON 445

10.12 Apache Module mod authn anon

Description: Allows "anonymous" user access to authenticated areas
Status: Extension
ModuleIdentifier: authn anon module
SourceFile: mod authn anon.c
Compatibility: Available in Apache 2.1 and later

Summary

This module provides authentication front-ends such as MOD AUTH BASIC to authenticate users similar to anonymous-
ftp sites, i.e. have a ’magic’ user id ’anonymous’ and the email address as a password. These email addresses can be
logged.

Combined with other (database) access control methods, this allows for effective user tracking and customization
according to a user profile while still keeping the site open for ’unregistered’ users. One advantage of using Auth-
based user tracking is that, unlike magic-cookies and funny URL pre/postfixes, it is completely browser independent
and it allows users to share URLs.

When using MOD AUTH BASIC, this module is invoked via the AUTHBASICPROVIDER directive with the anon value.

Directives

• Anonymous

• Anonymous LogEmail

• Anonymous MustGiveEmail

• Anonymous NoUserID

• Anonymous VerifyEmail

Example

The example below is combined with "normal" htpasswd-file based authentication and allows users in additionally as
’guests’ with the following properties:

• It insists that the user enters a userID. (ANONYMOUS NOUSERID)

• It insists that the user enters a password. (ANONYMOUS MUSTGIVEEMAIL)

• The password entered must be a valid email address, i.e. contain at least one ’@’ and a ’.’.
(ANONYMOUS VERIFYEMAIL)

• The userID must be one of anonymous guest www test welcome and comparison is not case sensi-
tive. (ANONYMOUS)

• And the Email addresses entered in the passwd field are logged to the error log file. (ANONYMOUS LOGEMAIL)

446 CHAPTER 10. APACHE MODULES

Example

<Directory "/var/www/html/private">
AuthName "Use ’anonymous’ & Email address for guest entry"
AuthType Basic
AuthBasicProvider file anon
AuthUserFile "/path/to/your/.htpasswd"

Anonymous_NoUserID off
Anonymous_MustGiveEmail on
Anonymous_VerifyEmail on
Anonymous_LogEmail on
Anonymous anonymous guest www test welcome

Require valid-user
</Directory>

Anonymous Directive

Description: Specifies userIDs that are allowed access without password verification
Syntax: Anonymous user [user] ...
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authn anon

A list of one or more ’magic’ userIDs which are allowed access without password verification. The userIDs are space
separated. It is possible to use the ’ and " quotes to allow a space in a userID as well as the \escape character.

Please note that the comparison is case-IN-sensitive.
It’s strongly recommended that the magic username ’anonymous’ is always one of the allowed userIDs.

Example:

Anonymous anonymous "Not Registered" "I don’t know"

This would allow the user to enter without password verification by using the userIDs "anonymous", "AnonyMous",
"Not Registered" and "I Don’t Know".

As of Apache 2.1 it is possible to specify the userID as "*". That allows any supplied userID to be accepted.

Anonymous LogEmail Directive

Description: Sets whether the password entered will be logged in the error log
Syntax: Anonymous LogEmail On|Off
Default: Anonymous LogEmail On
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authn anon

When set On, the default, the ’password’ entered (which hopefully contains a sensible email address) is logged in the
error log.

10.12. APACHE MODULE MOD AUTHN ANON 447

Anonymous MustGiveEmail Directive

Description: Specifies whether blank passwords are allowed
Syntax: Anonymous MustGiveEmail On|Off
Default: Anonymous MustGiveEmail On
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authn anon

Specifies whether the user must specify an email address as the password. This prohibits blank passwords.

Anonymous NoUserID Directive

Description: Sets whether the userID field may be empty
Syntax: Anonymous NoUserID On|Off
Default: Anonymous NoUserID Off
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authn anon

When set On, users can leave the userID (and perhaps the password field) empty. This can be very convenient for
MS-Explorer users who can just hit return or click directly on the OK button; which seems a natural reaction.

Anonymous VerifyEmail Directive

Description: Sets whether to check the password field for a correctly formatted email address
Syntax: Anonymous VerifyEmail On|Off
Default: Anonymous VerifyEmail Off
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authn anon

When set On the ’password’ entered is checked for at least one ’@’ and a ’.’ to encourage users to enter valid email
addresses (see the above ANONYMOUS LOGEMAIL).

448 CHAPTER 10. APACHE MODULES

10.13 Apache Module mod authn core

Description: Core Authentication
Status: Base
ModuleIdentifier: authn core module
SourceFile: mod authn core.c
Compatibility: Available in Apache 2.3 and later

Summary

This module provides core authentication capabilities to allow or deny access to portions of the web site.
MOD AUTHN CORE provides directives that are common to all authentication providers.

Directives

• AuthName

• <AuthnProviderAlias>

• AuthType

Creating Authentication Provider Aliases

Extended authentication providers can be created within the configuration file and assigned an alias name. The alias
providers can then be referenced through the directives AUTHBASICPROVIDER or AUTHDIGESTPROVIDER in the
same way as a base authentication provider. Besides the ability to create and alias an extended provider, it also allows
the same extended authentication provider to be reference by multiple locations.

Examples

This example checks for passwords in two different text files.

Checking multiple text password files

Check here first
<AuthnProviderAlias file file1>

AuthUserFile "/www/conf/passwords1"
</AuthnProviderAlias>

Then check here
<AuthnProviderAlias file file2>

AuthUserFile "/www/conf/passwords2"
</AuthnProviderAlias>

<Directory "/var/web/pages/secure">
AuthBasicProvider file1 file2

AuthType Basic
AuthName "Protected Area"
Require valid-user

</Directory>

The example below creates two different ldap authentication provider aliases based on the ldap provider. This allows
a single authenticated location to be serviced by multiple ldap hosts:

10.13. APACHE MODULE MOD AUTHN CORE 449

Checking multiple LDAP servers

<AuthnProviderAlias ldap ldap-alias1>
AuthLDAPBindDN cn=youruser,o=ctx
AuthLDAPBindPassword yourpassword
AuthLDAPURL ldap://ldap.host/o=ctx

</AuthnProviderAlias>
<AuthnProviderAlias ldap ldap-other-alias>

AuthLDAPBindDN cn=yourotheruser,o=dev
AuthLDAPBindPassword yourotherpassword
AuthLDAPURL ldap://other.ldap.host/o=dev?cn

</AuthnProviderAlias>

Alias "/secure" "/webpages/secure"
<Directory "/webpages/secure">

AuthBasicProvider ldap-other-alias ldap-alias1

AuthType Basic
AuthName "LDAP Protected Place"
Require valid-user
Note that Require ldap-* would not work here, since the
AuthnProviderAlias does not provide the config to authorization providers
that are implemented in the same module as the authentication provider.

</Directory>

AuthName Directive

Description: Authorization realm for use in HTTP authentication
Syntax: AuthName auth-domain
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod authn core

This directive sets the name of the authorization realm for a directory. This realm is given to the client so that the
user knows which username and password to send. AUTHNAME takes a single argument; if the realm name contains
spaces, it must be enclosed in quotation marks. It must be accompanied by AUTHTYPE and REQUIRE directives, and
directives such as AUTHUSERFILE and AUTHGROUPFILE to work.

For example:

AuthName "Top Secret"

The string provided for the AuthName is what will appear in the password dialog provided by most browsers.

See also

• Authentication, Authorization, and Access Control (p. 217)

• MOD AUTHZ CORE

450 CHAPTER 10. APACHE MODULES

AuthnProviderAlias Directive

Description: Enclose a group of directives that represent an extension of a base authentication provider and
referenced by the specified alias

Syntax: <AuthnProviderAlias baseProvider Alias> ...
</AuthnProviderAlias>

Context: server config
Status: Base
Module: mod authn core

<AuthnProviderAlias> and </AuthnProviderAlias> are used to enclose a group of authentication di-
rectives that can be referenced by the alias name using one of the directives AUTHBASICPROVIDER or AUTHDIGEST-
PROVIDER.

=⇒This directive has no affect on authorization, even for modules that provide both authentication
and authorization.

AuthType Directive

Description: Type of user authentication
Syntax: AuthType None|Basic|Digest|Form
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod authn core

This directive selects the type of user authentication for a directory. The authentication types available are None,
Basic (implemented by MOD AUTH BASIC), Digest (implemented by MOD AUTH DIGEST), and Form (imple-
mented by MOD AUTH FORM).

To implement authentication, you must also use the AUTHNAME and REQUIRE directives. In addition, the server
must have an authentication-provider module such as MOD AUTHN FILE and an authorization module such as
MOD AUTHZ USER.

The authentication type None disables authentication. When authentication is enabled, it is normally inherited by
each subsequent configuration section (p. 33) , unless a different authentication type is specified. If no authentication
is desired for a subsection of an authenticated section, the authentication type None may be used; in the following
example, clients may access the /www/docs/public directory without authenticating:

<Directory "/www/docs">
AuthType Basic
AuthName Documents
AuthBasicProvider file
AuthUserFile "/usr/local/apache/passwd/passwords"
Require valid-user

</Directory>

<Directory "/www/docs/public">
AuthType None
Require all granted

</Directory>

=⇒When disabling authentication, note that clients which have already authenticated against an-
other portion of the server’s document tree will typically continue to send authentication HTTP
headers or cookies with each request, regardless of whether the server actually requires authen-
tication for every resource.

10.13. APACHE MODULE MOD AUTHN CORE 451

See also

• Authentication, Authorization, and Access Control (p. 217)

452 CHAPTER 10. APACHE MODULES

10.14 Apache Module mod authn dbd

Description: User authentication using an SQL database
Status: Extension
ModuleIdentifier: authn dbd module
SourceFile: mod authn dbd.c
Compatibility: Available in Apache 2.1 and later

Summary

This module provides authentication front-ends such as MOD AUTH DIGEST and MOD AUTH BASIC to authenticate
users by looking up users in SQL tables. Similar functionality is provided by, for example, MOD AUTHN FILE.

This module relies on MOD DBD to specify the backend database driver and connection parameters, and manage the
database connections.

When using MOD AUTH BASIC or MOD AUTH DIGEST, this module is invoked via the AUTHBASICPROVIDER or
AUTHDIGESTPROVIDER with the dbd value.

Directives

• AuthDBDUserPWQuery

• AuthDBDUserRealmQuery

See also

• AUTHNAME

• AUTHTYPE

• AUTHBASICPROVIDER

• AUTHDIGESTPROVIDER

• DBDRIVER

• DBDPARAMS

• Password Formats (p. 345)

Performance and Cacheing

Some users of DBD authentication in HTTPD 2.2/2.4 have reported that it imposes a problematic load on the database.
This is most likely where an HTML page contains hundreds of objects (e.g. images, scripts, etc) each of which requires
authentication. Users affected (or concerned) by this kind of problem should use MOD AUTHN SOCACHE to cache
credentials and take most of the load off the database.

Configuration Example

This simple example shows use of this module in the context of the Authentication and DBD frameworks.

mod_dbd configuration
UPDATED to include authentication cacheing
DBDriver pgsql
DBDParams "dbname=apacheauth user=apache password=xxxxxx"

10.14. APACHE MODULE MOD AUTHN DBD 453

DBDMin 4
DBDKeep 8
DBDMax 20
DBDExptime 300

<Directory "/usr/www/myhost/private">
mod_authn_core and mod_auth_basic configuration
for mod_authn_dbd
AuthType Basic
AuthName "My Server"

To cache credentials, put socache ahead of dbd here
AuthBasicProvider socache dbd

Also required for caching: tell the cache to cache dbd lookups!
AuthnCacheProvideFor dbd
AuthnCacheContext my-server

mod_authz_core configuration
Require valid-user

mod_authn_dbd SQL query to authenticate a user
AuthDBDUserPWQuery "SELECT password FROM authn WHERE user = %s"

</Directory>

Exposing Login Information

If httpd was built against APR version 1.3.0 or higher, then whenever a query is made to the database server, all column
values in the first row returned by the query are placed in the environment, using environment variables with the prefix
"AUTHENTICATE ".

If a database query for example returned the username, full name and telephone number of a user, a CGI program will
have access to this information without the need to make a second independent database query to gather this additional
information.

This has the potential to dramatically simplify the coding and configuration required in some web applications.

AuthDBDUserPWQuery Directive

Description: SQL query to look up a password for a user
Syntax: AuthDBDUserPWQuery query
Context: directory
Status: Extension
Module: mod authn dbd

The AUTHDBDUSERPWQUERY specifies an SQL query to look up a password for a specified user. The user’s ID
will be passed as a single string parameter when the SQL query is executed. It may be referenced within the query
statement using a %s format specifier.

AuthDBDUserPWQuery "SELECT password FROM authn WHERE user = %s"

The first column value of the first row returned by the query statement should be a string containing the encrypted
password. Subsequent rows will be ignored. If no rows are returned, the user will not be authenticated through
MOD AUTHN DBD.

454 CHAPTER 10. APACHE MODULES

If httpd was built against APR version 1.3.0 or higher, any additional column values in the first row returned by the
query statement will be stored as environment variables with names of the form AUTHENTICATE COLUMN .

The encrypted password format depends on which authentication frontend (e.g. MOD AUTH BASIC or
MOD AUTH DIGEST) is being used. See Password Formats (p. 345) for more information.

AuthDBDUserRealmQuery Directive

Description: SQL query to look up a password hash for a user and realm.
Syntax: AuthDBDUserRealmQuery query
Context: directory
Status: Extension
Module: mod authn dbd

The AUTHDBDUSERREALMQUERY specifies an SQL query to look up a password for a specified user and realm in
a digest authentication process. The user’s ID and the realm, in that order, will be passed as string parameters when
the SQL query is executed. They may be referenced within the query statement using %s format specifiers.

AuthDBDUserRealmQuery "SELECT password FROM authn WHERE user = %s AND realm = %s"

The first column value of the first row returned by the query statement should be a string containing the encrypted
password. Subsequent rows will be ignored. If no rows are returned, the user will not be authenticated through
MOD AUTHN DBD.

If httpd was built against APR version 1.3.0 or higher, any additional column values in the first row returned by the
query statement will be stored as environment variables with names of the form AUTHENTICATE COLUMN .

The encrypted password format depends on which authentication frontend (e.g. MOD AUTH BASIC or
MOD AUTH DIGEST) is being used. See Password Formats (p. 345) for more information.

10.15. APACHE MODULE MOD AUTHN DBM 455

10.15 Apache Module mod authn dbm

Description: User authentication using DBM files
Status: Extension
ModuleIdentifier: authn dbm module
SourceFile: mod authn dbm.c
Compatibility: Available in Apache 2.1 and later

Summary

This module provides authentication front-ends such as MOD AUTH DIGEST and MOD AUTH BASIC to authenticate
users by looking up users in dbm password files. Similar functionality is provided by MOD AUTHN FILE.

When using MOD AUTH BASIC or MOD AUTH DIGEST, this module is invoked via the AUTHBASICPROVIDER or
AUTHDIGESTPROVIDER with the dbm value.

Directives

• AuthDBMType

• AuthDBMUserFile

See also

• AUTHNAME

• AUTHTYPE

• AUTHBASICPROVIDER

• AUTHDIGESTPROVIDER

• htpasswd

• htdbm

• Password Formats (p. 345)

AuthDBMType Directive

Description: Sets the type of database file that is used to store passwords
Syntax: AuthDBMType default|SDBM|GDBM|NDBM|DB
Default: AuthDBMType default
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authn dbm

Sets the type of database file that is used to store the passwords. The default database type is determined at compile
time. The availability of other types of database files also depends on compile-time settings (p. 20) .

It is crucial that whatever program you use to create your password files is configured to use the same type of database.

456 CHAPTER 10. APACHE MODULES

AuthDBMUserFile Directive

Description: Sets the name of a database file containing the list of users and passwords for authentication
Syntax: AuthDBMUserFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authn dbm

The AUTHDBMUSERFILE directive sets the name of a DBM file containing the list of users and passwords for user
authentication. File-path is the absolute path to the user file.

The user file is keyed on the username. The value for a user is the encrypted password, optionally followed by a colon
and arbitrary data. The colon and the data following it will be ignored by the server.

! Security:
Make sure that the AUTHDBMUSERFILE is stored outside the document tree of the web-
server; do not put it in the directory that it protects. Otherwise, clients will be able to download
the AUTHDBMUSERFILE.

The encrypted password format depends on which authentication frontend (e.g. MOD AUTH BASIC or
MOD AUTH DIGEST) is being used. See Password Formats (p. 345) for more information.

Important compatibility note: The implementation of dbmopen in the apache modules reads the string length of
the hashed values from the DBM data structures, rather than relying upon the string being NULL-appended. Some
applications, such as the Netscape web server, rely upon the string being NULL-appended, so if you are having trouble
using DBM files interchangeably between applications this may be a part of the problem.

A perl script called dbmmanage is included with Apache. This program can be used to create and update DBM
format password files for use with this module. Another tool for maintaining the DBM files is the included program
htdbm.

10.16. APACHE MODULE MOD AUTHN FILE 457

10.16 Apache Module mod authn file

Description: User authentication using text files
Status: Base
ModuleIdentifier: authn file module
SourceFile: mod authn file.c
Compatibility: Available in Apache 2.1 and later

Summary

This module provides authentication front-ends such as MOD AUTH DIGEST and MOD AUTH BASIC to authenticate
users by looking up users in plain text password files. Similar functionality is provided by MOD AUTHN DBM.

When using MOD AUTH BASIC or MOD AUTH DIGEST, this module is invoked via the AUTHBASICPROVIDER or
AUTHDIGESTPROVIDER with the file value.

Directives

• AuthUserFile

See also

• AUTHBASICPROVIDER

• AUTHDIGESTPROVIDER

• htpasswd

• htdigest

• Password Formats (p. 345)

AuthUserFile Directive

Description: Sets the name of a text file containing the list of users and passwords for authentication
Syntax: AuthUserFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod authn file

The AUTHUSERFILE directive sets the name of a textual file containing the list of users and passwords for user
authentication. File-path is the path to the user file. If it is not absolute, it is treated as relative to the SERVERROOT.

Each line of the user file contains a username followed by a colon, followed by the encrypted password. If the same
user ID is defined multiple times, MOD AUTHN FILE will use the first occurrence to verify the password.

The encrypted password format depends on which authentication frontend (e.g. MOD AUTH BASIC or
MOD AUTH DIGEST) is being used. See Password Formats (p. 345) for more information.

For MOD AUTH BASIC, use the utility htpasswd which is installed as part of the binary distribution, or which can
be found in src/support. See the man page (p. 312) for more details. In short:

Create a password file Filename with username as the initial ID. It will prompt for the password:

htpasswd -c Filename username

458 CHAPTER 10. APACHE MODULES

Add or modify username2 in the password file Filename:

htpasswd Filename username2

Note that searching large text files is very inefficient; AUTHDBMUSERFILE should be used instead.

For MOD AUTH DIGEST, use htdigest instead. Note that you cannot mix user data for Digest Authentication and
Basic Authentication within the same file.

! Security
Make sure that the AUTHUSERFILE is stored outside the document tree of the web-server. Do
not put it in the directory that it protects. Otherwise, clients may be able to download the
AUTHUSERFILE.

10.17. APACHE MODULE MOD AUTHN SOCACHE 459

10.17 Apache Module mod authn socache

Description: Manages a cache of authentication credentials to relieve the load on backends
Status: Base
ModuleIdentifier: authn socache module
SourceFile: mod authn socache.c
Compatibility: Version 2.3 and later

Summary

Maintains a cache of authentication credentials, so that a new backend lookup is not required for every authenticated
request.

Directives

• AuthnCacheContext

• AuthnCacheEnable

• AuthnCacheProvideFor

• AuthnCacheSOCache

• AuthnCacheTimeout

Authentication Cacheing

Some users of more heavyweight authentication such as SQL database lookups (MOD AUTHN DBD) have reported
it putting an unacceptable load on their authentication provider. A typical case in point is where an HTML page
contains hundreds of objects (images, scripts, stylesheets, media, etc), and a request to the page generates hundreds of
effectively-immediate requests for authenticated additional contents.

mod authn socache provides a solution to this problem by maintaining a cache of authentication credentials.

Usage

The authentication cache should be used where authentication lookups impose a significant load on the server, or a
backend or network. Authentication by file (MOD AUTHN FILE) or dbm (MOD AUTHN DBM) are unlikely to benefit,
as these are fast and lightweight in their own right (though in some cases, such as a network-mounted file, cacheing may
be worthwhile). Other providers such as SQL or LDAP based authentication are more likely to benefit, particularly
where there is an observed performance issue. Amongst the standard modules, MOD AUTHNZ LDAP manages its own
cache, so only MOD AUTHN DBD will usually benefit from this cache.

The basic rules to cache for a provider are:

1. Include the provider you’re cacheing for in an AUTHNCACHEPROVIDEFOR directive.

2. List socache ahead of the provider you’re cacheing for in your AUTHBASICPROVIDER or AUTHDIGEST-
PROVIDER directive.

A simple usage example to accelerate MOD AUTHN DBD using dbm as a cache engine:

#AuthnCacheSOCache is optional. If specified, it is server-wide
AuthnCacheSOCache dbm
<Directory "/usr/www/myhost/private">

460 CHAPTER 10. APACHE MODULES

AuthType Basic
AuthName "Cached Authentication Example"
AuthBasicProvider socache dbd
AuthDBDUserPWQuery "SELECT password FROM authn WHERE user = %s"
AuthnCacheProvideFor dbd
Require valid-user
#Optional
AuthnCacheContext dbd-authn-example

</Directory>

Cacheing with custom modules

Module developers should note that their modules must be enabled for cacheing with mod authn socache. A single
optional API function ap authn cache store is provided to cache credentials a provider has just looked up or generated.
Usage examples are available in r95707210, in which three authn providers are enabled for cacheing.

AuthnCacheContext Directive

Description: Specify a context string for use in the cache key
Syntax: AuthnCacheContext directory|server|custom-string
Default: directory
Context: directory
Status: Base
Module: mod authn socache

This directive specifies a string to be used along with the supplied username (and realm in the case of Digest Authen-
tication) in constructing a cache key. This serves to disambiguate identical usernames serving different authentication
areas on the server.

Two special values for this are directory, which uses the directory context of the request as a string, and server which
uses the virtual host name.

The default is directory, which is also the most conservative setting. This is likely to be less than optimal, as it (for
example) causes $app-base, $app-base/images, $app-base/scripts and $app-base/media each to have its own separate
cache key. A better policy is to name the AUTHNCACHECONTEXT for the password provider: for example a htpasswd
file or database table.

Contexts can be shared across different areas of a server, where credentials are shared. However, this has potential
to become a vector for cross-site or cross-application security breaches, so this directive is not permitted in .htaccess
contexts.

AuthnCacheEnable Directive

Description: Enable Authn caching configured anywhere
Syntax: AuthnCacheEnable
Context: server config
Override: None
Status: Base
Module: mod authn socache

This directive is not normally necessary: it is implied if authentication cacheing is enabled anywhere in httpd.conf.
However, if it is not enabled anywhere in httpd.conf it will by default not be initialised, and is therefore not available
in a .htaccess context. This directive ensures it is initialised so it can be used in .htaccess.

10http://svn.eu.apache.org/viewvc?view=revision&revision=957072

http://svn.eu.apache.org/viewvc?view=revision&revision=957072

10.17. APACHE MODULE MOD AUTHN SOCACHE 461

AuthnCacheProvideFor Directive

Description: Specify which authn provider(s) to cache for
Syntax: AuthnCacheProvideFor authn-provider [...]
Default: None
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod authn socache

This directive specifies an authentication provider or providers to cache for. Credentials found by a provider not listed
in an AuthnCacheProvideFor directive will not be cached.

For example, to cache credentials found by MOD AUTHN DBD or by a custom provider myprovider, but leave those
looked up by lightweight providers like file or dbm lookup alone:

AuthnCacheProvideFor dbd myprovider

AuthnCacheSOCache Directive

Description: Select socache backend provider to use
Syntax: AuthnCacheSOCache provider-name[:provider-args]
Context: server config
Override: None
Status: Base
Module: mod authn socache
Compatibility: Optional provider arguments are available in Apache HTTP Server 2.4.7 and later

This is a server-wide setting to select a provider for the shared object cache (p. 104) , followed by optional arguments
for that provider. Some possible values for provider-name are "dbm", "dc", "memcache", or "shmcb", each subject
to the appropriate module being loaded. If not set, your platform’s default will be used.

AuthnCacheTimeout Directive

Description: Set a timeout for cache entries
Syntax: AuthnCacheTimeout timeout (seconds)
Default: 300 (5 minutes)
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod authn socache

Cacheing authentication data can be a security issue, though short-term cacheing is unlikely to be a problem. Typically
a good solution is to cache credentials for as long as it takes to relieve the load on a backend, but no longer, though if
changes to your users and passwords are infrequent then a longer timeout may suit you. The default 300 seconds (5
minutes) is both cautious and ample to keep the load on a backend such as dbd (SQL database queries) down.

This should not be confused with session timeout, which is an entirely separate issue. However, you may wish to
check your session-management software for whether cached credentials can "accidentally" extend a session, and
bear it in mind when setting your timeout.

462 CHAPTER 10. APACHE MODULES

10.18 Apache Module mod authnz fcgi

Description: Allows a FastCGI authorizer application to handle Apache httpd authentication and au-
thorization

Status: Extension
ModuleIdentifier: authnz fcgi module
SourceFile: mod authnz fcgi.c
Compatibility: Available in version 2.4.10 and later

Summary

This module allows FastCGI authorizer applications to authenticate users and authorize access to resources. It supports
generic FastCGI authorizers which participate in a single phase for authentication and authorization as well as Apache
httpd-specific authenticators and authorizors which participate in one or both phases.

FastCGI authorizers can authenticate using user id and password, such as for Basic authentication, or can authenticate
using arbitrary mechanisms.

Directives

• AuthnzFcgiCheckAuthnProvider

• AuthnzFcgiDefineProvider

See also

• Authentication, Authorization, and Access Control (p. 217)

• MOD AUTH BASIC

• fcgistarter

• MOD PROXY FCGI

Invocation modes

The invocation modes for FastCGI authorizers supported by this module are distinguished by two characteristics, type
and auth mechanism.

Type is simply authn for authentication, authz for authorization, or authnz for combined authentication and
authorization.

Auth mechanism refers to the Apache httpd configuration mechanisms and processing phases, and can be
AuthBasicProvider, Require, or check user id. The first two of these correspond to the directives used
to enable participation in the appropriate processing phase.

Descriptions of each mode:

Type authn, mechanism AuthBasicProvider In this mode, FCGI ROLE is set to AUTHORIZER and
FCGI APACHE ROLE is set to AUTHENTICATOR. The application must be defined as provider type authn
using AUTHNZFCGIDEFINEPROVIDER and enabled with AUTHBASICPROVIDER. When invoked, the applica-
tion is expected to authenticate the client using the provided user id and password. Example application:

#!/usr/bin/perl
use FCGI;
while (FCGI::accept >= 0) {

10.18. APACHE MODULE MOD AUTHNZ FCGI 463

die if $ENV{’FCGI_APACHE_ROLE’} ne "AUTHENTICATOR";
die if $ENV{’FCGI_ROLE’} ne "AUTHORIZER";
die if !$ENV{’REMOTE_PASSWD’};
die if !$ENV{’REMOTE_USER’};

print STDERR "This text is written to the web server error log.\n";

if (($ENV{’REMOTE_USER’ } eq "foo" || $ENV{’REMOTE_USER’} eq "foo1") &&
$ENV{’REMOTE_PASSWD’} eq "bar") {
print "Status: 200\n";
print "Variable-AUTHN_1: authn_01\n";
print "Variable-AUTHN_2: authn_02\n";
print "\n";

}
else {

print "Status: 401\n\n";
}

}

Example configuration:

AuthnzFcgiDefineProvider authn FooAuthn fcgi://localhost:10102/
<Location "/protected/">

AuthType Basic
AuthName "Restricted"
AuthBasicProvider FooAuthn
Require ...

</Location>

Type authz, mechanism Require In this mode, FCGI ROLE is set to AUTHORIZER and FCGI APACHE ROLE
is set to AUTHORIZER. The application must be defined as provider type authz using AUTHNZFCGIDEFINE-
PROVIDER. When invoked, the application is expected to authorize the client using the provided user id and
other request data. Example application:

#!/usr/bin/perl
use FCGI;
while (FCGI::accept >= 0) {

die if $ENV{’FCGI_APACHE_ROLE’} ne "AUTHORIZER";
die if $ENV{’FCGI_ROLE’} ne "AUTHORIZER";
die if $ENV{’REMOTE_PASSWD’};

print STDERR "This text is written to the web server error log.\n";

if ($ENV{’REMOTE_USER’} eq "foo1") {
print "Status: 200\n";
print "Variable-AUTHZ_1: authz_01\n";
print "Variable-AUTHZ_2: authz_02\n";
print "\n";

}
else {

print "Status: 403\n\n";
}

}

464 CHAPTER 10. APACHE MODULES

Example configuration:

AuthnzFcgiDefineProvider authz FooAuthz fcgi://localhost:10103/
<Location "/protected/">

AuthType ...
AuthName ...
AuthBasicProvider ...
Require FooAuthz

</Location>

Type authnz, mechanism AuthBasicProvider + Require In this mode, which supports the web server-
agnostic FastCGI AUTHORIZER protocol, FCGI ROLE is set to AUTHORIZER and FCGI APACHE ROLE
is not set. The application must be defined as provider type authnz using AUTHNZFCGIDEFINEPROVIDER. The
application is expected to handle both authentication and authorization in the same invocation using the user
id, password, and other request data. The invocation occurs during the Apache httpd API authentication phase.
If the application returns 200 and the same provider is invoked during the authorization phase (via REQUIRE),
mod authnz fcgi will return success for the authorization phase without invoking the application. Example
application:

#!/usr/bin/perl
use FCGI;
while (FCGI::accept >= 0) {

die if $ENV{’FCGI_APACHE_ROLE’};
die if $ENV{’FCGI_ROLE’} ne "AUTHORIZER";
die if !$ENV{’REMOTE_PASSWD’};
die if !$ENV{’REMOTE_USER’};

print STDERR "This text is written to the web server error log.\n";

if (($ENV{’REMOTE_USER’ } eq "foo" || $ENV{’REMOTE_USER’} eq "foo1") &&
$ENV{’REMOTE_PASSWD’} eq "bar" &&
$ENV{’REQUEST_URI’} =˜ m%/bar/.*%) {
print "Status: 200\n";
print "Variable-AUTHNZ_1: authnz_01\n";
print "Variable-AUTHNZ_2: authnz_02\n";
print "\n";

}
else {

print "Status: 401\n\n";
}

}

Example configuration:

AuthnzFcgiDefineProvider authnz FooAuthnz fcgi://localhost:10103/
<Location "/protected/">

AuthType Basic
AuthName "Restricted"
AuthBasicProvider FooAuthnz
Require FooAuthnz

</Location>

Type authn, mechanism check user id In this mode, FCGI ROLE is set to AUTHORIZER and
FCGI APACHE ROLE is set to AUTHENTICATOR. The application must be defined as provider type authn

10.18. APACHE MODULE MOD AUTHNZ FCGI 465

using AUTHNZFCGIDEFINEPROVIDER. AUTHNZFCGICHECKAUTHNPROVIDER specifies when it is called.
Example application:

#!/usr/bin/perl
use FCGI;
while (FCGI::accept >= 0) {

die if $ENV{’FCGI_APACHE_ROLE’} ne "AUTHENTICATOR";
die if $ENV{’FCGI_ROLE’} ne "AUTHORIZER";

This authorizer assumes that the RequireBasicAuth option of
AuthnzFcgiCheckAuthnProvider is On:
die if !$ENV{’REMOTE_PASSWD’};
die if !$ENV{’REMOTE_USER’};

print STDERR "This text is written to the web server error log.\n";

if (($ENV{’REMOTE_USER’ } eq "foo" || $ENV{’REMOTE_USER’} eq "foo1") &&
$ENV{’REMOTE_PASSWD’} eq "bar") {
print "Status: 200\n";
print "Variable-AUTHNZ_1: authnz_01\n";
print "Variable-AUTHNZ_2: authnz_02\n";
print "\n";

}
else {

print "Status: 401\n\n";
If a response body is written here, it will be returned to
the client.

}
}

Example configuration:

AuthnzFcgiDefineProvider authn FooAuthn fcgi://localhost:10103/
<Location "/protected/">

AuthType ...
AuthName ...
AuthnzFcgiCheckAuthnProvider FooAuthn \

Authoritative On \
RequireBasicAuth Off \
UserExpr "%{reqenv:REMOTE_USER}"

Require ...
</Location>

Additional examples

1. If your application supports the separate authentication and authorization roles (AUTHENTICATOR and
AUTHORIZER), define separate providers as follows, even if they map to the same application:

AuthnzFcgiDefineProvider authn FooAuthn fcgi://localhost:10102/
AuthnzFcgiDefineProvider authz FooAuthz fcgi://localhost:10102/

Specify the authn provider on AUTHBASICPROVIDER and the authz provider on REQUIRE:

466 CHAPTER 10. APACHE MODULES

AuthType Basic
AuthName "Restricted"
AuthBasicProvider FooAuthn
Require FooAuthz

2. If your application supports the generic AUTHORIZER role (authentication and authorizer in one invocation),
define a single provider as follows:

AuthnzFcgiDefineProvider authnz FooAuthnz fcgi://localhost:10103/

Specify the authnz provider on both AUTHBASICPROVIDER and REQUIRE:

AuthType Basic
AuthName "Restricted"
AuthBasicProvider FooAuthnz
Require FooAuthnz

Limitations

The following are potential features which are not currently implemented:

Apache httpd access checker The Apache httpd API access check phase is a separate phase from authentication and
authorization. Some other FastCGI implementations implement this phase, which is denoted by the setting of
FCGI APACHE ROLE to ACCESS CHECKER.

Local (Unix) sockets or pipes Only TCP sockets are currently supported.

Support for mod authn socache mod authn socache interaction should be implemented for applications which par-
ticipate in Apache httpd-style authentication.

Support for digest authentication using AuthDigestProvider This is expected to be a permanent limitation as there
is no authorizer flow for retrieving a hash.

Application process management This is expected to be permanently out of scope for this module. Application
processes must be controlled by other means. For example, fcgistarter can be used to start them.

AP AUTH INTERNAL PER URI All providers are currently registered as AP AUTH INTERNAL PER CONF,
which means that checks are not performed again for internal subrequests with the same access control config-
uration as the initial request.

Protocol data charset conversion If mod authnz fcgi runs in an EBCDIC compilation environment, all FastCGI pro-
tocol data is written in EBCDIC and expected to be received in EBCDIC.

Multiple requests per connection Currently the connection to the FastCGI authorizer is closed after every phase of
processing. For example, if the authorizer handles separate authn and authz phases then two connections will
be used.

URI Mapping URIs from clients can’t be mapped, such as with the PROXYPASS used with FastCGI responders.

10.18. APACHE MODULE MOD AUTHNZ FCGI 467

Logging

1. Processing errors are logged at log level error and higher.

2. Messages written by the application are logged at log level warn.

3. General messages for debugging are logged at log level debug.

4. Environment variables passed to the application are logged at log level trace2. The value of the
REMOTE PASSWD variable will be obscured, but any other sensitive data will be visible in the log.

5. All I/O between the module and the FastCGI application, including all environment variables, will be logged in
printable and hex format at log level trace5. All sensitive data will be visible in the log.

LOGLEVEL can be used to configure a log level specific to mod authnz fcgi. For example:

LogLevel info authnz_fcgi:trace8

AuthnzFcgiCheckAuthnProvider Directive

Description: Enables a FastCGI application to handle the check authn authentication hook.
Syntax: AuthnzFcgiCheckAuthnProvider provider-name|None option ...
Default: none
Context: directory
Status: Extension
Module: mod authnz fcgi

This directive is used to enable a FastCGI authorizer to handle a specific processing phase of authentication or autho-
rization.

Some capabilities of FastCGI authorizers require enablement using this directive instead of AUTHBASICPROVIDER:

• Non-Basic authentication; generally, determining the user id of the client and returning it from the authorizer;
see the UserExpr option below

• Selecting a custom response code; for a non-200 response from the authorizer, the code from the authorizer will
be the status of the response

• Setting the body of a non-200 response; if the authorizer provides a response body with a non-200 response,
that body will be returned to the client; up to 8192 bytes of text are supported

provider-name This is the name of a provider defined with AUTHNZFCGIDEFINEPROVIDER.

None Specify None to disable a provider enabled with this directive in an outer scope, such as in a parent directory.

option The following options are supported:

Authoritative On—Off (default On) This controls whether or not other modules are allowed to run when this
module has a FastCGI authorizer configured and it fails the request.

DefaultUser userid When the authorizer returns success and UserExpr is configured and evaluates to an
empty string (e.g., authorizer didn’t return a variable), this value will be used as the user id. This is
typically used when the authorizer has a concept of guest, or unauthenticated, users and guest users are
mapped to some specific user id for logging and other purposes.

RequireBasicAuth On—Off (default Off) This controls whether or not Basic auth is required before passing
the request to the authorizer. If required, the authorizer won’t be invoked without a user id and password;
401 will be returned for a request without that.

468 CHAPTER 10. APACHE MODULES

UserExpr expr (no default) When Basic authentication isn’t provided by the client and the authorizer deter-
mines the user, this expression, evaluated after calling the authorizer, determines the user. The expression
follows ap expr syntax (p. 89) and must resolve to a string. A typical use is to reference a Variable-XXX
setting returned by the authorizer using an option like UserExpr "%{reqenv:XXX}". If this option
is specified and the user id can’t be retrieved using the expression after a successful authentication, the
request will be rejected with a 500 error.

AuthnzFcgiDefineProvider Directive

Description: Defines a FastCGI application as a provider for authentication and/or authorization
Syntax: AuthnzFcgiDefineProvider type provider-name backend-address
Default: none
Context: server config
Status: Extension
Module: mod authnz fcgi

This directive is used to define a FastCGI application as a provider for a particular phase of authentication or autho-
rization.

type This must be set to authn for authentication, authz for authorization, or authnz for a generic FastCGI authorizer
which performs both checks.

provider-name This is used to assign a name to the provider which is used in other directives such as AUTHBA-
SICPROVIDER and REQUIRE.

backend-address This specifies the address of the application, in the form fcgi://hostname:port/. The application
process(es) must be managed independently, such as with fcgistarter.

10.19. APACHE MODULE MOD AUTHNZ LDAP 469

10.19 Apache Module mod authnz ldap

Description: Allows an LDAP directory to be used to store the database for HTTP Basic authentica-
tion.

Status: Extension
ModuleIdentifier: authnz ldap module
SourceFile: mod authnz ldap.c
Compatibility: Available in version 2.1 and later

Summary

This module allows authentication front-ends such as MOD AUTH BASIC to authenticate users through an ldap direc-
tory.

MOD AUTHNZ LDAP supports the following features:

• Known to support the OpenLDAP SDK11 (both 1.x and 2.x), Novell LDAP SDK12 and the iPlanet (Netscape)13

SDK.

• Complex authorization policies can be implemented by representing the policy with LDAP filters.

• Uses extensive caching of LDAP operations via mod ldap (p. 644) .

• Support for LDAP over SSL (requires the Netscape SDK) or TLS (requires the OpenLDAP 2.x SDK or Novell
LDAP SDK).

When using MOD AUTH BASIC, this module is invoked via the AUTHBASICPROVIDER directive with the ldap value.

Directives

• AuthLDAPAuthorizePrefix

• AuthLDAPBindAuthoritative

• AuthLDAPBindDN

• AuthLDAPBindPassword

• AuthLDAPCharsetConfig

• AuthLDAPCompareAsUser

• AuthLDAPCompareDNOnServer

• AuthLDAPDereferenceAliases

• AuthLDAPGroupAttribute

• AuthLDAPGroupAttributeIsDN

• AuthLDAPInitialBindAsUser

• AuthLDAPInitialBindPattern

• AuthLDAPMaxSubGroupDepth

• AuthLDAPRemoteUserAttribute

• AuthLDAPRemoteUserIsDN

• AuthLDAPSearchAsUser
11http://www.openldap.org/
12http://developer.novell.com/ndk/cldap.htm
13http://www.iplanet.com/downloads/developer/

http://www.openldap.org/
http://developer.novell.com/ndk/cldap.htm
http://www.iplanet.com/downloads/developer/

470 CHAPTER 10. APACHE MODULES

• AuthLDAPSubGroupAttribute

• AuthLDAPSubGroupClass

• AuthLDAPUrl

See also

• MOD LDAP

• MOD AUTH BASIC

• MOD AUTHZ USER

• MOD AUTHZ GROUPFILE

Contents

• General caveats

• Operation

– The Authentication Phase
– The Authorization Phase

• The Require Directives

– Require ldap-user
– Require ldap-group
– Require ldap-dn
– Require ldap-attribute
– Require ldap-filter

• Examples

• Using TLS

• Using SSL

• Exposing Login Information

• Using Active Directory

• Using Microsoft FrontPage with MOD AUTHNZ LDAP

– How It Works
– Caveats

General caveats

This module caches authentication and authorization results based on the configuration of MOD LDAP. Changes made
to the backing LDAP server will not be immediately reflected on the HTTP Server, including but not limited to user
lockouts/revocations, password changes, or changes to group memberships. Consult the directives in MOD LDAP for
details of the cache tunables.

10.19. APACHE MODULE MOD AUTHNZ LDAP 471

Operation

There are two phases in granting access to a user. The first phase is authentication, in which the MOD AUTHNZ LDAP
authentication provider verifies that the user’s credentials are valid. This is also called the search/bind phase. The
second phase is authorization, in which MOD AUTHNZ LDAP determines if the authenticated user is allowed access to
the resource in question. This is also known as the compare phase.

MOD AUTHNZ LDAP registers both an authn ldap authentication provider and an authz ldap authorization handler.
The authn ldap authentication provider can be enabled through the AUTHBASICPROVIDER directive using the
ldap value. The authz ldap handler extends the REQUIRE directive’s authorization types by adding ldap-user,
ldap-dn and ldap-group values.

The Authentication Phase

During the authentication phase, MOD AUTHNZ LDAP searches for an entry in the directory that matches the username
that the HTTP client passes. If a single unique match is found, then MOD AUTHNZ LDAP attempts to bind to the
directory server using the DN of the entry plus the password provided by the HTTP client. Because it does a search,
then a bind, it is often referred to as the search/bind phase. Here are the steps taken during the search/bind phase.

1. Generate a search filter by combining the attribute and filter provided in the AUTHLDAPURL directive with
the username passed by the HTTP client.

2. Search the directory using the generated filter. If the search does not return exactly one entry, deny or decline
access.

3. Fetch the distinguished name of the entry retrieved from the search and attempt to bind to the LDAP server
using that DN and the password passed by the HTTP client. If the bind is unsuccessful, deny or decline access.

The following directives are used during the search/bind phase

AUTHLDAPURL Specifies the LDAP server, the base DN, the attribute to use in the search, as well as the
extra search filter to use.

AUTHLDAPBINDDN An optional DN to bind with during the search phase.
AUTHLDAPBINDPASSWORD An optional password to bind with during the search phase.

The Authorization Phase

During the authorization phase, MOD AUTHNZ LDAP attempts to determine if the user is authorized to access the
resource. Many of these checks require MOD AUTHNZ LDAP to do a compare operation on the LDAP server. This
is why this phase is often referred to as the compare phase. MOD AUTHNZ LDAP accepts the following REQUIRE
directives to determine if the credentials are acceptable:

• Grant access if there is a Require ldap-user directive, and the username in the directive matches the
username passed by the client.

• Grant access if there is a Require ldap-dn directive, and the DN in the directive matches the DN fetched
from the LDAP directory.

• Grant access if there is a Require ldap-group directive, and the DN fetched from the LDAP directory (or
the username passed by the client) occurs in the LDAP group or, potentially, in one of its sub-groups.

• Grant access if there is a Require ldap-attribute directive, and the attribute fetched from the LDAP
directory matches the given value.

• Grant access if there is a Require ldap-filter directive, and the search filter successfully finds a single
user object that matches the dn of the authenticated user.

472 CHAPTER 10. APACHE MODULES

• otherwise, deny or decline access

Other REQUIRE values may also be used which may require loading additional authorization modules.

• Grant access to all successfully authenticated users if there is a Require valid-user directive. (requires
MOD AUTHZ USER)

• Grant access if there is a Require group directive, and MOD AUTHZ GROUPFILE has been loaded with the
AUTHGROUPFILE directive set.

• others...

MOD AUTHNZ LDAP uses the following directives during the compare phase:

AUTHLDAPURL The attribute specified in the URL is used in compare operations for the
Require ldap-user operation.

AUTHLDAPCOMPAREDNONSERVER Determines the behavior of the Require ldap-dn directive.
AUTHLDAPGROUPATTRIBUTE Determines the attribute to use for comparisons in the Require

ldap-group directive.
AUTHLDAPGROUPATTRIBUTEISDN Specifies whether to use the user DN or the username when doing comparisons

for the Require ldap-group directive.
AUTHLDAPMAXSUBGROUPDEPTH Determines the maximum depth of sub-groups that will be evaluated during

comparisons in the Require ldap-group directive.
AUTHLDAPSUBGROUPATTRIBUTE Determines the attribute to use when obtaining sub-group members of the cur-

rent group during comparisons in the Require ldap-group directive.
AUTHLDAPSUBGROUPCLASS Specifies the LDAP objectClass values used to identify if queried directory ob-

jects really are group objects (as opposed to user objects) during the Require
ldap-group directive’s sub-group processing.

The Require Directives

Apache’s REQUIRE directives are used during the authorization phase to ensure that a user is allowed to ac-
cess a resource. mod authnz ldap extends the authorization types with ldap-user, ldap-dn, ldap-group,
ldap-attribute and ldap-filter. Other authorization types may also be used but may require that additional
authorization modules be loaded.

Since v2.4.8, expressions (p. 89) are supported within the LDAP require directives.

Require ldap-user

The Require ldap-user directive specifies what usernames can access the resource. Once MOD AUTHNZ LDAP
has retrieved a unique DN from the directory, it does an LDAP compare operation using the username specified in the
Require ldap-user to see if that username is part of the just-fetched LDAP entry. Multiple users can be granted
access by putting multiple usernames on the line, separated with spaces. If a username has a space in it, then it must be
surrounded with double quotes. Multiple users can also be granted access by using multiple Require ldap-user
directives, with one user per line. For example, with a AUTHLDAPURL of ldap://ldap/o=Example?cn (i.e.,
cn is used for searches), the following Require directives could be used to restrict access:

Require ldap-user "Barbara Jenson"
Require ldap-user "Fred User"
Require ldap-user "Joe Manager"

Because of the way that MOD AUTHNZ LDAP handles this directive, Barbara Jenson could sign on as Barbara Jenson,
Babs Jenson or any other cn that she has in her LDAP entry. Only the single Require ldap-user line is needed
to support all values of the attribute in the user’s entry.

10.19. APACHE MODULE MOD AUTHNZ LDAP 473

If the uid attribute was used instead of the cn attribute in the URL above, the above three lines could be condensed
to

Require ldap-user bjenson fuser jmanager

Require ldap-group

This directive specifies an LDAP group whose members are allowed access. It takes the distinguished name of the
LDAP group. Note: Do not surround the group name with quotes. For example, assume that the following entry
existed in the LDAP directory:

dn: cn=Administrators, o=Example
objectClass: groupOfUniqueNames
uniqueMember: cn=Barbara Jenson, o=Example
uniqueMember: cn=Fred User, o=Example

The following directive would grant access to both Fred and Barbara:

Require ldap-group cn=Administrators, o=Example

Members can also be found within sub-groups of a specified LDAP group if AUTHLDAPMAXSUBGROUPDEPTH is
set to a value greater than 0. For example, assume the following entries exist in the LDAP directory:

dn: cn=Employees, o=Example
objectClass: groupOfUniqueNames
uniqueMember: cn=Managers, o=Example
uniqueMember: cn=Administrators, o=Example
uniqueMember: cn=Users, o=Example

dn: cn=Managers, o=Example
objectClass: groupOfUniqueNames
uniqueMember: cn=Bob Ellis, o=Example
uniqueMember: cn=Tom Jackson, o=Example

dn: cn=Administrators, o=Example
objectClass: groupOfUniqueNames
uniqueMember: cn=Barbara Jenson, o=Example
uniqueMember: cn=Fred User, o=Example

dn: cn=Users, o=Example
objectClass: groupOfUniqueNames
uniqueMember: cn=Allan Jefferson, o=Example
uniqueMember: cn=Paul Tilley, o=Example
uniqueMember: cn=Temporary Employees, o=Example

dn: cn=Temporary Employees, o=Example
objectClass: groupOfUniqueNames
uniqueMember: cn=Jim Swenson, o=Example
uniqueMember: cn=Elliot Rhodes, o=Example

The following directives would allow access for Bob Ellis, Tom Jackson, Barbara Jenson, Fred User, Allan Jefferson,
and Paul Tilley but would not allow access for Jim Swenson, or Elliot Rhodes (since they are at a sub-group depth of
2):

474 CHAPTER 10. APACHE MODULES

Require ldap-group cn=Employees, o=Example
AuthLDAPMaxSubGroupDepth 1

Behavior of this directive is modified by the AUTHLDAPGROUPATTRIBUTE, AUTHLDAPGROUPATTRIBUTEISDN,
AUTHLDAPMAXSUBGROUPDEPTH, AUTHLDAPSUBGROUPATTRIBUTE, and AUTHLDAPSUBGROUPCLASS
directives.

Require ldap-dn

The Require ldap-dn directive allows the administrator to grant access based on distinguished names. It specifies
a DN that must match for access to be granted. If the distinguished name that was retrieved from the directory server
matches the distinguished name in the Require ldap-dn, then authorization is granted. Note: do not surround the
distinguished name with quotes.

The following directive would grant access to a specific DN:

Require ldap-dn cn=Barbara Jenson, o=Example

Behavior of this directive is modified by the AUTHLDAPCOMPAREDNONSERVER directive.

Require ldap-attribute

The Require ldap-attribute directive allows the administrator to grant access based on attributes of the
authenticated user in the LDAP directory. If the attribute in the directory matches the value given in the configuration,
access is granted.

The following directive would grant access to anyone with the attribute employeeType = active

Require ldap-attribute employeeType=active

Multiple attribute/value pairs can be specified on the same line separated by spaces or they can be specified in multiple
Require ldap-attribute directives. The effect of listing multiple attribute/values pairs is an OR operation.
Access will be granted if any of the listed attribute values match the value of the corresponding attribute in the user
object. If the value of the attribute contains a space, only the value must be within double quotes.

The following directive would grant access to anyone with the city attribute equal to "San Jose" or status equal to
"Active"

Require ldap-attribute city="San Jose" status=active

Require ldap-filter

The Require ldap-filter directive allows the administrator to grant access based on a complex LDAP search
filter. If the dn returned by the filter search matches the authenticated user dn, access is granted.

The following directive would grant access to anyone having a cell phone and is in the marketing department

Require ldap-filter &(cell=*)(department=marketing)

The difference between the Require ldap-filter directive and the Require ldap-attribute directive
is that ldap-filter performs a search operation on the LDAP directory using the specified search filter rather
than a simple attribute comparison. If a simple attribute comparison is all that is required, the comparison operation
performed by ldap-attribute will be faster than the search operation used by ldap-filter especially within
a large directory.

10.19. APACHE MODULE MOD AUTHNZ LDAP 475

Examples

• Grant access to anyone who exists in the LDAP directory, using their UID for searches.

AuthLDAPURL "ldap://ldap1.example.com:389/ou=People, o=Example?uid?sub?(objectClass=*)"
Require valid-user

• The next example is the same as above; but with the fields that have useful defaults omitted. Also, note the use
of a redundant LDAP server.

AuthLDAPURL "ldap://ldap1.example.com ldap2.example.com/ou=People, o=Example"
Require valid-user

• The next example is similar to the previous one, but it uses the common name instead of the UID. Note that
this could be problematical if multiple people in the directory share the same cn, because a search on cn must
return exactly one entry. That’s why this approach is not recommended: it’s a better idea to choose an attribute
that is guaranteed unique in your directory, such as uid.

AuthLDAPURL "ldap://ldap.example.com/ou=People, o=Example?cn"
Require valid-user

• Grant access to anybody in the Administrators group. The users must authenticate using their UID.

AuthLDAPURL ldap://ldap.example.com/o=Example?uid
Require ldap-group cn=Administrators, o=Example

• Grant access to anybody in the group whose name matches the hostname of the virtual host. In this example an
expression (p. 89) is used to build the filter.

AuthLDAPURL ldap://ldap.example.com/o=Example?uid
Require ldap-group cn=%{SERVER_NAME}, o=Example

• The next example assumes that everyone at Example who carries an alphanumeric pager will have an LDAP
attribute of qpagePagerID. The example will grant access only to people (authenticated via their UID) who
have alphanumeric pagers:

AuthLDAPURL ldap://ldap.example.com/o=Example?uid??(qpagePagerID=*)
Require valid-user

• The next example demonstrates the power of using filters to accomplish complicated administrative require-
ments. Without filters, it would have been necessary to create a new LDAP group and ensure that the group’s
members remain synchronized with the pager users. This becomes trivial with filters. The goal is to grant access
to anyone who has a pager, plus grant access to Joe Manager, who doesn’t have a pager, but does need to access
the same resource:

AuthLDAPURL ldap://ldap.example.com/o=Example?uid??(|(qpagePagerID=*)(uid=jmanager))
Require valid-user

This last may look confusing at first, so it helps to evaluate what the search filter will look like based on who
connects, as shown below. If Fred User connects as fuser, the filter would look like

(&(|(qpagePagerID=*)(uid=jmanager))(uid=fuser))

The above search will only succeed if fuser has a pager. When Joe Manager connects as jmanager, the filter
looks like

(&(|(qpagePagerID=*)(uid=jmanager))(uid=jmanager))

The above search will succeed whether jmanager has a pager or not.

476 CHAPTER 10. APACHE MODULES

Using TLS

To use TLS, see the MOD LDAP directives LDAPTRUSTEDCLIENTCERT, LDAPTRUSTEDGLOBALCERT and
LDAPTRUSTEDMODE.

An optional second parameter can be added to the AUTHLDAPURL to override the default connection type set by
LDAPTRUSTEDMODE. This will allow the connection established by an ldap:// Url to be upgraded to a secure
connection on the same port.

Using SSL

To use SSL, see the MOD LDAP directives LDAPTRUSTEDCLIENTCERT, LDAPTRUSTEDGLOBALCERT and
LDAPTRUSTEDMODE.

To specify a secure LDAP server, use ldaps:// in the AUTHLDAPURL directive, instead of ldap://.

Exposing Login Information

when this module performs authentication, ldap attributes specified in the AUTHLDAPURL directive are placed in
environment variables with the prefix "AUTHENTICATE ".

when this module performs authorization, ldap attributes specified in the AUTHLDAPURL directive are placed in envi-
ronment variables with the prefix "AUTHORIZE ".

If the attribute field contains the username, common name and telephone number of a user, a CGI program will
have access to this information without the need to make a second independent LDAP query to gather this additional
information.

This has the potential to dramatically simplify the coding and configuration required in some web applications.

Using Active Directory

An Active Directory installation may support multiple domains at the same time. To distinguish users between do-
mains, an identifier called a User Principle Name (UPN) can be added to a user’s entry in the directory. This UPN
usually takes the form of the user’s account name, followed by the domain components of the particular domain, for
example somebody@nz.example.com.

You may wish to configure the MOD AUTHNZ LDAP module to authenticate users present in any of the domains
making up the Active Directory forest. In this way both somebody@nz.example.com and someone@au.example.com
can be authenticated using the same query at the same time.

To make this practical, Active Directory supports the concept of a Global Catalog. This Global Catalog is a read only
copy of selected attributes of all the Active Directory servers within the Active Directory forest. Querying the Global
Catalog allows all the domains to be queried in a single query, without the query spanning servers over potentially
slow links.

If enabled, the Global Catalog is an independent directory server that runs on port 3268 (3269 for SSL). To search for
a user, do a subtree search for the attribute userPrincipalName, with an empty search root, like so:

AuthLDAPBindDN apache@example.com
AuthLDAPBindPassword password
AuthLDAPURL ldap://10.0.0.1:3268/?userPrincipalName?sub

Users will need to enter their User Principal Name as a login, in the form somebody@nz.example.com.

10.19. APACHE MODULE MOD AUTHNZ LDAP 477

Using Microsoft FrontPage with mod authnz ldap

Normally, FrontPage uses FrontPage-web-specific user/group files (i.e., the MOD AUTHN FILE and
MOD AUTHZ GROUPFILE modules) to handle all authentication. Unfortunately, it is not possible to just change to
LDAP authentication by adding the proper directives, because it will break the Permissions forms in the FrontPage
client, which attempt to modify the standard text-based authorization files.

Once a FrontPage web has been created, adding LDAP authentication to it is a matter of adding the following directives
to every .htaccess file that gets created in the web

AuthLDAPURL "the url"
AuthGroupFile "mygroupfile"
Require group "mygroupfile"

How It Works

FrontPage restricts access to a web by adding the Require valid-user directive to the .htaccess files. The
Require valid-user directive will succeed for any user who is valid as far as LDAP is concerned. This means
that anybody who has an entry in the LDAP directory is considered a valid user, whereas FrontPage considers only
those people in the local user file to be valid. By substituting the ldap-group with group file authorization, Apache is
allowed to consult the local user file (which is managed by FrontPage) - instead of LDAP - when handling authorizing
the user.

Once directives have been added as specified above, FrontPage users will be able to perform all management operations
from the FrontPage client.

Caveats

• When choosing the LDAP URL, the attribute to use for authentication should be something that will also be
valid for putting into a MOD AUTHN FILE user file. The user ID is ideal for this.

• When adding users via FrontPage, FrontPage administrators should choose usernames that already exist in the
LDAP directory (for obvious reasons). Also, the password that the administrator enters into the form is ignored,
since Apache will actually be authenticating against the password in the LDAP database, and not against the
password in the local user file. This could cause confusion for web administrators.

• Apache must be compiled with MOD AUTH BASIC, MOD AUTHN FILE and MOD AUTHZ GROUPFILE in order
to use FrontPage support. This is because Apache will still use the MOD AUTHZ GROUPFILE group file for
determine the extent of a user’s access to the FrontPage web.

• The directives must be put in the .htaccess files. Attempting to put them inside <LOCATION> or <DIREC-
TORY> directives won’t work. This is because MOD AUTHNZ LDAP has to be able to grab the AUTHGROUP-
FILE directive that is found in FrontPage .htaccess files so that it knows where to look for the valid user list.
If the MOD AUTHNZ LDAP directives aren’t in the same .htaccess file as the FrontPage directives, then the
hack won’t work, because MOD AUTHNZ LDAP will never get a chance to process the .htaccess file, and
won’t be able to find the FrontPage-managed user file.

478 CHAPTER 10. APACHE MODULES

AuthLDAPAuthorizePrefix Directive

Description: Specifies the prefix for environment variables set during authorization
Syntax: AuthLDAPAuthorizePrefix prefix
Default: AuthLDAPAuthorizePrefix AUTHORIZE
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap
Compatibility: Available in version 2.3.6 and later

This directive allows you to override the prefix used for environment variables set during LDAP authorization. If
AUTHENTICATE is specified, consumers of these environment variables see the same information whether LDAP
has performed authentication, authorization, or both.

=⇒Note
No authorization variables are set when a user is authorized on the basis of Require
valid-user.

AuthLDAPBindAuthoritative Directive

Description: Determines if other authentication providers are used when a user can be mapped to a DN but
the server cannot successfully bind with the user’s credentials.

Syntax: AuthLDAPBindAuthoritativeoff|on
Default: AuthLDAPBindAuthoritative on
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap

By default, subsequent authentication providers are only queried if a user cannot be mapped to a DN, but not if the
user can be mapped to a DN and their password cannot be verified with an LDAP bind. If AUTHLDAPBINDAU-
THORITATIVE is set to off, other configured authentication modules will have a chance to validate the user if the LDAP
bind (with the current user’s credentials) fails for any reason.

This allows users present in both LDAP and AUTHUSERFILE to authenticate when the LDAP server is available but
the user’s account is locked or password is otherwise unusable.

See also

• AUTHUSERFILE

• AUTHBASICPROVIDER

AuthLDAPBindDN Directive

Description: Optional DN to use in binding to the LDAP server
Syntax: AuthLDAPBindDN distinguished-name
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap

An optional DN used to bind to the server when searching for entries. If not provided, MOD AUTHNZ LDAP will use
an anonymous bind.

10.19. APACHE MODULE MOD AUTHNZ LDAP 479

AuthLDAPBindPassword Directive

Description: Password used in conjuction with the bind DN
Syntax: AuthLDAPBindPassword password
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap
Compatibility: exec: was added in 2.4.5.

A bind password to use in conjunction with the bind DN. Note that the bind password is probably sensitive data, and
should be properly protected. You should only use the AUTHLDAPBINDDN and AUTHLDAPBINDPASSWORD if
you absolutely need them to search the directory.

If the value begins with exec: the resulting command will be executed and the first line returned to standard output by
the program will be used as the password.

#Password used as-is
AuthLDAPBindPassword secret

#Run /path/to/program to get my password
AuthLDAPBindPassword exec:/path/to/program

#Run /path/to/otherProgram and provide arguments
AuthLDAPBindPassword "exec:/path/to/otherProgram argument1"

AuthLDAPCharsetConfig Directive

Description: Language to charset conversion configuration file
Syntax: AuthLDAPCharsetConfig file-path
Context: server config
Status: Extension
Module: mod authnz ldap

The AUTHLDAPCHARSETCONFIG directive sets the location of the language to charset conversion configuration file.
File-path is relative to the SERVERROOT. This file specifies the list of language extensions to character sets. Most
administrators use the provided charset.conv file, which associates common language extensions to character
sets.

The file contains lines in the following format:

Language-Extension charset [Language-String] ...

The case of the extension does not matter. Blank lines, and lines beginning with a hash character (#) are ignored.

480 CHAPTER 10. APACHE MODULES

AuthLDAPCompareAsUser Directive

Description: Use the authenticated user’s credentials to perform authorization comparisons
Syntax: AuthLDAPCompareAsUser on|off
Default: AuthLDAPCompareAsUser off
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap
Compatibility: Available in version 2.3.6 and later

When set, and MOD AUTHNZ LDAP has authenticated the user, LDAP comparisons for authorization use the queried
distinguished name (DN) and HTTP basic authentication password of the authenticated user instead of the servers
configured credentials.

The ldap-attribute, ldap-user, and ldap-group (single-level only) authorization checks use comparisons.

This directive only has effect on the comparisons performed during nested group processing when
AUTHLDAPSEARCHASUSER is also enabled.

This directive should only be used when your LDAP server doesn’t accept anonymous comparisons and you cannot
use a dedicated AUTHLDAPBINDDN.

See also

• AUTHLDAPINITIALBINDASUSER

• AUTHLDAPSEARCHASUSER

AuthLDAPCompareDNOnServer Directive

Description: Use the LDAP server to compare the DNs
Syntax: AuthLDAPCompareDNOnServer on|off
Default: AuthLDAPCompareDNOnServer on
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap

When set, MOD AUTHNZ LDAP will use the LDAP server to compare the DNs. This is the only foolproof way to
compare DNs. MOD AUTHNZ LDAP will search the directory for the DN specified with the Require dn direc-
tive, then, retrieve the DN and compare it with the DN retrieved from the user entry. If this directive is not set,
MOD AUTHNZ LDAP simply does a string comparison. It is possible to get false negatives with this approach, but it is
much faster. Note the MOD LDAP cache can speed up DN comparison in most situations.

AuthLDAPDereferenceAliases Directive

Description: When will the module de-reference aliases
Syntax: AuthLDAPDereferenceAliases never|searching|finding|always
Default: AuthLDAPDereferenceAliases always
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap

This directive specifies when MOD AUTHNZ LDAP will de-reference aliases during LDAP operations. The default is
always.

10.19. APACHE MODULE MOD AUTHNZ LDAP 481

AuthLDAPGroupAttribute Directive

Description: LDAP attributes used to identify the user members of groups.
Syntax: AuthLDAPGroupAttribute attribute
Default: AuthLDAPGroupAttribute member uniquemember
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap

This directive specifies which LDAP attributes are used to check for user members within groups. Multiple attributes
can be used by specifying this directive multiple times. If not specified, then MOD AUTHNZ LDAP uses the member
and uniquemember attributes.

AuthLDAPGroupAttributeIsDN Directive

Description: Use the DN of the client username when checking for group membership
Syntax: AuthLDAPGroupAttributeIsDN on|off
Default: AuthLDAPGroupAttributeIsDN on
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap

When set on, this directive says to use the distinguished name of the client username when checking for group
membership. Otherwise, the username will be used. For example, assume that the client sent the username
bjenson, which corresponds to the LDAP DN cn=Babs Jenson, o=Example. If this directive is set,
MOD AUTHNZ LDAP will check if the group has cn=Babs Jenson, o=Example as a member. If this direc-
tive is not set, then MOD AUTHNZ LDAP will check if the group has bjenson as a member.

AuthLDAPInitialBindAsUser Directive

Description: Determines if the server does the initial DN lookup using the basic authentication users’ own
username, instead of anonymously or with hard-coded credentials for the server

Syntax: AuthLDAPInitialBindAsUser off|on
Default: AuthLDAPInitialBindAsUser off
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap
Compatibility: Available in version 2.3.6 and later

By default, the server either anonymously, or with a dedicated user and password, converts the basic authentication
username into an LDAP distinguished name (DN). This directive forces the server to use the verbatim username and
password provided by the incoming user to perform the initial DN search.

If the verbatim username can’t directly bind, but needs some cosmetic transformation, see AUTHLDAPINITIALBIND-
PATTERN.

This directive should only be used when your LDAP server doesn’t accept anonymous searches and you cannot use a
dedicated AUTHLDAPBINDDN.

=⇒Not available with authorization-only
This directive can only be used if this module authenticates the user, and has no effect when
this module is used exclusively for authorization.

482 CHAPTER 10. APACHE MODULES

See also

• AUTHLDAPINITIALBINDPATTERN

• AUTHLDAPBINDDN

• AUTHLDAPCOMPAREASUSER

• AUTHLDAPSEARCHASUSER

AuthLDAPInitialBindPattern Directive

Description: Specifies the transformation of the basic authentication username to be used when binding to
the LDAP server to perform a DN lookup

Syntax: AuthLDAPInitialBindPatternregex substitution
Default: AuthLDAPInitialBindPattern (.*) $1 (remote username used

verbatim)
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap
Compatibility: Available in version 2.3.6 and later

If AUTHLDAPINITIALBINDASUSER is set to ON, the basic authentication username will be transformed according
to the regular expression and substitution arguments.

The regular expression argument is compared against the current basic authentication username. The substitution
argument may contain backreferences, but has no other variable interpolation.

This directive should only be used when your LDAP server doesn’t accept anonymous searches and you cannot use a
dedicated AUTHLDAPBINDDN.

AuthLDAPInitialBindPattern (.+) $1@example.com

AuthLDAPInitialBindPattern (.+) cn=$1,dc=example,dc=com

=⇒Not available with authorization-only
This directive can only be used if this module authenticates the user, and has no effect when
this module is used exclusively for authorization.

=⇒debugging
The substituted DN is recorded in the environment variable LDAP BINDASUSER. If the regu-
lar expression does not match the input, the verbatim username is used.

See also

• AUTHLDAPINITIALBINDASUSER

• AUTHLDAPBINDDN

10.19. APACHE MODULE MOD AUTHNZ LDAP 483

AuthLDAPMaxSubGroupDepth Directive

Description: Specifies the maximum sub-group nesting depth that will be evaluated before the user search
is discontinued.

Syntax: AuthLDAPMaxSubGroupDepth Number
Default: AuthLDAPMaxSubGroupDepth 10
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap
Compatibility: Available in version 2.3.0 and later

When this directive is set to a non-zero value X combined with use of the Require ldap-group someGroupDN
directive, the provided user credentials will be searched for as a member of the someGroupDN directory object or of
any group member of the current group up to the maximum nesting level X specified by this directive.

See the Require ldap-group section for a more detailed example.

=⇒Nested groups performance
When AUTHLDAPSUBGROUPATTRIBUTE overlaps with AUTHLDAPGROUPATTRIBUTE
(as it does by default and as required by common LDAP schemas), uncached searching for sub-
groups in large groups can be very slow. If you use large, non-nested groups, set AUTHLDAP-
MAXSUBGROUPDEPTH to zero.

AuthLDAPRemoteUserAttribute Directive

Description: Use the value of the attribute returned during the user query to set the REMOTE USER envi-
ronment variable

Syntax: AuthLDAPRemoteUserAttribute uid
Default: none
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap

If this directive is set, the value of the REMOTE USER environment variable will be set to the value of the attribute
specified. Make sure that this attribute is included in the list of attributes in the AuthLDAPUrl definition, otherwise
this directive will have no effect. This directive, if present, takes precedence over AuthLDAPRemoteUserIsDN. This
directive is useful should you want people to log into a website using an email address, but a backend application
expects the username as a userid.

AuthLDAPRemoteUserIsDN Directive

Description: Use the DN of the client username to set the REMOTE USER environment variable
Syntax: AuthLDAPRemoteUserIsDN on|off
Default: AuthLDAPRemoteUserIsDN off
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap

If this directive is set to on, the value of the REMOTE USER environment variable will be set to the full distinguished
name of the authenticated user, rather than just the username that was passed by the client. It is turned off by default.

484 CHAPTER 10. APACHE MODULES

AuthLDAPSearchAsUser Directive

Description: Use the authenticated user’s credentials to perform authorization searches
Syntax: AuthLDAPSearchAsUser on|off
Default: AuthLDAPSearchAsUser off
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap
Compatibility: Available in version 2.3.6 and later

When set, and MOD AUTHNZ LDAP has authenticated the user, LDAP searches for authorization use the queried
distinguished name (DN) and HTTP basic authentication password of the authenticated user instead of the servers
configured credentials.

The ldap-filter and ldap-dn authorization checks use searches.

This directive only has effect on the comparisons performed during nested group processing when AUTHLDAPCOM-
PAREASUSER is also enabled.

This directive should only be used when your LDAP server doesn’t accept anonymous searches and you cannot use a
dedicated AUTHLDAPBINDDN.

See also

• AUTHLDAPINITIALBINDASUSER

• AUTHLDAPCOMPAREASUSER

AuthLDAPSubGroupAttribute Directive

Description: Specifies the attribute labels, one value per directive line, used to distinguish the members of
the current group that are groups.

Syntax: AuthLDAPSubGroupAttribute attribute
Default: AuthLDAPSubgroupAttribute member uniquemember
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap
Compatibility: Available in version 2.3.0 and later

An LDAP group object may contain members that are users and members that are groups (called nested or
sub groups). The AuthLDAPSubGroupAttribute directive identifies the labels of group members and the
AuthLDAPGroupAttribute directive identifies the labels of the user members. Multiple attributes can be
used by specifying this directive multiple times. If not specified, then MOD AUTHNZ LDAP uses the member and
uniqueMember attributes.

10.19. APACHE MODULE MOD AUTHNZ LDAP 485

AuthLDAPSubGroupClass Directive

Description: Specifies which LDAP objectClass values identify directory objects that are groups during
sub-group processing.

Syntax: AuthLDAPSubGroupClass LdapObjectClass
Default: AuthLDAPSubGroupClass groupOfNames groupOfUniqueNames
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap
Compatibility: Available in version 2.3.0 and later

An LDAP group object may contain members that are users and members that are groups (called nested or sub groups).
The AuthLDAPSubGroupAttribute directive identifies the labels of members that may be sub-groups of the
current group (as opposed to user members). The AuthLDAPSubGroupClass directive specifies the LDAP object-
Class values used in verifying that these potential sub-groups are in fact group objects. Verified sub-groups can then
be searched for more user or sub-group members. Multiple attributes can be used by specifying this directive multiple
times. If not specified, then MOD AUTHNZ LDAP uses the groupOfNames and groupOfUniqueNames values.

AuthLDAPUrl Directive

Description: URL specifying the LDAP search parameters
Syntax: AuthLDAPUrl url [NONE|SSL|TLS|STARTTLS]
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authnz ldap

An RFC 2255 URL which specifies the LDAP search parameters to use. The syntax of the URL is

ldap://host:port/basedn?attribute?scope?filter

If you want to specify more than one LDAP URL that Apache should try in turn, the syntax is:

AuthLDAPUrl "ldap://ldap1.example.com ldap2.example.com/dc=..."

Caveat: If you specify multiple servers, you need to enclose the entire URL string in quotes; otherwise you will get
an error: "AuthLDAPURL takes one argument, URL to define LDAP connection.." You can of course use search
parameters on each of these.

ldap For regular ldap, use the string ldap. For secure LDAP, use ldaps instead. Secure LDAP is only available if
Apache was linked to an LDAP library with SSL support.

host:port The name/port of the ldap server (defaults to localhost:389 for ldap, and localhost:636
for ldaps). To specify multiple, redundant LDAP servers, just list all servers, separated by spaces.
MOD AUTHNZ LDAP will try connecting to each server in turn, until it makes a successful connection. If multi-
ple ldap servers are specified, then entire LDAP URL must be encapsulated in double quotes.

Once a connection has been made to a server, that connection remains active for the life of the httpd process,
or until the LDAP server goes down.

If the LDAP server goes down and breaks an existing connection, MOD AUTHNZ LDAP will attempt to re-
connect, starting with the primary server, and trying each redundant server in turn. Note that this is different
than a true round-robin search.

486 CHAPTER 10. APACHE MODULES

basedn The DN of the branch of the directory where all searches should start from. At the very least, this must be the
top of your directory tree, but could also specify a subtree in the directory.

attribute The attribute to search for. Although RFC 2255 allows a comma-separated list of attributes, only the first
attribute will be used, no matter how many are provided. If no attributes are provided, the default is to use uid.
It’s a good idea to choose an attribute that will be unique across all entries in the subtree you will be using. All
attributes listed will be put into the environment with an AUTHENTICATE prefix for use by other modules.

scope The scope of the search. Can be either one or sub. Note that a scope of base is also supported by RFC 2255,
but is not supported by this module. If the scope is not provided, or if base scope is specified, the default is to
use a scope of sub.

filter A valid LDAP search filter. If not provided, defaults to (objectClass=*), which will search for all objects
in the tree. Filters are limited to approximately 8000 characters (the definition of MAX STRING LEN in the
Apache source code). This should be more than sufficient for any application. In 2.4.10 and later, The word
"none" may be used to not use any filter, which may be required by some primitive LDAP servers.

When doing searches, the attribute, filter and username passed by the HTTP client are combined to create a search
filter that looks like (&(filter)(attribute=username)).

For example, consider an URL of ldap://ldap.example.com/o=Example?cn?sub?(posixid=*).
When a client attempts to connect using a username of Babs Jenson, the resulting search filter will be
(&(posixid=*)(cn=Babs Jenson)).

An optional parameter can be added to allow the LDAP Url to override the connection type. This parameter can be
one of the following:

NONE Establish an unsecure connection on the default LDAP port. This is the same as ldap:// on port 389.

SSL Establish a secure connection on the default secure LDAP port. This is the same as ldaps://

TLS — STARTTLS Establish an upgraded secure connection on the default LDAP port. This connection will be
initiated on port 389 by default and then upgraded to a secure connection on the same port.

See above for examples of AUTHLDAPURL URLs.

10.20. APACHE MODULE MOD AUTHZ CORE 487

10.20 Apache Module mod authz core

Description: Core Authorization
Status: Base
ModuleIdentifier: authz core module
SourceFile: mod authz core.c
Compatibility: Available in Apache HTTPD 2.3 and later

Summary

This module provides core authorization capabilities so that authenticated users can be allowed or denied access to
portions of the web site. MOD AUTHZ CORE provides the functionality to register various authorization providers. It
is usually used in conjunction with an authentication provider module such as MOD AUTHN FILE and an authorization
module such as MOD AUTHZ USER. It also allows for advanced logic to be applied to the authorization processing.

Directives

• AuthMerging

• <AuthzProviderAlias>

• AuthzSendForbiddenOnFailure

• Require

• <RequireAll>

• <RequireAny>

• <RequireNone>

Creating Authorization Provider Aliases

Extended authorization providers can be created within the configuration file and assigned an alias name. The alias
providers can then be referenced through the REQUIRE directive in the same way as a base authorization provider.
Besides the ability to create and alias an extended provider, it also allows the same extended authorization provider to
be referenced by multiple locations.

Example

The example below creates two different ldap authorization provider aliases based on the ldap-group authorization
provider. This example allows a single authorization location to check group membership within multiple ldap hosts:

<AuthzProviderAlias ldap-group ldap-group-alias1 cn=my-group,o=ctx>
AuthLDAPBindDN cn=youruser,o=ctx
AuthLDAPBindPassword yourpassword
AuthLDAPURL ldap://ldap.host/o=ctx

</AuthzProviderAlias>

<AuthzProviderAlias ldap-group ldap-group-alias2 cn=my-other-group,o=dev>
AuthLDAPBindDN cn=yourotheruser,o=dev
AuthLDAPBindPassword yourotherpassword
AuthLDAPURL ldap://other.ldap.host/o=dev?cn

</AuthzProviderAlias>

488 CHAPTER 10. APACHE MODULES

Alias "/secure" "/webpages/secure"
<Directory "/webpages/secure">

Require all granted

AuthBasicProvider file

AuthType Basic
AuthName LDAP_Protected_Place

#implied OR operation
Require ldap-group-alias1
Require ldap-group-alias2

</Directory>

Authorization Containers

The authorization container directives <REQUIREALL>, <REQUIREANY> and <REQUIRENONE> may be com-
bined with each other and with the REQUIRE directive to express complex authorization logic.

The example below expresses the following authorization logic. In order to access the resource, the user must either
be the superadmin user, or belong to both the admins group and the Administrators LDAP group and either
belong to the sales group or have the LDAP dept attribute sales. Furthermore, in order to access the resource,
the user must not belong to either the temps group or the LDAP group Temporary Employees.

<Directory "/www/mydocs">
<RequireAll>

<RequireAny>
Require user superadmin
<RequireAll>

Require group admins
Require ldap-group cn=Administrators,o=Airius
<RequireAny>

Require group sales
Require ldap-attribute dept="sales"

</RequireAny>
</RequireAll>

</RequireAny>
<RequireNone>

Require group temps
Require ldap-group cn=Temporary Employees,o=Airius

</RequireNone>
</RequireAll>

</Directory>

The Require Directives

MOD AUTHZ CORE provides some generic authorization providers which can be used with the REQUIRE directive.

Require env

The env provider allows access to the server to be controlled based on the existence of an environment variable (p.
82) . When Require env env-variable is specified, then the request is allowed access if the environment

10.20. APACHE MODULE MOD AUTHZ CORE 489

variable env-variable exists. The server provides the ability to set environment variables in a flexible way based on
characteristics of the client request using the directives provided by MOD SETENVIF. Therefore, this directive can be
used to allow access based on such factors as the clients User-Agent (browser type), Referer, or other HTTP
request header fields.

SetEnvIf User-Agent ˆKnockKnock/2\.0 let_me_in
<Directory "/docroot">

Require env let_me_in
</Directory>

In this case, browsers with a user-agent string beginning with KnockKnock/2.0 will be allowed access, and all
others will be denied.

When the server looks up a path via an internal subrequest such as looking for a DIRECTORYINDEX or generating a
directory listing with MOD AUTOINDEX, per-request environment variables are not inherited in the subrequest. Addi-
tionally, SETENVIF directives are not separately evaluated in the subrequest due to the API phases MOD SETENVIF
takes action in.

Require all

The all provider mimics the functionality that was previously provided by the ’Allow from all’ and ’Deny from all’
directives. This provider can take one of two arguments which are ’granted’ or ’denied’. The following examples will
grant or deny access to all requests.

Require all granted

Require all denied

Require method

The method provider allows using the HTTP method in authorization decisions. The GET and HEAD methods are
treated as equivalent. The TRACE method is not available to this provider, use TRACEENABLE instead.

The following example will only allow GET, HEAD, POST, and OPTIONS requests:

Require method GET POST OPTIONS

The following example will allow GET, HEAD, POST, and OPTIONS requests without authentication, and require a
valid user for all other methods:

<RequireAny>
Require method GET POST OPTIONS
Require valid-user

</RequireAny>

Require expr

The expr provider allows basing authorization decisions on arbitrary expressions.

Require expr "%{TIME_HOUR} -ge 9 && %{TIME_HOUR} -le 17"

490 CHAPTER 10. APACHE MODULES

<RequireAll>
Require expr "!(%{QUERY_STRING} =˜ /secret/)"
Require expr "%{REQUEST_URI} in { ’/example.cgi’, ’/other.cgi’ }"

</RequireAll>

Require expr "!(%{QUERY_STRING} =˜ /secret/) && %{REQUEST_URI} in { ’/example.cgi’, ’/other.cgi’ }"

The syntax is described in the ap expr (p. 89) documentation.

Normally, the expression is evaluated before authentication. However, if the expression returns false and references
the variable %{REMOTE USER}, authentication will be performed and the expression will be re-evaluated.

AuthMerging Directive

Description: Controls the manner in which each configuration section’s authorization logic is combined
with that of preceding configuration sections.

Syntax: AuthMerging Off | And | Or
Default: AuthMerging Off
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod authz core

When authorization is enabled, it is normally inherited by each subsequent configuration section (p. 33) , unless a
different set of authorization directives is specified. This is the default action, which corresponds to an explicit setting
of AuthMerging Off.

However, there may be circumstances in which it is desirable for a configuration section’s authorization to be combined
with that of its predecessor while configuration sections are being merged. Two options are available for this case,
And and Or.

When a configuration section contains AuthMerging And or AuthMerging Or, its authorization logic is com-
bined with that of the nearest predecessor (according to the overall order of configuration sections) which also contains
authorization logic as if the two sections were jointly contained within a <REQUIREALL> or <REQUIREANY> di-
rective, respectively.

=⇒The setting of AUTHMERGING is not inherited outside of the configuration section in
which it appears. In the following example, only users belonging to group alpha may
access /www/docs. Users belonging to either groups alpha or beta may access
/www/docs/ab. However, the default Off setting of AUTHMERGING applies to the <DI-
RECTORY> configuration section for /www/docs/ab/gamma, so that section’s authoriza-
tion directives override those of the preceding sections. Thus only users belong to the group
gamma may access /www/docs/ab/gamma.

<Directory "/www/docs">
AuthType Basic
AuthName Documents
AuthBasicProvider file
AuthUserFile "/usr/local/apache/passwd/passwords"
Require group alpha

</Directory>

<Directory "/www/docs/ab">
AuthMerging Or
Require group beta

10.20. APACHE MODULE MOD AUTHZ CORE 491

</Directory>

<Directory "/www/docs/ab/gamma">
Require group gamma

</Directory>

AuthzProviderAlias Directive

Description: Enclose a group of directives that represent an extension of a base authorization provider and
referenced by the specified alias

Syntax: <AuthzProviderAlias baseProvider Alias Require-Parameters> ...
</AuthzProviderAlias>

Context: server config
Status: Base
Module: mod authz core

<AUTHZPROVIDERALIAS> and </AuthzProviderAlias> are used to enclose a group of authorization direc-
tives that can be referenced by the alias name using the directive REQUIRE.

AuthzSendForbiddenOnFailure Directive

Description: Send ’403 FORBIDDEN’ instead of ’401 UNAUTHORIZED’ if authentication succeeds but
authorization fails

Syntax: AuthzSendForbiddenOnFailure On|Off
Default: AuthzSendForbiddenOnFailure Off
Context: directory, .htaccess
Status: Base
Module: mod authz core
Compatibility: Available in Apache HTTPD 2.3.11 and later

If authentication succeeds but authorization fails, Apache HTTPD will respond with an HTTP response code of ’401
UNAUTHORIZED’ by default. This usually causes browsers to display the password dialogue to the user again,
which is not wanted in all situations. AUTHZSENDFORBIDDENONFAILURE allows to change the response code to
’403 FORBIDDEN’.

! Security Warning
Modifying the response in case of missing authorization weakens the security of the password,
because it reveals to a possible attacker, that his guessed password was right.

Require Directive

Description: Tests whether an authenticated user is authorized by an authorization provider.
Syntax: Require [not] entity-name [entity-name] ...
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod authz core

This directive tests whether an authenticated user is authorized according to a particular authorization provider and the
specified restrictions. MOD AUTHZ CORE provides the following generic authorization providers:

Require all granted Access is allowed unconditionally.

492 CHAPTER 10. APACHE MODULES

Require all denied Access is denied unconditionally.

Require env env-var [env-var] ... Access is allowed only if one of the given environment variables is
set.

Require method http-method [http-method] ... Access is allowed only for the given HTTP meth-
ods.

Require expr expression Access is allowed if expression evaluates to true.

Some of the allowed syntaxes provided by MOD AUTHZ USER, MOD AUTHZ HOST, and MOD AUTHZ GROUPFILE
are:

Require user userid [userid] ... Only the named users can access the resource.

Require group group-name [group-name] ... Only users in the named groups can access the re-
source.

Require valid-user All valid users can access the resource.

Require ip 10 172.20 192.168.2 Clients in the specified IP address ranges can access the resource.

Other authorization modules that implement require options include MOD AUTHNZ LDAP, MOD AUTHZ DBM,
MOD AUTHZ DBD, MOD AUTHZ OWNER and MOD SSL.

In most cases, for a complete authentication and authorization configuration, REQUIRE must be accompanied by
AUTHNAME, AUTHTYPE and AUTHBASICPROVIDER or AUTHDIGESTPROVIDER directives, and directives such as
AUTHUSERFILE and AUTHGROUPFILE (to define users and groups) in order to work correctly. Example:

AuthType Basic
AuthName "Restricted Resource"
AuthBasicProvider file
AuthUserFile "/web/users"
AuthGroupFile "/web/groups"
Require group admin

Access controls which are applied in this way are effective for all methods. This is what is normally desired. If
you wish to apply access controls only to specific methods, while leaving other methods unprotected, then place the
REQUIRE statement into a <LIMIT> section.

The result of the REQUIRE directive may be negated through the use of the not option. As with the other negated
authorization directive <REQUIRENONE>, when the REQUIRE directive is negated it can only fail or return a neutral
result, and therefore may never independently authorize a request.

In the following example, all users in the alpha and beta groups are authorized, except for those who are also in
the reject group.

<Directory "/www/docs">
<RequireAll>

Require group alpha beta
Require not group reject

</RequireAll>
</Directory>

10.20. APACHE MODULE MOD AUTHZ CORE 493

When multiple REQUIRE directives are used in a single configuration section (p. 33) and are not contained in another
authorization directive like <REQUIREALL>, they are implicitly contained within a <REQUIREANY> directive.
Thus the first one to authorize a user authorizes the entire request, and subsequent REQUIRE directives are ignored.

! Security Warning
Exercise caution when setting authorization directives in LOCATION sections that overlap with
content served out of the filesystem. By default, these configuration sections (p. 33) overwrite
authorization configuration in DIRECTORY, and FILES sections.
The AUTHMERGING directive can be used to control how authorization configuration sections
are merged.

See also

• Access control howto (p. 224)

• Authorization Containers

• MOD AUTHN CORE

• MOD AUTHZ HOST

RequireAll Directive

Description: Enclose a group of authorization directives of which none must fail and at least one must
succeed for the enclosing directive to succeed.

Syntax: <RequireAll> ... </RequireAll>
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod authz core

<REQUIREALL> and </RequireAll> are used to enclose a group of authorization directives of which none must
fail and at least one must succeed in order for the <REQUIREALL> directive to succeed.

If none of the directives contained within the <REQUIREALL> directive fails, and at least one succeeds, then the
<REQUIREALL> directive succeeds. If none succeed and none fail, then it returns a neutral result. In all other cases,
it fails.

See also

• Authorization Containers

• Authentication, Authorization, and Access Control (p. 217)

RequireAny Directive

Description: Enclose a group of authorization directives of which one must succeed for the enclosing direc-
tive to succeed.

Syntax: <RequireAny> ... </RequireAny>
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod authz core

<REQUIREANY> and </RequireAny> are used to enclose a group of authorization directives of which one must
succeed in order for the <REQUIREANY> directive to succeed.

494 CHAPTER 10. APACHE MODULES

If one or more of the directives contained within the <REQUIREANY> directive succeed, then the <REQUIREANY>
directive succeeds. If none succeed and none fail, then it returns a neutral result. In all other cases, it fails.

=⇒Because negated authorization directives are unable to return a successful result, they can not
significantly influence the result of a <REQUIREANY> directive. (At most they could cause
the directive to fail in the case where they failed and all other directives returned a neutral
value.) Therefore negated authorization directives are not permitted within a <REQUIRE-
ANY> directive.

See also

• Authorization Containers

• Authentication, Authorization, and Access Control (p. 217)

RequireNone Directive

Description: Enclose a group of authorization directives of which none must succeed for the enclosing
directive to not fail.

Syntax: <RequireNone> ... </RequireNone>
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod authz core

<REQUIRENONE> and </RequireNone> are used to enclose a group of authorization directives of which none
must succeed in order for the <REQUIRENONE> directive to not fail.

If one or more of the directives contained within the <REQUIRENONE> directive succeed, then the <RE-
QUIRENONE> directive fails. In all other cases, it returns a neutral result. Thus as with the other negated authorization
directive Require not, it can never independently authorize a request because it can never return a successful re-
sult. It can be used, however, to restrict the set of users who are authorized to access a resource.

=⇒Because negated authorization directives are unable to return a successful result, they can not
significantly influence the result of a <REQUIRENONE> directive. Therefore negated autho-
rization directives are not permitted within a <REQUIRENONE> directive.

See also

• Authorization Containers

• Authentication, Authorization, and Access Control (p. 217)

10.21. APACHE MODULE MOD AUTHZ DBD 495

10.21 Apache Module mod authz dbd

Description: Group Authorization and Login using SQL
Status: Extension
ModuleIdentifier: authz dbd module
SourceFile: mod authz dbd.c
Compatibility: Available in Apache 2.4 and later

Summary

This module provides authorization capabilities so that authenticated users can be allowed or denied access to por-
tions of the web site by group membership. Similar functionality is provided by MOD AUTHZ GROUPFILE and
MOD AUTHZ DBM, with the exception that this module queries a SQL database to determine whether a user is a
member of a group.

This module can also provide database-backed user login/logout capabilities. These are likely to be of most value
when used in conjunction with MOD AUTHN DBD.

This module relies on MOD DBD to specify the backend database driver and connection parameters, and manage the
database connections.

Directives

• AuthzDBDLoginToReferer

• AuthzDBDQuery

• AuthzDBDRedirectQuery

See also

• REQUIRE

• AUTHDBDUSERPWQUERY

• DBDRIVER

• DBDPARAMS

The Require Directives

Apache’s REQUIRE directives are used during the authorization phase to ensure that a user is allowed to access a
resource. mod authz dbd extends the authorization types with dbd-group, dbd-login and dbd-logout.

Since v2.4.8, expressions (p. 89) are supported within the DBD require directives.

Require dbd-group

This directive specifies group membership that is required for the user to gain access.

Require dbd-group team
AuthzDBDQuery "SELECT group FROM authz WHERE user = %s"

496 CHAPTER 10. APACHE MODULES

Require dbd-login

This directive specifies a query to be run indicating the user has logged in.

Require dbd-login
AuthzDBDQuery "UPDATE authn SET login = ’true’ WHERE user = %s"

Require dbd-logout

This directive specifies a query to be run indicating the user has logged out.

Require dbd-logout
AuthzDBDQuery "UPDATE authn SET login = ’false’ WHERE user = %s"

Database Login

In addition to the standard authorization function of checking group membership, this module can also provide server-
side user session management via database-backed login/logout capabilities. Specifically, it can update a user’s session
status in the database whenever the user visits designated URLs (subject of course to users supplying the necessary
credentials).

This works by defining two special REQUIRE types: Require dbd-login and Require dbd-logout. For
usage details, see the configuration example below.

Client Login integration

Some administrators may wish to implement client-side session management that works in concert with the server-side
login/logout capabilities offered by this module, for example, by setting or unsetting an HTTP cookie or other such
token when a user logs in or out.

To support such integration, MOD AUTHZ DBD exports an optional hook that will be run whenever a user’s status is
updated in the database. Other session management modules can then use the hook to implement functions that start
and end client-side sessions.

Configuration example

mod_dbd configuration
DBDriver pgsql
DBDParams "dbname=apacheauth user=apache pass=xxxxxx"

DBDMin 4
DBDKeep 8
DBDMax 20
DBDExptime 300

<Directory "/usr/www/my.site/team-private/">
mod_authn_core and mod_auth_basic configuration
for mod_authn_dbd
AuthType Basic
AuthName Team
AuthBasicProvider dbd

10.21. APACHE MODULE MOD AUTHZ DBD 497

mod_authn_dbd SQL query to authenticate a logged-in user
AuthDBDUserPWQuery \

"SELECT password FROM authn WHERE user = %s AND login = ’true’"

mod_authz_core configuration for mod_authz_dbd
Require dbd-group team

mod_authz_dbd configuration
AuthzDBDQuery "SELECT group FROM authz WHERE user = %s"

when a user fails to be authenticated or authorized,
invite them to login; this page should provide a link
to /team-private/login.html
ErrorDocument 401 "/login-info.html"

<Files "login.html">
don’t require user to already be logged in!
AuthDBDUserPWQuery "SELECT password FROM authn WHERE user = %s"

dbd-login action executes a statement to log user in
Require dbd-login
AuthzDBDQuery "UPDATE authn SET login = ’true’ WHERE user = %s"

return user to referring page (if any) after
successful login
AuthzDBDLoginToReferer On

</Files>

<Files "logout.html">
dbd-logout action executes a statement to log user out
Require dbd-logout
AuthzDBDQuery "UPDATE authn SET login = ’false’ WHERE user = %s"

</Files>
</Directory>

AuthzDBDLoginToReferer Directive

Description: Determines whether to redirect the Client to the Referring page on successful login or logout
if a Referer request header is present

Syntax: AuthzDBDLoginToReferer On|Off
Default: AuthzDBDLoginToReferer Off
Context: directory
Status: Extension
Module: mod authz dbd

In conjunction with Require dbd-login or Require dbd-logout, this provides the option to redirect the
client back to the Referring page (the URL in the Referer HTTP request header, if present). When there is no
Referer header, AuthzDBDLoginToReferer On will be ignored.

498 CHAPTER 10. APACHE MODULES

AuthzDBDQuery Directive

Description: Specify the SQL Query for the required operation
Syntax: AuthzDBDQuery query
Context: directory
Status: Extension
Module: mod authz dbd

The AUTHZDBDQUERY specifies an SQL query to run. The purpose of the query depends on the REQUIRE directive
in effect.

• When used with a Require dbd-group directive, it specifies a query to look up groups for the current
user. This is the standard functionality of other authorization modules such as MOD AUTHZ GROUPFILE and
MOD AUTHZ DBM. The first column value of each row returned by the query statement should be a string
containing a group name. Zero, one, or more rows may be returned.

Require dbd-group
AuthzDBDQuery "SELECT group FROM groups WHERE user = %s"

• When used with a Require dbd-login or Require dbd-logout directive, it will never deny access,
but will instead execute a SQL statement designed to log the user in or out. The user must already be authenti-
cated with MOD AUTHN DBD.

Require dbd-login
AuthzDBDQuery "UPDATE authn SET login = ’true’ WHERE user = %s"

In all cases, the user’s ID will be passed as a single string parameter when the SQL query is executed. It may be
referenced within the query statement using a %s format specifier.

AuthzDBDRedirectQuery Directive

Description: Specify a query to look up a login page for the user
Syntax: AuthzDBDRedirectQuery query
Context: directory
Status: Extension
Module: mod authz dbd

Specifies an optional SQL query to use after successful login (or logout) to redirect the user to a URL, which may be
specific to the user. The user’s ID will be passed as a single string parameter when the SQL query is executed. It may
be referenced within the query statement using a %s format specifier.

AuthzDBDRedirectQuery "SELECT userpage FROM userpages WHERE user = %s"

The first column value of the first row returned by the query statement should be a string containing a URL to which
to redirect the client. Subsequent rows will be ignored. If no rows are returned, the client will not be redirected.

Note that AUTHZDBDLOGINTOREFERER takes precedence if both are set.

10.22. APACHE MODULE MOD AUTHZ DBM 499

10.22 Apache Module mod authz dbm

Description: Group authorization using DBM files
Status: Extension
ModuleIdentifier: authz dbm module
SourceFile: mod authz dbm.c
Compatibility: Available in Apache 2.1 and later

Summary

This module provides authorization capabilities so that authenticated users can be allowed or denied access to portions
of the web site by group membership. Similar functionality is provided by MOD AUTHZ GROUPFILE.

Directives

• AuthDBMGroupFile

• AuthzDBMType

See also

• REQUIRE

The Require Directives

Apache’s REQUIRE directives are used during the authorization phase to ensure that a user is allowed to access a
resource. mod authz dbm extends the authorization types with dbm-group.

Since v2.4.8, expressions (p. 89) are supported within the DBM require directives.

Require dbm-group

This directive specifies group membership that is required for the user to gain access.

Require dbm-group admin

Require dbm-file-group

When this directive is specified, the user must be a member of the group assigned to the file being accessed.

Require dbm-file-group

Example usage

Note that using mod authz dbm requires you to require dbm-group instead of group:

<Directory "/foo/bar">
AuthType Basic
AuthName "Secure Area"
AuthBasicProvider dbm

500 CHAPTER 10. APACHE MODULES

AuthDBMUserFile "site/data/users"
AuthDBMGroupFile "site/data/users"
Require dbm-group admin

</Directory>

AuthDBMGroupFile Directive

Description: Sets the name of the database file containing the list of user groups for authorization
Syntax: AuthDBMGroupFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authz dbm

The AUTHDBMGROUPFILE directive sets the name of a DBM file containing the list of user groups for user autho-
rization. File-path is the absolute path to the group file.

The group file is keyed on the username. The value for a user is a comma-separated list of the groups to which the
users belongs. There must be no whitespace within the value, and it must never contain any colons.

! Security
Make sure that the AUTHDBMGROUPFILE is stored outside the document tree of the web-
server. Do not put it in the directory that it protects. Otherwise, clients will be able to download
the AUTHDBMGROUPFILE unless otherwise protected.

Combining Group and Password DBM files: In some cases it is easier to manage a single database which contains
both the password and group details for each user. This simplifies any support programs that need to be written: they
now only have to deal with writing to and locking a single DBM file. This can be accomplished by first setting the
group and password files to point to the same DBM:

AuthDBMGroupFile "/www/userbase"
AuthDBMUserFile "/www/userbase"

The key for the single DBM is the username. The value consists of

Encrypted Password : List of Groups [: (ignored)]

The password section contains the encrypted password as before. This is followed by a colon and the comma separated
list of groups. Other data may optionally be left in the DBM file after another colon; it is ignored by the authorization
module. This is what www.telescope.org uses for its combined password and group database.

AuthzDBMType Directive

Description: Sets the type of database file that is used to store list of user groups
Syntax: AuthzDBMType default|SDBM|GDBM|NDBM|DB
Default: AuthzDBMType default
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod authz dbm

Sets the type of database file that is used to store the list of user groups. The default database type is determined at
compile time. The availability of other types of database files also depends on compile-time settings (p. 20) .

10.22. APACHE MODULE MOD AUTHZ DBM 501

It is crucial that whatever program you use to create your group files is configured to use the same type of database.

502 CHAPTER 10. APACHE MODULES

10.23 Apache Module mod authz groupfile

Description: Group authorization using plaintext files
Status: Base
ModuleIdentifier: authz groupfile module
SourceFile: mod authz groupfile.c
Compatibility: Available in Apache 2.1 and later

Summary

This module provides authorization capabilities so that authenticated users can be allowed or denied access to portions
of the web site by group membership. Similar functionality is provided by MOD AUTHZ DBM.

Directives

• AuthGroupFile

See also

• REQUIRE

The Require Directives

Apache’s REQUIRE directives are used during the authorization phase to ensure that a user is allowed to access a
resource. mod authz groupfile extends the authorization types with group and group-file.

Since v2.4.8, expressions (p. 89) are supported within the groupfile require directives.

Require group

This directive specifies group membership that is required for the user to gain access.

Require group admin

Require file-group

When this directive is specified, the user must be a member of the group assigned to the file being accessed.

Require file-group

AuthGroupFile Directive

Description: Sets the name of a text file containing the list of user groups for authorization
Syntax: AuthGroupFile file-path
Context: directory, .htaccess
Override: AuthConfig
Status: Base
Module: mod authz groupfile

The AUTHGROUPFILE directive sets the name of a textual file containing the list of user groups for user authorization.
File-path is the path to the group file. If it is not absolute, it is treated as relative to the SERVERROOT.

10.23. APACHE MODULE MOD AUTHZ GROUPFILE 503

Each line of the group file contains a groupname followed by a colon, followed by the member usernames separated
by spaces.

Example:
mygroup: bob joe anne

Note that searching large text files is very inefficient; AUTHDBMGROUPFILE provides a much better performance.

! Security
Make sure that the AUTHGROUPFILE is stored outside the document tree of the web-server;
do not put it in the directory that it protects. Otherwise, clients may be able to download the
AUTHGROUPFILE.

504 CHAPTER 10. APACHE MODULES

10.24 Apache Module mod authz host

Description: Group authorizations based on host (name or IP address)
Status: Base
ModuleIdentifier: authz host module
SourceFile: mod authz host.c
Compatibility: Available in Apache 2.3 and later

Summary

The authorization providers implemented by MOD AUTHZ HOST are registered using the REQUIRE directive. The
directive can be referenced within a <DIRECTORY>, <FILES>, or <LOCATION> section as well as .htaccess
(p. 354) files to control access to particular parts of the server. Access can be controlled based on the client
hostname or IP address.

In general, access restriction directives apply to all access methods (GET, PUT, POST, etc). This is the desired behavior
in most cases. However, it is possible to restrict some methods, while leaving other methods unrestricted, by enclosing
the directives in a <LIMIT> section.

Directives This module provides no directives.

See also

• Authentication, Authorization, and Access Control (p. 217)

• REQUIRE

The Require Directives

Apache’s REQUIRE directive is used during the authorization phase to ensure that a user is allowed or denied access
to a resource. mod authz host extends the authorization types with ip, host and local. Other authorization types
may also be used but may require that additional authorization modules be loaded.

These authorization providers affect which hosts can access an area of the server. Access can be controlled by host-
name, IP Address, or IP Address range.

Since v2.4.8, expressions (p. 89) are supported within the host require directives.

Require ip

The ip provider allows access to the server to be controlled based on the IP address of the remote client. When
Require ip ip-address is specified, then the request is allowed access if the IP address matches.

A full IP address:

Require ip 10.1.2.3
Require ip 192.168.1.104 192.168.1.205

An IP address of a host allowed access

A partial IP address:

Require ip 10.1
Require ip 10 172.20 192.168.2

10.24. APACHE MODULE MOD AUTHZ HOST 505

The first 1 to 3 bytes of an IP address, for subnet restriction.

A network/netmask pair:

Require ip 10.1.0.0/255.255.0.0

A network a.b.c.d, and a netmask w.x.y.z. For more fine-grained subnet restriction.

A network/nnn CIDR specification:

Require ip 10.1.0.0/16

Similar to the previous case, except the netmask consists of nnn high-order 1 bits.

Note that the last three examples above match exactly the same set of hosts.

IPv6 addresses and IPv6 subnets can be specified as shown below:

Require ip 2001:db8::a00:20ff:fea7:ccea
Require ip 2001:db8::a00:20ff:fea7:ccea/10

Note: As the IP addresses are parsed on startup, expressions are not evaluated at request time.

Require host

The host provider allows access to the server to be controlled based on the host name of the remote client. When
Require host host-name is specified, then the request is allowed access if the host name matches.

A (partial) domain-name

Require host example.org
Require host .net example.edu

Hosts whose names match, or end in, this string are allowed access. Only complete components are matched, so
the above example will match foo.example.org but it will not match fooexample.org. This configuration
will cause Apache to perform a double reverse DNS lookup on the client IP address, regardless of the setting of the
HOSTNAMELOOKUPS directive. It will do a reverse DNS lookup on the IP address to find the associated hostname,
and then do a forward lookup on the hostname to assure that it matches the original IP address. Only if the forward
and reverse DNS are consistent and the hostname matches will access be allowed.

Require local

The local provider allows access to the server if any of the following conditions is true:

• the client address matches 127.0.0.0/8

• the client address is ::1

• both the client and the server address of the connection are the same

This allows a convenient way to match connections that originate from the local host:

Require local

506 CHAPTER 10. APACHE MODULES

Security Note

If you are proxying content to your server, you need to be aware that the client address will be the address of your
proxy server, not the address of the client, and so using the Require directive in this context may not do what you
mean. See MOD REMOTEIP for one possible solution to this problem.

10.25. APACHE MODULE MOD AUTHZ OWNER 507

10.25 Apache Module mod authz owner

Description: Authorization based on file ownership
Status: Extension
ModuleIdentifier: authz owner module
SourceFile: mod authz owner.c
Compatibility: Available in Apache 2.1 and later

Summary

This module authorizes access to files by comparing the userid used for HTTP authentication (the web userid) with
the file-system owner or group of the requested file. The supplied username and password must be already prop-
erly verified by an authentication module, such as MOD AUTH BASIC or MOD AUTH DIGEST. MOD AUTHZ OWNER
recognizes two arguments for the REQUIRE directive, file-owner and file-group, as follows:

file-owner The supplied web-username must match the system’s name for the owner of the file being requested.
That is, if the operating system says the requested file is owned by jones, then the username used to access it
through the web must be jones as well.

file-group The name of the system group that owns the file must be present in a group database, which is pro-
vided, for example, by MOD AUTHZ GROUPFILE or MOD AUTHZ DBM, and the web-username must be a mem-
ber of that group. For example, if the operating system says the requested file is owned by (system) group
accounts, the group accounts must appear in the group database and the web-username used in the re-
quest must be a member of that group.

=⇒Note
If MOD AUTHZ OWNER is used in order to authorize a resource that is not actually present in
the filesystem (i.e. a virtual resource), it will deny the access.
Particularly it will never authorize content negotiated "MultiViews" (p. 68) resources.

Directives This module provides no directives.

See also

• REQUIRE

Configuration Examples

Require file-owner

Consider a multi-user system running the Apache Web server, with each user having his or her own files in
˜/public html/private. Assuming that there is a single AUTHDBMUSERFILE database that lists all of their
web-usernames, and that these usernames match the system’s usernames that actually own the files on the server, then
the following stanza would allow only the user himself access to his own files. User jones would not be allowed to
access files in /home/smith/public html/private unless they were owned by jones instead of smith.

<Directory "/home/*/public_html/private">
AuthType Basic
AuthName MyPrivateFiles
AuthBasicProvider dbm
AuthDBMUserFile "/usr/local/apache2/etc/.htdbm-all"
Require file-owner

</Directory>

508 CHAPTER 10. APACHE MODULES

Require file-group

Consider a system similar to the one described above, but with some users that share their project files in
˜/public html/project-foo. The files are owned by the system group foo and there is a single AUTHDB-
MGROUPFILE database that contains all of the web-usernames and their group membership, i.e. they must be at least
member of a group named foo. So if jones and smith are both member of the group foo, then both will be
authorized to access the project-foo directories of each other.

<Directory "/home/*/public_html/project-foo">
AuthType Basic
AuthName "Project Foo Files"
AuthBasicProvider dbm

combined user/group database
AuthDBMUserFile "/usr/local/apache2/etc/.htdbm-all"
AuthDBMGroupFile "/usr/local/apache2/etc/.htdbm-all"

Satisfy All
Require file-group

</Directory>

10.26. APACHE MODULE MOD AUTHZ USER 509

10.26 Apache Module mod authz user

Description: User Authorization
Status: Base
ModuleIdentifier: authz user module
SourceFile: mod authz user.c
Compatibility: Available in Apache 2.1 and later

Summary

This module provides authorization capabilities so that authenticated users can be allowed or denied access to portions
of the web site. MOD AUTHZ USER grants access if the authenticated user is listed in a Require user directive.
Alternatively Require valid-user can be used to grant access to all successfully authenticated users.

Directives This module provides no directives.

See also

• REQUIRE

The Require Directives

Apache’s REQUIRE directives are used during the authorization phase to ensure that a user is allowed to access a
resource. mod authz user extends the authorization types with user and valid-user.

Since v2.4.8, expressions (p. 89) are supported within the user require directives.

Require user

This directive specifies a list of users that are allowed to gain access.

Require user john paul george ringo

Require valid-user

When this directive is specified, any successfully authenticated user will be allowed to gain access.

Require valid-user

510 CHAPTER 10. APACHE MODULES

10.27 Apache Module mod autoindex

Description: Generates directory indexes, automatically, similar to the Unix ls command or the
Win32 dir shell command

Status: Base
ModuleIdentifier: autoindex module
SourceFile: mod autoindex.c

Summary

The index of a directory can come from one of two sources:

• A file located in that directory, typically called index.html. The DIRECTORYINDEX directive sets the name
of the file or files to be used. This is controlled by MOD DIR.

• Otherwise, a listing generated by the server. The other directives control the format of this listing. The AD-
DICON, ADDICONBYENCODING and ADDICONBYTYPE are used to set a list of icons to display for various
file types; for each file listed, the first icon listed that matches the file is displayed. These are controlled by
MOD AUTOINDEX.

The two functions are separated so that you can completely remove (or replace) automatic index generation should
you want to.

Automatic index generation is enabled with using Options +Indexes. See the OPTIONS directive for more
details.

If the FancyIndexing option is given with the INDEXOPTIONS directive, the column headers are links that control
the order of the display. If you select a header link, the listing will be regenerated, sorted by the values in that column.
Selecting the same header repeatedly toggles between ascending and descending order. These column header links are
suppressed with the INDEXOPTIONS directive’s SuppressColumnSorting option.

Note that when the display is sorted by "Size", it’s the actual size of the files that’s used, not the displayed value -
so a 1010-byte file will always be displayed before a 1011-byte file (if in ascending order) even though they both are
shown as "1K".

Directives

• AddAlt

• AddAltByEncoding

• AddAltByType

• AddDescription

• AddIcon

• AddIconByEncoding

• AddIconByType

• DefaultIcon

• HeaderName

• IndexHeadInsert

• IndexIgnore

• IndexIgnoreReset

• IndexOptions

• IndexOrderDefault

10.27. APACHE MODULE MOD AUTOINDEX 511

• IndexStyleSheet

• ReadmeName

Autoindex Request Query Arguments

Various query string arguments are available to give the client some control over the ordering of the directory listing, as
well as what files are listed. If you do not wish to give the client this control, the IndexOptions IgnoreClient
option disables that functionality.

The column sorting headers themselves are self-referencing hyperlinks that add the sort query options shown below.
Any option below may be added to any request for the directory resource.

• C=N sorts the directory by file name

• C=M sorts the directory by last-modified date, then file name

• C=S sorts the directory by size, then file name

• C=D sorts the directory by description, then file name

• O=A sorts the listing in Ascending Order

• O=D sorts the listing in Descending Order

• F=0 formats the listing as a simple list (not FancyIndexed)

• F=1 formats the listing as a FancyIndexed list

• F=2 formats the listing as an HTMLTable FancyIndexed list

• V=0 disables version sorting

• V=1 enables version sorting

• P=pattern lists only files matching the given pattern

Note that the ’P’attern query argument is tested after the usual INDEXIGNORE directives are processed, and all
file names are still subjected to the same criteria as any other autoindex listing. The Query Arguments parser in
MOD AUTOINDEX will stop abruptly when an unrecognized option is encountered. The Query Arguments must be
well formed, according to the table above.

The simple example below, which can be clipped and saved in a header.html file, illustrates these query options. Note
that the unknown "X" argument, for the submit button, is listed last to assure the arguments are all parsed before
mod autoindex encounters the X=Go input.

512 CHAPTER 10. APACHE MODULES

<form action="" method="get">

Show me a <select name="F">

<option value="0"> Plain list</option>
<option value="1" selected="selected"> Fancy list</option>
<option value="2"> Table list</option>

</select>
Sorted by <select name="C">

<option value="N" selected="selected"> Name</option>
<option value="M"> Date Modified</option>
<option value="S"> Size</option>
<option value="D"> Description</option>

</select>
<select name="O">

<option value="A" selected="selected"> Ascending</option>
<option value="D"> Descending</option>

</select>
<select name="V">

<option value="0" selected="selected"> in Normal
order</option>
<option value="1"> in Version order</option>

</select>
Matching <input type="text" name="P" value="*" />
<input type="submit" name="X" value="Go" />

</form>

AddAlt Directive

Description: Alternate text to display for a file, instead of an icon selected by filename
Syntax: AddAlt string file [file] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

ADDALT provides the alternate text to display for a file, instead of an icon, for FancyIndexing. File is a file ex-
tension, partial filename, wild-card expression or full filename for files to describe. If String contains any whitespace,
you have to enclose it in quotes (" or ’). This alternate text is displayed if the client is image-incapable, has image
loading disabled, or fails to retrieve the icon.

AddAlt "PDF file" *.pdf
AddAlt Compressed *.gz *.zip *.Z

AddAltByEncoding Directive

Description: Alternate text to display for a file instead of an icon selected by MIME-encoding
Syntax: AddAltByEncoding string MIME-encoding [MIME-encoding] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

10.27. APACHE MODULE MOD AUTOINDEX 513

ADDALTBYENCODING provides the alternate text to display for a file, instead of an icon, for FancyIndexing.
MIME-encoding is a valid content-encoding, such as x-compress. If String contains any whitespace, you have
to enclose it in quotes (" or ’). This alternate text is displayed if the client is image-incapable, has image loading
disabled, or fails to retrieve the icon.

AddAltByEncoding gzip x-gzip

AddAltByType Directive

Description: Alternate text to display for a file, instead of an icon selected by MIME content-type
Syntax: AddAltByType string MIME-type [MIME-type] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

ADDALTBYTYPE sets the alternate text to display for a file, instead of an icon, for FancyIndexing. MIME-type
is a valid content-type, such as text/html. If String contains any whitespace, you have to enclose it in quotes (" or
’). This alternate text is displayed if the client is image-incapable, has image loading disabled, or fails to retrieve the
icon.

AddAltByType ’plain text’ text/plain

AddDescription Directive

Description: Description to display for a file
Syntax: AddDescription string file [file] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

This sets the description to display for a file, for FancyIndexing. File is a file extension, partial filename, wild-card
expression or full filename for files to describe. String is enclosed in double quotes (").

AddDescription "The planet Mars" mars.gif
AddDescription "My friend Marshall" friends/mars.gif

The typical, default description field is 23 bytes wide. 6 more bytes are added by the IndexOptions
SuppressIcon option, 7 bytes are added by the IndexOptions SuppressSize option, and 19 bytes are
added by the IndexOptions SuppressLastModified option. Therefore, the widest default the description
column is ever assigned is 55 bytes.

Since the File argument may be a partial file name, please remember that a too-short partial filename may match
unintended files. For example, le.html will match the file le.html but will also match the file example.html.
In the event that there may be ambiguity, use as complete a filename as you can, but keep in mind that the first match
encountered will be used, and order your list of AddDescription directives accordingly.

See the DescriptionWidth INDEXOPTIONS keyword for details on overriding the size of this column, or allowing
descriptions of unlimited length.

514 CHAPTER 10. APACHE MODULES

=⇒Caution
Descriptive text defined with ADDDESCRIPTION may contain HTML markup, such as tags and
character entities. If the width of the description column should happen to truncate a tagged
element (such as cutting off the end of a bolded phrase), the results may affect the rest of the
directory listing.

=⇒Arguments with path information
Absolute paths are not currently supported and do not match anything at runtime. Arguments
with relative path information, which would normally only be used in htaccess context, are
implicitly prefixed with ’*/’ to avoid matching partial directory names.

AddIcon Directive

Description: Icon to display for a file selected by name
Syntax: AddIcon icon name [name] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

This sets the icon to display next to a file ending in name for FancyIndexing. Icon is either a (%-escaped) relative
URL to the icon, a fully qualified remote URL, or of the format (alttext,url) where alttext is the text tag given
for an icon for non-graphical browsers.

Name is either ˆˆDIRECTORYˆˆ for directories, ˆˆBLANKICONˆˆ for blank lines (to format the list correctly), a
file extension, a wildcard expression, a partial filename or a complete filename.

ˆˆBLANKICONˆˆ is only used for formatting, and so is unnecessary if you’re using IndexOptions HTMLTable.

#Examples
AddIcon (IMG,/icons/image.png) .gif .jpg .png
AddIcon /icons/dir.png ˆˆDIRECTORYˆˆ
AddIcon /icons/backup.png *˜

ADDICONBYTYPE should be used in preference to ADDICON, when possible.

AddIconByEncoding Directive

Description: Icon to display next to files selected by MIME content-encoding
Syntax: AddIconByEncoding icon MIME-encoding [MIME-encoding] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

This sets the icon to display next to files with FancyIndexing. Icon is either a (%-escaped) relative URL to the
icon, a fully qualified remote URL, or of the format (alttext,url) where alttext is the text tag given for an icon
for non-graphical browsers.

MIME-encoding is a valid content-encoding, such as x-compress.

AddIconByEncoding /icons/compress.png x-compress

10.27. APACHE MODULE MOD AUTOINDEX 515

AddIconByType Directive

Description: Icon to display next to files selected by MIME content-type
Syntax: AddIconByType icon MIME-type [MIME-type] ...
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

This sets the icon to display next to files of type MIME-type for FancyIndexing. Icon is either a (%-escaped)
relative URL to the icon, a fully qualified remote URL, or of the format (alttext,url) where alttext is the text
tag given for an icon for non-graphical browsers.

MIME-type is a wildcard expression matching required the mime types.

AddIconByType (IMG,/icons/image.png) image/*

DefaultIcon Directive

Description: Icon to display for files when no specific icon is configured
Syntax: DefaultIcon url-path
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

The DEFAULTICON directive sets the icon to display for files when no specific icon is known, for FancyIndexing.
Url-path is a (%-escaped) relative URL to the icon, or a fully qualified remote URL.

DefaultIcon /icon/unknown.png

HeaderName Directive

Description: Name of the file that will be inserted at the top of the index listing
Syntax: HeaderName filename
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

The HEADERNAME directive sets the name of the file that will be inserted at the top of the index listing. Filename is
the name of the file to include.

HeaderName HEADER.html

516 CHAPTER 10. APACHE MODULES

=⇒Both HeaderName and READMENAME now treat Filename as a URI path relative to the one
used to access the directory being indexed. If Filename begins with a slash, it will be taken to
be relative to the DOCUMENTROOT.

HeaderName /include/HEADER.html

Filename must resolve to a document with a major content type of text/* (e.g.,
text/html, text/plain, etc.). This means that filename may refer to a CGI script if
the script’s actual file type (as opposed to its output) is marked as text/html such as with a
directive like:

AddType text/html .cgi

Content negotiation (p. 68) will be performed if OPTIONS MultiViews is in effect. If file-
name resolves to a static text/html document (not a CGI script) and either one of the OP-
TIONS Includes or IncludesNOEXEC is enabled, the file will be processed for server-side
includes (see the MOD INCLUDE documentation).

If the file specified by HEADERNAME contains the beginnings of an HTML document (<html>, <head>, etc.) then
you will probably want to set IndexOptions +SuppressHTMLPreamble, so that these tags are not repeated.

See also

• READMENAME

IndexHeadInsert Directive

Description: Inserts text in the HEAD section of an index page.
Syntax: IndexHeadInsert "markup ..."
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

The INDEXHEADINSERT directive specifies a string to insert in the <head> section of the HTML generated for the
index page.

IndexHeadInsert "<link rel=\"sitemap\" href=\"/sitemap.html\">"

IndexIgnore Directive

Description: Adds to the list of files to hide when listing a directory
Syntax: IndexIgnore file [file] ...
Default: IndexIgnore "."
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

The INDEXIGNORE directive adds to the list of files to hide when listing a directory. File is a shell-style wildcard
expression or full filename. Multiple IndexIgnore directives add to the list, rather than replacing the list of ignored
files. By default, the list contains . (the current directory).

IndexIgnore .??* *˜ *# HEADER* README* RCS CVS *,v *,t

10.27. APACHE MODULE MOD AUTOINDEX 517

=⇒Regular Expressions
This directive does not currently work in configuration sections that have regular expression
arguments, such as <DIRECTORYMATCH>

IndexIgnoreReset Directive

Description: Empties the list of files to hide when listing a directory
Syntax: IndexIgnoreReset ON|OFF
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex
Compatibility: 2.3.10 and later

The INDEXIGNORERESET directive removes any files ignored by INDEXIGNORE otherwise inherited from other con-
figuration sections.

<Directory "/var/www">
IndexIgnore *.bak .??* *˜ *# HEADER* README* RCS CVS *,v *,t

</Directory>
<Directory "/var/www/backups">

IndexIgnoreReset ON
IndexIgnore .??* *# HEADER* README* RCS CVS *,v *,t

</Directory>

! Review the default configuration for a list of patterns that you might want to explicitly ignore
after using this directive.

IndexOptions Directive

Description: Various configuration settings for directory indexing
Syntax: IndexOptions [+|-]option [[+|-]option] ...
Default: By default, no options are enabled.
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

The INDEXOPTIONS directive specifies the behavior of the directory indexing. Option can be one of

AddAltClass Adds an additional CSS class declaration to each row of the directory listing table when
IndexOptions HTMLTable is in effect and an IndexStyleSheet is defined. Rather than the stan-
dard even and odd classes that would otherwise be applied to each row of the table, a class of even-ALT or
odd-ALT where ALT is either the standard alt text associated with the file style (eg. snd, txt, img, etc) or the alt
text defined by one of the various AddAlt* directives.

Charset=character-set (Apache HTTP Server 2.0.61 and later) The Charset keyword allows you to specify the
character set of the generated page. The default is UTF-8 on Windows and Mac OS X, and ISO-8859-1
elsewhere. (It depends on whether the underlying file system uses Unicode filenames or not.)

IndexOptions Charset=UTF-8

518 CHAPTER 10. APACHE MODULES

DescriptionWidth=[n — *] The DescriptionWidth keyword allows you to specify the width of the description
column in characters.

-DescriptionWidth (or unset) allows MOD AUTOINDEX to calculate the best width.
DescriptionWidth=n fixes the column width to n bytes wide.

DescriptionWidth=* grows the column to the width necessary to accommodate the longest description
string.

See the section on ADDDESCRIPTION for dangers inherent in truncating descriptions.

FancyIndexing This turns on fancy indexing of directories.

FoldersFirst If this option is enabled, subdirectory listings will always appear first, followed by normal files in the
directory. The listing is basically broken into two components, the files and the subdirectories, and each is
sorted separately and then displayed subdirectories-first. For instance, if the sort order is descending by name,
and FoldersFirst is enabled, subdirectory Zed will be listed before subdirectory Beta, which will be
listed before normal files Gamma and Alpha. This option only has an effect if FancyIndexing is also
enabled.

HTMLTable This option with FancyIndexing constructs a simple table for the fancy directory listing. It is
necessary for utf-8 enabled platforms or if file names or description text will alternate between left-to-right and
right-to-left reading order.

IconsAreLinks This makes the icons part of the anchor for the filename, for fancy indexing.

IconHeight[=pixels] Presence of this option, when used with IconWidth, will cause the server to include height
and width attributes in the img tag for the file icon. This allows browser to precalculate the page layout
without having to wait until all the images have been loaded. If no value is given for the option, it defaults to
the standard height of the icons supplied with the Apache httpd software.

This option only has an effect if FancyIndexing is also enabled.

IconWidth[=pixels] Presence of this option, when used with IconHeight, will cause the server to include height
and width attributes in the img tag for the file icon. This allows browser to precalculate the page layout without
having to wait until all the images have been loaded. If no value is given for the option, it defaults to the standard
width of the icons supplied with the Apache httpd software.

IgnoreCase If this option is enabled, names are sorted in a case-insensitive manner. For instance, if the sort order is
ascending by name, and IgnoreCase is enabled, file Zeta will be listed after file alfa (Note: file GAMMA
will always be listed before file gamma).

IgnoreClient This option causes MOD AUTOINDEX to ignore all query variables from the client, including sort order
(implies SuppressColumnSorting.)

NameWidth=[n — *] The NameWidth keyword allows you to specify the width of the filename column in bytes.

-NameWidth (or unset) allows MOD AUTOINDEX to calculate the best width, but only up to 20 bytes wide.

NameWidth=n fixes the column width to n bytes wide.

NameWidth=* grows the column to the necessary width.

ScanHTMLTitles This enables the extraction of the title from HTML documents for fancy indexing. If the file does
not have a description given by ADDDESCRIPTION then httpd will read the document for the value of the title
element. This is CPU and disk intensive.

ShowForbidden If specified, Apache httpd will show files normally hidden because the subrequest returned
HTTP UNAUTHORIZED or HTTP FORBIDDEN

10.27. APACHE MODULE MOD AUTOINDEX 519

SuppressColumnSorting If specified, Apache httpd will not make the column headings in a FancyIndexed directory
listing into links for sorting. The default behavior is for them to be links; selecting the column heading will sort
the directory listing by the values in that column. However, query string arguments which are appended to the
URL will still be honored. That behavior is controlled by IndexOptions IgnoreClient.

SuppressDescription This will suppress the file description in fancy indexing listings. By default, no file descriptions
are defined, and so the use of this option will regain 23 characters of screen space to use for something else.
See ADDDESCRIPTION for information about setting the file description. See also the DescriptionWidth
index option to limit the size of the description column.
This option only has an effect if FancyIndexing is also enabled.

SuppressHTMLPreamble If the directory actually contains a file specified by the HEADERNAME directive, the mod-
ule usually includes the contents of the file after a standard HTML preamble (<html>, <head>, et cetera).
The SuppressHTMLPreamble option disables this behaviour, causing the module to start the display with
the header file contents. The header file must contain appropriate HTML instructions in this case. If there is no
header file, the preamble is generated as usual. If you also specify a READMENAME, and if that file exists, The
closing </body></html> tags are also ommitted from the output, under the assumption that you’ll likely put
those closing tags in that file.

SuppressIcon This will suppress the icon in fancy indexing listings. Combining both SuppressIcon and
SuppressRules yields proper HTML 3.2 output, which by the final specification prohibits img and hr
elements from the pre block (used to format FancyIndexed listings.)

SuppressLastModified This will suppress the display of the last modification date, in fancy indexing listings.
This option only has an effect if FancyIndexing is also enabled.

SuppressRules This will suppress the horizontal rule lines (hr elements) in directory listings. Combining both
SuppressIcon and SuppressRules yields proper HTML 3.2 output, which by the final specification
prohibits img and hr elements from the pre block (used to format FancyIndexed listings.)
This option only has an effect if FancyIndexing is also enabled.

SuppressSize This will suppress the file size in fancy indexing listings.
This option only has an effect if FancyIndexing is also enabled.

TrackModified This returns the Last-Modified and ETag values for the listed directory in the HTTP header. It
is only valid if the operating system and file system return appropriate stat() results. Some Unix systems do so,
as do OS2’s JFS and Win32’s NTFS volumes. OS2 and Win32 FAT volumes, for example, do not. Once this
feature is enabled, the client or proxy can track changes to the list of files when they perform a HEAD request.
Note some operating systems correctly track new and removed files, but do not track changes for sizes or dates
of the files within the directory. Changes to the size or date stamp of an existing file will not update the
Last-Modified header on all Unix platforms. If this is a concern, leave this option disabled.

Type=MIME content-type (Apache HTTP Server 2.0.61 and later) The Type keyword allows you to specify the
MIME content-type of the generated page. The default is text/html.

IndexOptions Type=text/plain

VersionSort (Apache HTTP Server 2.0a3 and later) The VersionSort keyword causes files containing version
numbers to sort in a natural way. Strings are sorted as usual, except that substrings of digits in the name and
description are compared according to their numeric value.

Example:
foo-1.7
foo-1.7.2
foo-1.7.12
foo-1.8.2
foo-1.8.2a

foo-1.12

520 CHAPTER 10. APACHE MODULES

If the number starts with a zero, then it is considered to be a fraction:

foo-1.001
foo-1.002
foo-1.030

foo-1.04

XHTML (Apache HTTP Server 2.0.49 and later) The XHTML keyword forces MOD AUTOINDEX to emit XHTML
1.0 code instead of HTML 3.2. This option only has an effect if FancyIndexing is also enabled.

Incremental IndexOptions Be aware of how multiple INDEXOPTIONS are handled.

• Multiple INDEXOPTIONS directives for a single directory are now merged together. The result of:

<Directory "/foo">
IndexOptions HTMLTable
IndexOptions SuppressColumnsorting

</Directory>

will be the equivalent of

IndexOptions HTMLTable SuppressColumnsorting

• The addition of the incremental syntax (i.e., prefixing keywords with + or -).

Whenever a ’+’ or ’-’ prefixed keyword is encountered, it is applied to the current INDEXOPTIONS settings
(which may have been inherited from an upper-level directory). However, whenever an unprefixed keyword is
processed, it clears all inherited options and any incremental settings encountered so far. Consider the following
example:

IndexOptions +ScanHTMLTitles -IconsAreLinks FancyIndexing
IndexOptions +SuppressSize

The net effect is equivalent to IndexOptions FancyIndexing +SuppressSize, because the unpre-
fixed FancyIndexing discarded the incremental keywords before it, but allowed them to start accumulating
again afterward.

To unconditionally set the INDEXOPTIONS for a particular directory, clearing the inherited settings, specify
keywords without any + or - prefixes.

IndexOrderDefault Directive

Description: Sets the default ordering of the directory index
Syntax: IndexOrderDefault Ascending|Descending Name|Date|Size|Description
Default: IndexOrderDefault Ascending Name
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

The INDEXORDERDEFAULT directive is used in combination with the FancyIndexing index option. By default,
fancyindexed directory listings are displayed in ascending order by filename; the INDEXORDERDEFAULT allows you
to change this initial display order.

10.27. APACHE MODULE MOD AUTOINDEX 521

INDEXORDERDEFAULT takes two arguments. The first must be either Ascending or Descending, indicating the
direction of the sort. The second argument must be one of the keywords Name, Date, Size, or Description, and
identifies the primary key. The secondary key is always the ascending filename.

You can, if desired, prevent the client from reordering the list by also adding the SuppressColumnSorting index
option to remove the sort link from the top of the column, along with the IgnoreClient index option to prevent
them from manually adding sort options to the query string in order to override your ordering preferences.

IndexStyleSheet Directive

Description: Adds a CSS stylesheet to the directory index
Syntax: IndexStyleSheet url-path
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

The INDEXSTYLESHEET directive sets the name of the file that will be used as the CSS for the index listing.

IndexStyleSheet "/css/style.css"

Using this directive in conjunction with IndexOptions HTMLTable adds a number of CSS classes to the resulting
HTML. The entire table is given a CSS id of indexlist and the following classes are associated with the various
parts of the listing:

Class Definition
tr.indexhead Header row of listing
th.indexcolicon and td.indexcolicon Icon column
th.indexcolname and td.indexcolname File name column
th.indexcollastmod and td.indexcollastmod Last modified column
th.indexcolsize and td.indexcolsize File size column
th.indexcoldesc and td.indexcoldesc Description column
tr.breakrow Horizontal rule at the bottom of the table
tr.odd and tr.even Alternating even and odd rows

ReadmeName Directive

Description: Name of the file that will be inserted at the end of the index listing
Syntax: ReadmeName filename
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod autoindex

The READMENAME directive sets the name of the file that will be appended to the end of the index listing. Filename
is the name of the file to include, and is taken to be relative to the location being indexed. If Filename begins with a
slash, as in example 2, it will be taken to be relative to the DOCUMENTROOT.

Example 1
ReadmeName FOOTER.html

Example 2
ReadmeName /include/FOOTER.html

See also HEADERNAME, where this behavior is described in greater detail.

522 CHAPTER 10. APACHE MODULES

10.28 Apache Module mod buffer

Description: Support for request buffering
Status: Extension
ModuleIdentifier: buffer module
SourceFile: mod buffer.c
Compatibility: Available in Apache 2.3 and later

Summary

This module provides the ability to buffer the input and output filter stacks.

Under certain circumstances, content generators might create content in small chunks. In order to promote memory
reuse, in memory chunks are always 8k in size, regardless of the size of the chunk itself. When many small chunks
are generated by a request, this can create a large memory footprint while the request is being processed, and an
unnecessarily large amount of data on the wire. The addition of a buffer collapses the response into the fewest chunks
possible.

When httpd is used in front of an expensive content generator, buffering the response may allow the backend to
complete processing and release resources sooner, depending on how the backend is designed.

The buffer filter may be added to either the input or the output filter stacks, as appropriate, using the SETINPUTFILTER,
SETOUTPUTFILTER, ADDOUTPUTFILTER or ADDOUTPUTFILTERBYTYPE directives.

Using buffer with mod include

AddOutputFilterByType INCLUDES;BUFFER text/html

! The buffer filters read the request/response into RAM and then repack the request/response
into the fewest memory buckets possible, at the cost of CPU time. When the request/response
is already efficiently packed, buffering the request/response could cause the request/response
to be slower than not using a buffer at all. These filters should be used with care, and only
where necessary.

Directives

• BufferSize

See also

• Filters (p. 100)

BufferSize Directive

Description: Maximum size in bytes to buffer by the buffer filter
Syntax: BufferSize integer
Default: BufferSize 131072
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod buffer

The BUFFERSIZE directive specifies the amount of data in bytes that will be buffered before being read from or written
to each request. The default is 128 kilobytes.

10.29. APACHE MODULE MOD CACHE 523

10.29 Apache Module mod cache

Description: RFC 2616 compliant HTTP caching filter.
Status: Extension
ModuleIdentifier: cache module
SourceFile: mod cache.c

Summary

! This module should be used with care, as when the CACHEQUICKHANDLER directive is in its
default value of on, the ALLOW and DENY directives will be circumvented. You should not
enable quick handler caching for any content to which you wish to limit access by client host
name, address or environment variable.

MOD CACHE implements an RFC 261614 compliant HTTP content caching filter, with support for the caching of
content negotiated responses containing the Vary header.

RFC 2616 compliant caching provides a mechanism to verify whether stale or expired content is still fresh, and can
represent a significant performance boost when the origin server supports conditional requests by honouring the If-
None-Match15 HTTP request header. Content is only regenerated from scratch when the content has changed, and not
when the cached entry expires.

As a filter, MOD CACHE can be placed in front of content originating from any handler, including flat files (served
from a slow disk cached on a fast disk), the output of a CGI script or dynamic content generator, or content proxied
from another server.

In the default configuration, MOD CACHE inserts the caching filter as far forward as possible within the filter stack,
utilising the quick handler to bypass all per request processing when returning content to the client. In this mode
of operation, MOD CACHE may be thought of as a caching proxy server bolted to the front of the webserver, while
running within the webserver itself.

When the quick handler is switched off using the CACHEQUICKHANDLER directive, it becomes possible to insert the
CACHE filter at a point in the filter stack chosen by the administrator. This provides the opportunity to cache content
before that content is personalised by the MOD INCLUDE filter, or optionally compressed by the MOD DEFLATE filter.

Under normal operation, MOD CACHE will respond to and can be controlled by the Cache-Control16 and Pragma17

headers sent from a client in a request, or from a server within a response. Under exceptional circumstances,
MOD CACHE can be configured to override these headers and force site specific behaviour, however such behaviour
will be limited to this cache only, and will not affect the operation of other caches that may exist between the client
and server, and as a result is not recommended unless strictly necessary.

RFC 2616 allows for the cache to return stale data while the existing stale entry is refreshed from the origin server,
and this is supported by MOD CACHE when the CACHELOCK directive is suitably configured. Such responses will
contain a Warning18 HTTP header with a 110 response code. RFC 2616 also allows a cache to return stale data when
the attempt made to refresh the stale data returns an error 500 or above, and this behaviour is supported by default by
MOD CACHE. Such responses will contain a Warning19 HTTP header with a 111 response code.

MOD CACHE requires the services of one or more storage management modules. The following storage management
modules are included in the base Apache distribution:

14http://www.ietf.org/rfc/rfc2616.txt
15http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
16http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
17http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32
18http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.46
19http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.46

http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.46
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.46

524 CHAPTER 10. APACHE MODULES

MOD CACHE DISK Implements a disk based storage manager. Headers and bodies are stored separately on disk, in
a directory structure derived from the md5 hash of the cached URL. Multiple content negotiated responses
can be stored concurrently, however the caching of partial content is not supported by this module. The
htcacheclean tool is provided to list cached URLs, remove cached URLs, or to maintain the size of the
disk cache within size and inode limits.

MOD CACHE SOCACHE Implements a shared object cache based storage manager. Headers and bodies are stored
together beneath a single key based on the URL of the response being cached. Multiple content negotiated
responses can be stored concurrently, however the caching of partial content is not supported by this module.

Further details, discussion, and examples, are provided in the Caching Guide (p. 40) .

Directives

• CacheDefaultExpire

• CacheDetailHeader

• CacheDisable

• CacheEnable

• CacheHeader

• CacheIgnoreCacheControl

• CacheIgnoreHeaders

• CacheIgnoreNoLastMod

• CacheIgnoreQueryString

• CacheIgnoreURLSessionIdentifiers

• CacheKeyBaseURL

• CacheLastModifiedFactor

• CacheLock

• CacheLockMaxAge

• CacheLockPath

• CacheMaxExpire

• CacheMinExpire

• CacheQuickHandler

• CacheStaleOnError

• CacheStoreExpired

• CacheStoreNoStore

• CacheStorePrivate

See also

• Caching Guide (p. 40)

10.29. APACHE MODULE MOD CACHE 525

Related Modules and Directives

Related Modules
MOD CACHE DISK
MOD CACHE SOCACHE

Related Directives
CACHEROOT
CACHEDIRLEVELS
CACHEDIRLENGTH
CACHEMINFILESIZE
CACHEMAXFILESIZE
CACHESOCACHE
CACHESOCACHEMAXTIME
CACHESOCACHEMINTIME
CACHESOCACHEMAXSIZE
CACHESOCACHEREADSIZE
CACHESOCACHEREADTIME

Sample Configuration

Sample httpd.conf

#
Sample Cache Configuration
#
LoadModule cache_module modules/mod_cache.so
<IfModule mod_cache.c>

LoadModule cache_disk_module modules/mod_cache_disk.so
<IfModule mod_cache_disk.c>

CacheRoot "c:/cacheroot"
CacheEnable disk "/"
CacheDirLevels 5
CacheDirLength 3

</IfModule>

When acting as a proxy, don’t cache the list of security updates
CacheDisable "http://security.update.server/update-list/"

</IfModule>

Avoiding the Thundering Herd

When a cached entry becomes stale, MOD CACHE will submit a conditional request to the backend, which is expected
to confirm whether the cached entry is still fresh, and send an updated entity if not.

A small but finite amount of time exists between the time the cached entity becomes stale, and the time the stale
entity is fully refreshed. On a busy server, a significant number of requests might arrive during this time, and cause a
thundering herd of requests to strike the backend suddenly and unpredictably.

To keep the thundering herd at bay, the CACHELOCK directive can be used to define a directory in which locks are
created for URLs in flight. The lock is used as a hint by other requests to either suppress an attempt to cache (someone
else has gone to fetch the entity), or to indicate that a stale entry is being refreshed (stale content will be returned in
the mean time).

526 CHAPTER 10. APACHE MODULES

Initial caching of an entry

When an entity is cached for the first time, a lock will be created for the entity until the response has been fully cached.
During the lifetime of the lock, the cache will suppress the second and subsequent attempt to cache the same entity.
While this doesn’t hold back the thundering herd, it does stop the cache attempting to cache the same entity multiple
times simultaneously.

Refreshment of a stale entry

When an entity reaches its freshness lifetime and becomes stale, a lock will be created for the entity until the response
has either been confirmed as still fresh, or replaced by the backend. During the lifetime of the lock, the second and
subsequent incoming request will cause stale data to be returned, and the thundering herd is kept at bay.

Locks and Cache-Control: no-cache

Locks are used as a hint only to enable the cache to be more gentle on backend servers, however the lock can be
overridden if necessary. If the client sends a request with a Cache-Control header forcing a reload, any lock that may
be present will be ignored, and the client’s request will be honored immediately and the cached entry refreshed.

As a further safety mechanism, locks have a configurable maximum age. Once this age has been reached, the lock is
removed, and a new request is given the opportunity to create a new lock. This maximum age can be set using the
CACHELOCKMAXAGE directive, and defaults to 5 seconds.

Example configuration

Enabling the cache lock

#
Enable the cache lock
#
<IfModule mod_cache.c>

CacheLock on
CacheLockPath "/tmp/mod_cache-lock"
CacheLockMaxAge 5

</IfModule>

Fine Control with the CACHE Filter

Under the default mode of cache operation, the cache runs as a quick handler, short circuiting the majority of server
processing and offering the highest cache performance available.

In this mode, the cache bolts onto the front of the server, acting as if a free standing RFC 2616 caching proxy had
been placed in front of the server.

While this mode offers the best performance, the administrator may find that under certain circumstances they may
want to perform further processing on the request after the request is cached, such as to inject personalisation into the
cached page, or to apply authorisation restrictions to the content. Under these circumstances, an administrator is often
forced to place independent reverse proxy servers either behind or in front of the caching server to achieve this.

To solve this problem the CACHEQUICKHANDLER directive can be set to off, and the server will process all phases
normally handled by a non-cached request, including the authentication and authorisation phases.

In addition, the administrator may optionally specify the precise point within the filter chain where caching is to
take place by adding the CACHE filter to the output filter chain.

10.29. APACHE MODULE MOD CACHE 527

For example, to cache content before applying compression to the response, place the CACHE filter before the DE-
FLATE filter as in the example below:

Cache content before optional compression
CacheQuickHandler off
AddOutputFilterByType CACHE;DEFLATE text/plain

Another option is to have content cached before personalisation is applied by MOD INCLUDE (or another content
processing filter). In this example templates containing tags understood by MOD INCLUDE are cached before being
parsed:

Cache content before mod_include and mod_deflate
CacheQuickHandler off
AddOutputFilterByType CACHE;INCLUDES;DEFLATE text/html

You may place the CACHE filter anywhere you wish within the filter chain. In this example, content is cached after
being parsed by MOD INCLUDE, but before being processed by MOD DEFLATE:

Cache content between mod_include and mod_deflate
CacheQuickHandler off
AddOutputFilterByType INCLUDES;CACHE;DEFLATE text/html

! Warning:
If the location of the CACHE filter in the filter chain is changed for any reason, you may need
to flush your cache to ensure that your data served remains consistent. MOD CACHE is not in
a position to enforce this for you.

Cache Status and Logging

Once MOD CACHE has made a decision as to whether or not an entity is to be served from cache, the detailed reason
for the decision is written to the subprocess environment within the request under the cache-status key. This reason
can be logged by the LOGFORMAT directive as follows:

LogFormat "%{cache-status}e ..."

Based on the caching decision made, the reason is also written to the subprocess environment under one the following
four keys, as appropriate:

cache-hit The response was served from cache.

cache-revalidate The response was stale and was successfully revalidated, then served from cache.

cache-miss The response was served from the upstream server.

cache-invalidate The cached entity was invalidated by a request method other than GET or HEAD.

This makes it possible to support conditional logging of cached requests as per the following example:

CustomLog "cached-requests.log" common env=cache-hit
CustomLog "uncached-requests.log" common env=cache-miss
CustomLog "revalidated-requests.log" common env=cache-revalidate
CustomLog "invalidated-requests.log" common env=cache-invalidate

For module authors, a hook called cache status is available, allowing modules to respond to the caching outcomes
above in customised ways.

528 CHAPTER 10. APACHE MODULES

CacheDefaultExpire Directive

Description: The default duration to cache a document when no expiry date is specified.
Syntax: CacheDefaultExpire seconds
Default: CacheDefaultExpire 3600 (one hour)
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache

The CACHEDEFAULTEXPIRE directive specifies a default time, in seconds, to cache a document if neither an ex-
piry date nor last-modified date are provided with the document. The value specified with the CACHEMAXEXPIRE
directive does not override this setting.

CacheDefaultExpire 86400

CacheDetailHeader Directive

Description: Add an X-Cache-Detail header to the response.
Syntax: CacheDetailHeader on|off
Default: CacheDetailHeader off
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache
Compatibility: Available in Apache 2.3.9 and later

When the CACHEDETAILHEADER directive is switched on, an X-Cache-Detail header will be added to the response
containing the detailed reason for a particular caching decision.

It can be useful during development of cached RESTful services to have additional information about the caching
decision written to the response headers, so as to confirm whether Cache-Control and other headers have been
correctly used by the service and client.

If the normal handler is used, this directive may appear within a <DIRECTORY> or <LOCATION> directive. If the
quick handler is used, this directive must appear within a server or virtual host context, otherwise the setting will be
ignored.

Enable the X-Cache-Detail header
CacheDetailHeader on

X-Cache-Detail: "conditional cache hit: entity refreshed" from

localhost

CacheDisable Directive

Description: Disable caching of specified URLs
Syntax: CacheDisable url-string | on
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache

The CACHEDISABLE directive instructs MOD CACHE to not cache urls at or below url-string.

10.29. APACHE MODULE MOD CACHE 529

Example

CacheDisable "/local_files"

If used in a <LOCATION> directive, the path needs to be specified below the Location, or if the word "on" is used,
caching for the whole location will be disabled.

Example

<Location "/foo">
CacheDisable on

</Location>

The no-cache environment variable can be set to disable caching on a finer grained set of resources in versions
2.2.12 and later.

See also

• Environment Variables in Apache (p. 82)

CacheEnable Directive

Description: Enable caching of specified URLs using a specified storage manager
Syntax: CacheEnable cache type [url-string]
Context: server config, virtual host, directory
Status: Extension
Module: mod cache
Compatibility: A url-string of ’/’ applied to forward proxy content in 2.2 and earlier.

The CACHEENABLE directive instructs MOD CACHE to cache urls at or below url-string. The cache storage manager
is specified with the cache type argument. The CACHEENABLE directive can alternatively be placed inside either
<LOCATION> or <LOCATIONMATCH> sections to indicate the content is cacheable. cache type disk instructs
MOD CACHE to use the disk based storage manager implemented by MOD CACHE DISK. cache type socache in-
structs MOD CACHE to use the shared object cache based storage manager implemented by MOD CACHE SOCACHE.

In the event that the URL space overlaps between different CACHEENABLE directives (as in the example below),
each possible storage manager will be run until the first one that actually processes the request. The order in which
the storage managers are run is determined by the order of the CACHEENABLE directives in the configuration file.
CACHEENABLE directives within <LOCATION> or <LOCATIONMATCH> sections are processed before globally
defined CACHEENABLE directives.

When acting as a forward proxy server, url-string must minimally begin with a protocol for which caching should be
enabled.

Cache content (normal handler only)
CacheQuickHandler off
<Location "/foo">

CacheEnable disk
</Location>

Cache regex (normal handler only)
CacheQuickHandler off
<LocationMatch "foo$">

CacheEnable disk
</LocationMatch>

530 CHAPTER 10. APACHE MODULES

Cache all but forward proxy url’s (normal or quick handler)
CacheEnable disk /

Cache FTP-proxied url’s (normal or quick handler)
CacheEnable disk ftp://

Cache forward proxy content from www.example.org (normal or quick handler)
CacheEnable disk http://www.example.org/

A hostname starting with a "*" matches all hostnames with that suffix. A hostname starting with "." matches all
hostnames containing the domain components that follow.

Match www.example.org, and fooexample.org
CacheEnable disk "http://*example.org/"
Match www.example.org, but not fooexample.org
CacheEnable disk "http://.example.org/"

The no-cache environment variable can be set to disable caching on a finer grained set of resources in versions
2.2.12 and later.

See also

• Environment Variables in Apache (p. 82)

CacheHeader Directive

Description: Add an X-Cache header to the response.
Syntax: CacheHeader on|off
Default: CacheHeader off
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache
Compatibility: Available in Apache 2.3.9 and later

When the CACHEHEADER directive is switched on, an X-Cache header will be added to the response with the cache
status of this response. If the normal handler is used, this directive may appear within a <DIRECTORY> or <LO-
CATION> directive. If the quick handler is used, this directive must appear within a server or virtual host context,
otherwise the setting will be ignored.

HIT The entity was fresh, and was served from cache.

REVALIDATE The entity was stale, was successfully revalidated and was served from cache.

MISS The entity was fetched from the upstream server and was not served from cache.

Enable the X-Cache header
CacheHeader on

X-Cache: HIT from localhost

10.29. APACHE MODULE MOD CACHE 531

CacheIgnoreCacheControl Directive

Description: Ignore request to not serve cached content to client
Syntax: CacheIgnoreCacheControl On|Off
Default: CacheIgnoreCacheControl Off
Context: server config, virtual host
Status: Extension
Module: mod cache

Ordinarily, requests containing a Cache-Control: no-cache or Pragma: no-cache header value will not be served from
the cache. The CACHEIGNORECACHECONTROL directive allows this behavior to be overridden. CACHEIGNORE-
CACHECONTROL ON tells the server to attempt to serve the resource from the cache even if the request contains
no-cache header values. Resources requiring authorization will never be cached.

CacheIgnoreCacheControl On

! Warning:
This directive will allow serving from the cache even if the client has requested that the docu-
ment not be served from the cache. This might result in stale content being served.

See also

• CACHESTOREPRIVATE

• CACHESTORENOSTORE

CacheIgnoreHeaders Directive

Description: Do not store the given HTTP header(s) in the cache.
Syntax: CacheIgnoreHeaders header-string [header-string] ...
Default: CacheIgnoreHeaders None
Context: server config, virtual host
Status: Extension
Module: mod cache

According to RFC 2616, hop-by-hop HTTP headers are not stored in the cache. The following HTTP headers are
hop-by-hop headers and thus do not get stored in the cache in any case regardless of the setting of CACHEIGNORE-
HEADERS:

• Connection

• Keep-Alive

• Proxy-Authenticate

• Proxy-Authorization

• TE

• Trailers

• Transfer-Encoding

• Upgrade

CACHEIGNOREHEADERS specifies additional HTTP headers that should not to be stored in the cache. For example,
it makes sense in some cases to prevent cookies from being stored in the cache.

532 CHAPTER 10. APACHE MODULES

CACHEIGNOREHEADERS takes a space separated list of HTTP headers that should not be stored in the cache. If only
hop-by-hop headers not should be stored in the cache (the RFC 2616 compliant behaviour), CACHEIGNOREHEADERS
can be set to None.

Example 1

CacheIgnoreHeaders Set-Cookie

Example 2

CacheIgnoreHeaders None

! Warning:
If headers like Expires which are needed for proper cache management are not stored due
to a CACHEIGNOREHEADERS setting, the behaviour of mod cache is undefined.

CacheIgnoreNoLastMod Directive

Description: Ignore the fact that a response has no Last Modified header.
Syntax: CacheIgnoreNoLastMod On|Off
Default: CacheIgnoreNoLastMod Off
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache

Ordinarily, documents without a last-modified date are not cached. Under some circumstances the last-modified date
is removed (during MOD INCLUDE processing for example) or not provided at all. The CACHEIGNORENOLASTMOD
directive provides a way to specify that documents without last-modified dates should be considered for caching, even
without a last-modified date. If neither a last-modified date nor an expiry date are provided with the document then
the value specified by the CACHEDEFAULTEXPIRE directive will be used to generate an expiration date.

CacheIgnoreNoLastMod On

CacheIgnoreQueryString Directive

Description: Ignore query string when caching
Syntax: CacheIgnoreQueryString On|Off
Default: CacheIgnoreQueryString Off
Context: server config, virtual host
Status: Extension
Module: mod cache

Ordinarily, requests with query string parameters are cached separately for each unique query string. This is according
to RFC 2616/13.9 done only if an expiration time is specified. The CACHEIGNOREQUERYSTRING directive tells the
cache to cache requests even if no expiration time is specified, and to reply with a cached reply even if the query string
differs. From a caching point of view the request is treated as if having no query string when this directive is enabled.

CacheIgnoreQueryString On

10.29. APACHE MODULE MOD CACHE 533

CacheIgnoreURLSessionIdentifiers Directive

Description: Ignore defined session identifiers encoded in the URL when caching
Syntax: CacheIgnoreURLSessionIdentifiers identifier [identifier] ...
Default: CacheIgnoreURLSessionIdentifiers None
Context: server config, virtual host
Status: Extension
Module: mod cache

Sometimes applications encode the session identifier into the URL like in the following Examples:

• /someapplication/image.gif;jsessionid=123456789

• /someapplication/image.gif?PHPSESSIONID=12345678

This causes cachable resources to be stored separately for each session, which is often not desired.
CACHEIGNOREURLSESSIONIDENTIFIERS lets define a list of identifiers that are removed from the key that is used
to identify an entity in the cache, such that cachable resources are not stored separately for each session.

CacheIgnoreURLSessionIdentifiers None clears the list of ignored identifiers. Otherwise, each identifier
is added to the list.

Example 1

CacheIgnoreURLSessionIdentifiers jsessionid

Example 2

CacheIgnoreURLSessionIdentifiers None

CacheKeyBaseURL Directive

Description: Override the base URL of reverse proxied cache keys.
Syntax: CacheKeyBaseURL URL
Default: CacheKeyBaseURL http://example.com
Context: server config, virtual host
Status: Extension
Module: mod cache
Compatibility: Available in Apache 2.3.9 and later

When the CACHEKEYBASEURL directive is specified, the URL provided will be used as the base URL to calculate
the URL of the cache keys in the reverse proxy configuration. When not specified, the scheme, hostname and port of
the current virtual host is used to construct the cache key. When a cluster of machines is present, and all cached entries
should be cached beneath the same cache key, a new base URL can be specified with this directive.

Override the base URL of the cache key.
CacheKeyBaseURL "http://www.example.com/"

! Take care when setting this directive. If two separate virtual hosts are accidentally given the
same base URL, entries from one virtual host will be served to the other.

534 CHAPTER 10. APACHE MODULES

CacheLastModifiedFactor Directive

Description: The factor used to compute an expiry date based on the LastModified date.
Syntax: CacheLastModifiedFactor float
Default: CacheLastModifiedFactor 0.1
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache

In the event that a document does not provide an expiry date but does provide a last-modified date, an expiry date can
be calculated based on the time since the document was last modified. The CACHELASTMODIFIEDFACTOR directive
specifies a factor to be used in the generation of this expiry date according to the following formula:

expiry-period = time-since-last-modified-date * factor expiry-date =
current-date + expiry-period

For example, if the document was last modified 10 hours ago, and factor is 0.1 then the expiry-period will be set to
10*0.1 = 1 hour. If the current time was 3:00pm then the computed expiry-date would be 3:00pm + 1hour = 4:00pm.

If the expiry-period would be longer than that set by CACHEMAXEXPIRE, then the latter takes precedence.

CacheLastModifiedFactor 0.5

CacheLock Directive

Description: Enable the thundering herd lock.
Syntax: CacheLock on|off
Default: CacheLock off
Context: server config, virtual host
Status: Extension
Module: mod cache
Compatibility: Available in Apache 2.2.15 and later

The CACHELOCK directive enables the thundering herd lock for the given URL space.

In a minimal configuration the following directive is all that is needed to enable the thundering herd lock in the default
system temp directory.

Enable cache lock
CacheLock on

CacheLockMaxAge Directive

Description: Set the maximum possible age of a cache lock.
Syntax: CacheLockMaxAge integer
Default: CacheLockMaxAge 5
Context: server config, virtual host
Status: Extension
Module: mod cache

The CACHELOCKMAXAGE directive specifies the maximum age of any cache lock.

A lock older than this value in seconds will be ignored, and the next incoming request will be given the opportunity to
re-establish the lock. This mechanism prevents a slow client taking an excessively long time to refresh an entity.

10.29. APACHE MODULE MOD CACHE 535

CacheLockPath Directive

Description: Set the lock path directory.
Syntax: CacheLockPath directory
Default: CacheLockPath /tmp/mod cache-lock
Context: server config, virtual host
Status: Extension
Module: mod cache

The CACHELOCKPATH directive allows you to specify the directory in which the locks are created. By default,
the system’s temporary folder is used. Locks consist of empty files that only exist for stale URLs in flight, so is
significantly less resource intensive than the traditional disk cache.

CacheMaxExpire Directive

Description: The maximum time in seconds to cache a document
Syntax: CacheMaxExpire seconds
Default: CacheMaxExpire 86400 (one day)
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache

The CACHEMAXEXPIRE directive specifies the maximum number of seconds for which cachable HTTP documents
will be retained without checking the origin server. Thus, documents will be out of date at most this number of
seconds. This maximum value is enforced even if an expiry date was supplied with the document.

CacheMaxExpire 604800

CacheMinExpire Directive

Description: The minimum time in seconds to cache a document
Syntax: CacheMinExpire seconds
Default: CacheMinExpire 0
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache

The CACHEMINEXPIRE directive specifies the minimum number of seconds for which cachable HTTP documents
will be retained without checking the origin server. This is only used if no valid expire time was supplied with the
document.

CacheMinExpire 3600

CacheQuickHandler Directive

Description: Run the cache from the quick handler.
Syntax: CacheQuickHandler on|off
Default: CacheQuickHandler on
Context: server config, virtual host
Status: Extension
Module: mod cache
Compatibility: Apache HTTP Server 2.3.3 and later

536 CHAPTER 10. APACHE MODULES

The CACHEQUICKHANDLER directive controls the phase in which the cache is handled.

In the default enabled configuration, the cache operates within the quick handler phase. This phase short circuits the
majority of server processing, and represents the most performant mode of operation for a typical server. The cache
bolts onto the front of the server, and the majority of server processing is avoided.

When disabled, the cache operates as a normal handler, and is subject to the full set of phases when handling a server
request. While this mode is slower than the default, it allows the cache to be used in cases where full processing is
required, such as when content is subject to authorisation.

Run cache as a normal handler
CacheQuickHandler off

It is also possible, when the quick handler is disabled, for the administrator to choose the precise location within the
filter chain where caching is to be performed, by adding the CACHE filter to the chain.

Cache content before mod_include and mod_deflate
CacheQuickHandler off
AddOutputFilterByType CACHE;INCLUDES;DEFLATE text/html

If the CACHE filter is specified more than once, the last instance will apply.

CacheStaleOnError Directive

Description: Serve stale content in place of 5xx responses.
Syntax: CacheStaleOnError on|off
Default: CacheStaleOnError on
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache
Compatibility: Available in Apache 2.3.9 and later

When the CACHESTALEONERROR directive is switched on, and when stale data is available in the cache, the cache
will respond to 5xx responses from the backend by returning the stale data instead of the 5xx response. While the
Cache-Control headers sent by clients will be respected, and the raw 5xx responses returned to the client on request,
the 5xx response so returned to the client will not invalidate the content in the cache.

Serve stale data on error.
CacheStaleOnError on

CacheStoreExpired Directive

Description: Attempt to cache responses that the server reports as expired
Syntax: CacheStoreExpired On|Off
Default: CacheStoreExpired Off
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache

Since httpd 2.2.4, responses which have already expired are not stored in the cache. The CACHESTOREEXPIRED
directive allows this behavior to be overridden. CACHESTOREEXPIRED On tells the server to attempt to cache the
resource if it is stale. Subsequent requests would trigger an If-Modified-Since request of the origin server, and the
response may be fulfilled from cache if the backend resource has not changed.

CacheStoreExpired On

10.29. APACHE MODULE MOD CACHE 537

CacheStoreNoStore Directive

Description: Attempt to cache requests or responses that have been marked as no-store.
Syntax: CacheStoreNoStore On|Off
Default: CacheStoreNoStore Off
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache

Ordinarily, requests or responses with Cache-Control: no-store header values will not be stored in the cache. The
CACHESTORENOSTORE directive allows this behavior to be overridden. CACHESTORENOSTORE On tells the server
to attempt to cache the resource even if it contains no-store header values. Resources requiring authorization will
never be cached.

CacheStoreNoStore On

! Warning:
As described in RFC 2616, the no-store directive is intended to "prevent the inadvertent release
or retention of sensitive information (for example, on backup tapes)." Enabling this option
could store sensitive information in the cache. You are hereby warned.

See also

• CACHEIGNORECACHECONTROL

• CACHESTOREPRIVATE

CacheStorePrivate Directive

Description: Attempt to cache responses that the server has marked as private
Syntax: CacheStorePrivate On|Off
Default: CacheStorePrivate Off
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache

Ordinarily, responses with Cache-Control: private header values will not be stored in the cache. The CACHE-
STOREPRIVATE directive allows this behavior to be overridden. CACHESTOREPRIVATE On tells the server to attempt
to cache the resource even if it contains private header values. Resources requiring authorization will never be cached.

CacheStorePrivate On

! Warning:
This directive will allow caching even if the upstream server has requested that the resource
not be cached. This directive is only ideal for a ’private’ cache.

See also

• CACHEIGNORECACHECONTROL

• CACHESTORENOSTORE

538 CHAPTER 10. APACHE MODULES

10.30 Apache Module mod cache disk

Description: Disk based storage module for the HTTP caching filter.
Status: Extension
ModuleIdentifier: cache disk module
SourceFile: mod cache disk.c

Summary

MOD CACHE DISK implements a disk based storage manager for MOD CACHE.

The headers and bodies of cached responses are stored separately on disk, in a directory structure derived from the
md5 hash of the cached URL.

Multiple content negotiated responses can be stored concurrently, however the caching of partial content is not yet
supported by this module.

Atomic cache updates to both header and body files are achieved without the need for locking by storing the device
and inode numbers of the body file within the header file. This has the side effect that cache entries manually moved
into the cache will be ignored.

The htcacheclean tool is provided to list cached URLs, remove cached URLs, or to maintain the size of the disk
cache within size and/or inode limits. The tool can be run on demand, or can be daemonized to offer continuous
monitoring of directory sizes.

=⇒Note:
MOD CACHE DISK requires the services of MOD CACHE, which must be loaded before
mod cache disk.

=⇒Note:
MOD CACHE DISK uses the sendfile feature to serve files from the cache when supported by
the platform, and when enabled with ENABLESENDFILE. However, per-directory and .htaccess
configuration of ENABLESENDFILE are ignored by MOD CACHE DISK as the corresponding
settings are not available to the module when a request is being served from the cache.

Directives

• CacheDirLength

• CacheDirLevels

• CacheMaxFileSize

• CacheMinFileSize

• CacheReadSize

• CacheReadTime

• CacheRoot

See also

• MOD CACHE

• MOD CACHE SOCACHE

• Caching Guide (p. 40)

10.30. APACHE MODULE MOD CACHE DISK 539

CacheDirLength Directive

Description: The number of characters in subdirectory names
Syntax: CacheDirLength length
Default: CacheDirLength 2
Context: server config, virtual host
Status: Extension
Module: mod cache disk

The CACHEDIRLENGTH directive sets the number of characters for each subdirectory name in the cache hierarchy. It
can be used in conjunction with CACHEDIRLEVELS to determine the approximate structure of your cache hierarchy.

A high value for CACHEDIRLENGTH combined with a low value for CACHEDIRLEVELS will result in a relatively
flat hierarchy, with a large number of subdirectories at each level.

=⇒The result of CACHEDIRLEVELS* CACHEDIRLENGTH must not be higher than 20.

CacheDirLevels Directive

Description: The number of levels of subdirectories in the cache.
Syntax: CacheDirLevels levels
Default: CacheDirLevels 2
Context: server config, virtual host
Status: Extension
Module: mod cache disk

The CACHEDIRLEVELS directive sets the number of subdirectory levels in the cache. Cached data will be saved this
many directory levels below the CACHEROOT directory.

A high value for CACHEDIRLEVELS combined with a low value for CACHEDIRLENGTH will result in a relatively
deep hierarchy, with a small number of subdirectories at each level.

=⇒The result of CACHEDIRLEVELS* CACHEDIRLENGTH must not be higher than 20.

CacheMaxFileSize Directive

Description: The maximum size (in bytes) of a document to be placed in the cache
Syntax: CacheMaxFileSize bytes
Default: CacheMaxFileSize 1000000
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache disk

The CACHEMAXFILESIZE directive sets the maximum size, in bytes, for a document to be considered for storage in
the cache.

CacheMaxFileSize 64000

540 CHAPTER 10. APACHE MODULES

CacheMinFileSize Directive

Description: The minimum size (in bytes) of a document to be placed in the cache
Syntax: CacheMinFileSize bytes
Default: CacheMinFileSize 1
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache disk

The CACHEMINFILESIZE directive sets the minimum size, in bytes, for a document to be considered for storage in
the cache.

CacheMinFileSize 64

CacheReadSize Directive

Description: The minimum size (in bytes) of the document to read and be cached before sending the data
downstream

Syntax: CacheReadSize bytes
Default: CacheReadSize 0
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache disk

The CACHEREADSIZE directive sets the minimum amount of data, in bytes, to be read from the backend before the
data is sent to the client. The default of zero causes all data read of any size to be passed downstream to the client
immediately as it arrives. Setting this to a higher value causes the disk cache to buffer at least this amount before
sending the result to the client. This can improve performance when caching content from a reverse proxy.

This directive only takes effect when the data is being saved to the cache, as opposed to data being served from the
cache.

CacheReadSize 102400

CacheReadTime Directive

Description: The minimum time (in milliseconds) that should elapse while reading before data is sent down-
stream

Syntax: CacheReadTime milliseconds
Default: CacheReadTime 0
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache disk

The CACHEREADTIME directive sets the minimum amount of elapsed time that should pass before making an attempt
to send data downstream to the client. During the time period, data will be buffered before sending the result to the
client. This can improve performance when caching content from a reverse proxy.

The default of zero disables this option.

This directive only takes effect when the data is being saved to the cache, as opposed to data being served from the
cache. It is recommended that this option be used alongside the CACHEREADSIZE directive to ensure that the server
does not buffer excessively should data arrive faster than expected.

CacheReadTime 1000

10.30. APACHE MODULE MOD CACHE DISK 541

CacheRoot Directive

Description: The directory root under which cache files are stored
Syntax: CacheRoot directory
Context: server config, virtual host
Status: Extension
Module: mod cache disk

The CACHEROOT directive defines the name of the directory on the disk to contain cache files. If the
MOD CACHE DISK module has been loaded or compiled in to the Apache server, this directive must be defined. Fail-
ing to provide a value for CACHEROOT will result in a configuration file processing error. The CACHEDIRLEVELS
and CACHEDIRLENGTH directives define the structure of the directories under the specified root directory.

CacheRoot c:/cacheroot

542 CHAPTER 10. APACHE MODULES

10.31 Apache Module mod cache socache

Description: Shared object cache (socache) based storage module for the HTTP caching filter.
Status: Extension
ModuleIdentifier: cache socache module
SourceFile: mod cache socache.c

Summary

MOD CACHE SOCACHE implements a shared object cache (socache) based storage manager for MOD CACHE.

The headers and bodies of cached responses are combined, and stored underneath a single key in the shared object
cache. A number of implementations (p. 104) of shared object caches are available to choose from.

Multiple content negotiated responses can be stored concurrently, however the caching of partial content is not yet
supported by this module.

Turn on caching
CacheSocache shmcb
CacheSocacheMaxSize 102400
<Location /foo>

CacheEnable socache
</Location>

Fall back to the disk cache
CacheSocache shmcb
CacheSocacheMaxSize 102400
<Location /foo>

CacheEnable socache
CacheEnable disk

</Location>

=⇒Note:
MOD CACHE SOCACHE requires the services of MOD CACHE, which must be loaded before
mod cache socache.

Directives

• CacheSocache

• CacheSocacheMaxSize

• CacheSocacheMaxTime

• CacheSocacheMinTime

• CacheSocacheReadSize

• CacheSocacheReadTime

See also

• MOD CACHE

• MOD CACHE DISK

• Caching Guide (p. 40)

10.31. APACHE MODULE MOD CACHE SOCACHE 543

CacheSocache Directive

Description: The shared object cache implementation to use
Syntax: CacheSocache type[:args]
Context: server config, virtual host
Status: Extension
Module: mod cache socache
Compatibility: Available in Apache 2.4.5 and later

The CACHESOCACHE directive defines the name of the shared object cache implementation to use, followed by op-
tional arguments for that implementation. A number of implementations (p. 104) of shared object caches are available
to choose from.

CacheSocache shmcb

CacheSocacheMaxSize Directive

Description: The maximum size (in bytes) of an entry to be placed in the cache
Syntax: CacheSocacheMaxSize bytes
Default: CacheSocacheMaxSize 102400
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache socache
Compatibility: Available in Apache 2.4.5 and later

The CACHESOCACHEMAXSIZE directive sets the maximum size, in bytes, for the combined headers and body of a
document to be considered for storage in the cache. The larger the headers that are stored alongside the body, the
smaller the body may be.

The MOD CACHE SOCACHE module will only attempt to cache responses that have an explicit content length, or that
are small enough to be written in one pass. This is done to allow the MOD CACHE DISK module to have an opportunity
to cache responses larger than those cacheable within MOD CACHE SOCACHE.

CacheSocacheMaxSize 102400

CacheSocacheMaxTime Directive

Description: The maximum time (in seconds) for a document to be placed in the cache
Syntax: CacheSocacheMaxTime seconds
Default: CacheSocacheMaxTime 86400
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache socache
Compatibility: Available in Apache 2.4.5 and later

The CACHESOCACHEMAXTIME directive sets the maximum freshness lifetime, in seconds, for a document to be
stored in the cache. This value overrides the freshness lifetime defined for the document by the HTTP protocol.

CacheSocacheMaxTime 86400

544 CHAPTER 10. APACHE MODULES

CacheSocacheMinTime Directive

Description: The minimum time (in seconds) for a document to be placed in the cache
Syntax: CacheSocacheMinTime seconds
Default: CacheSocacheMinTime 600
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache socache
Compatibility: Available in Apache 2.4.5 and later

The CACHESOCACHEMINTIME directive sets the amount of seconds beyond the freshness lifetime of the response
that the response should be cached for in the shared object cache. If a response is only stored for its freshness lifetime,
there will be no opportunity to revalidate the response to make it fresh again.

CacheSocacheMinTime 600

CacheSocacheReadSize Directive

Description: The minimum size (in bytes) of the document to read and be cached before sending the data
downstream

Syntax: CacheSocacheReadSize bytes
Default: CacheSocacheReadSize 0
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache socache
Compatibility: Available in Apache 2.4.5 and later

The CACHESOCACHEREADSIZE directive sets the minimum amount of data, in bytes, to be read from the backend
before the data is sent to the client. The default of zero causes all data read of any size to be passed downstream to the
client immediately as it arrives. Setting this to a higher value causes the disk cache to buffer at least this amount before
sending the result to the client. This can improve performance when caching content from a slow reverse proxy.

This directive only takes effect when the data is being saved to the cache, as opposed to data being served from the
cache.

CacheReadSize 102400

CacheSocacheReadTime Directive

Description: The minimum time (in milliseconds) that should elapse while reading before data is sent down-
stream

Syntax: CacheSocacheReadTime milliseconds
Default: CacheSocacheReadTime 0
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod cache socache
Compatibility: Available in Apache 2.4.5 and later

The CACHESOCACHEREADTIME directive sets the minimum amount of elapsed time that should pass before making
an attempt to send data downstream to the client. During the time period, data will be buffered before sending the
result to the client. This can improve performance when caching content from a reverse proxy.

The default of zero disables this option.

10.31. APACHE MODULE MOD CACHE SOCACHE 545

This directive only takes effect when the data is being saved to the cache, as opposed to data being served from the
cache. It is recommended that this option be used alongside the CACHESOCACHEREADSIZE directive to ensure that
the server does not buffer excessively should data arrive faster than expected.

CacheSocacheReadTime 1000

546 CHAPTER 10. APACHE MODULES

10.32 Apache Module mod cern meta

Description: CERN httpd metafile semantics
Status: Extension
ModuleIdentifier: cern meta module
SourceFile: mod cern meta.c

Summary

Emulate the CERN HTTPD Meta file semantics. Meta files are HTTP headers that can be output in addition to the
normal range of headers for each file accessed. They appear rather like the Apache .asis files, and are able to provide a
crude way of influencing the Expires: header, as well as providing other curiosities. There are many ways to manage
meta information, this one was chosen because there is already a large number of CERN users who can exploit this
module.

More information on the CERN metafile semantics20 is available.

Directives

• MetaDir

• MetaFiles

• MetaSuffix

See also

• MOD HEADERS

• MOD ASIS

MetaDir Directive

Description: Name of the directory to find CERN-style meta information files
Syntax: MetaDir directory
Default: MetaDir .web
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: mod cern meta

Specifies the name of the directory in which Apache can find meta information files. The directory is usually a ’hidden’
subdirectory of the directory that contains the file being accessed. Set to "." to look in the same directory as the file:

MetaDir .

Or, to set it to a subdirectory of the directory containing the files:

MetaDir .meta

20http://www.w3.org/pub/WWW/Daemon/User/Config/General.html#MetaDir

http://www.w3.org/pub/WWW/Daemon/User/Config/General.html#MetaDir

10.32. APACHE MODULE MOD CERN META 547

MetaFiles Directive

Description: Activates CERN meta-file processing
Syntax: MetaFiles on|off
Default: MetaFiles off
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: mod cern meta

Turns on/off Meta file processing on a per-directory basis.

MetaSuffix Directive

Description: File name suffix for the file containing CERN-style meta information
Syntax: MetaSuffix suffix
Default: MetaSuffix .meta
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: mod cern meta

Specifies the file name suffix for the file containing the meta information. For example, the default val-
ues for the two directives will cause a request to DOCUMENT ROOT/somedir/index.html to look in
DOCUMENT ROOT/somedir/.web/index.html.meta and will use its contents to generate additional MIME
header information.

Example:

MetaSuffix .meta

548 CHAPTER 10. APACHE MODULES

10.33 Apache Module mod cgi

Description: Execution of CGI scripts
Status: Base
ModuleIdentifier: cgi module
SourceFile: mod cgi.c

Summary

Any file that has the handler cgi-script will be treated as a CGI script, and run by the server, with its output
being returned to the client. Files acquire this handler either by having a name containing an extension defined by the
ADDHANDLER directive, or by being in a SCRIPTALIAS directory.

For an introduction to using CGI scripts with Apache, see our tutorial on Dynamic Content With CGI (p. 226) .

When using a multi-threaded MPM under unix, the module MOD CGID should be used in place of this module. At the
user level, the two modules are essentially identical.

For backward-compatibility, the cgi-script handler will also be activated for any file with the mime-type
application/x-httpd-cgi. The use of the magic mime-type is deprecated.

Directives

• ScriptLog

• ScriptLogBuffer

• ScriptLogLength

See also

• ACCEPTPATHINFO

• OPTIONS ExecCGI

• SCRIPTALIAS

• ADDHANDLER

• Running CGI programs under different user IDs (p. 105)

• CGI Specification21

CGI Environment variables

The server will set the CGI environment variables as described in the CGI specification22, with the following provi-
sions:

PATH INFO This will not be available if the ACCEPTPATHINFO directive is explicitly set to off. The default behav-
ior, if ACCEPTPATHINFO is not given, is that MOD CGI will accept path info (trailing /more/path/info
following the script filename in the URI), while the core server will return a 404 NOT FOUND error for re-
quests with additional path info. Omitting the ACCEPTPATHINFO directive has the same effect as setting it On
for MOD CGI requests.

REMOTE HOST This will only be set if HOSTNAMELOOKUPS is set to on (it is off by default), and if a reverse
DNS lookup of the accessing host’s address indeed finds a host name.

21http://www.ietf.org/rfc/rfc3875
22http://www.ietf.org/rfc/rfc3875

http://www.ietf.org/rfc/rfc3875
http://www.ietf.org/rfc/rfc3875

10.33. APACHE MODULE MOD CGI 549

REMOTE IDENT This will only be set if IDENTITYCHECK is set to on and the accessing host supports the ident
protocol. Note that the contents of this variable cannot be relied upon because it can easily be faked, and if there
is a proxy between the client and the server, it is usually totally useless.

REMOTE USER This will only be set if the CGI script is subject to authentication.

CGI Debugging

Debugging CGI scripts has traditionally been difficult, mainly because it has not been possible to study the output
(standard output and error) for scripts which are failing to run properly. These directives provide more detailed logging
of errors when they occur.

CGI Logfile Format

When configured, the CGI error log logs any CGI which does not execute properly. Each CGI script which fails to
operate causes several lines of information to be logged. The first two lines are always of the format:

%% [time] request-line

%% HTTP-status CGI-script-filename

If the error is that CGI script cannot be run, the log file will contain an extra two lines:

%%error

error-message

Alternatively, if the error is the result of the script returning incorrect header information (often due to a bug in the
script), the following information is logged:

%request
All HTTP request headers received
POST or PUT entity (if any)
%response
All headers output by the CGI script
%stdout
CGI standard output
%stderr

CGI standard error

(The %stdout and %stderr parts may be missing if the script did not output anything on standard output or standard
error).

ScriptLog Directive

Description: Location of the CGI script error logfile
Syntax: ScriptLog file-path
Context: server config, virtual host
Status: Base
Module: MOD CGI, MOD CGID

The SCRIPTLOG directive sets the CGI script error logfile. If no SCRIPTLOG is given, no error log is created. If given,
any CGI errors are logged into the filename given as argument. If this is a relative file or path it is taken relative to the
SERVERROOT.

550 CHAPTER 10. APACHE MODULES

Example

ScriptLog logs/cgi_log

This log will be opened as the user the child processes run as, i.e. the user specified in the main USER directive. This
means that either the directory the script log is in needs to be writable by that user or the file needs to be manually
created and set to be writable by that user. If you place the script log in your main logs directory, do NOT change the
directory permissions to make it writable by the user the child processes run as.

Note that script logging is meant to be a debugging feature when writing CGI scripts, and is not meant to be activated
continuously on running servers. It is not optimized for speed or efficiency, and may have security problems if used in
a manner other than that for which it was designed.

ScriptLogBuffer Directive

Description: Maximum amount of PUT or POST requests that will be recorded in the scriptlog
Syntax: ScriptLogBuffer bytes
Default: ScriptLogBuffer 1024
Context: server config, virtual host
Status: Base
Module: MOD CGI, MOD CGID

The size of any PUT or POST entity body that is logged to the file is limited, to prevent the log file growing too big
too quickly if large bodies are being received. By default, up to 1024 bytes are logged, but this can be changed with
this directive.

ScriptLogLength Directive

Description: Size limit of the CGI script logfile
Syntax: ScriptLogLength bytes
Default: ScriptLogLength 10385760
Context: server config, virtual host
Status: Base
Module: MOD CGI, MOD CGID

SCRIPTLOGLENGTH can be used to limit the size of the CGI script logfile. Since the logfile logs a lot of information
per CGI error (all request headers, all script output) it can grow to be a big file. To prevent problems due to unbounded
growth, this directive can be used to set an maximum file-size for the CGI logfile. If the file exceeds this size, no more
information will be written to it.

10.34. APACHE MODULE MOD CGID 551

10.34 Apache Module mod cgid

Description: Execution of CGI scripts using an external CGI daemon
Status: Base
ModuleIdentifier: cgid module
SourceFile: mod cgid.c
Compatibility: Unix threaded MPMs only

Summary

Except for the optimizations and the additional SCRIPTSOCK directive noted below, MOD CGID behaves similarly to
MOD CGI. See the MOD CGI summary for additional details about Apache and CGI.

On certain unix operating systems, forking a process from a multi-threaded server is a very expensive operation
because the new process will replicate all the threads of the parent process. In order to avoid incurring this expense
on each CGI invocation, MOD CGID creates an external daemon that is responsible for forking child processes to run
CGI scripts. The main server communicates with this daemon using a unix domain socket.

This module is used by default instead of MOD CGI whenever a multi-threaded MPM is selected during the compilation
process. At the user level, this module is identical in configuration and operation to MOD CGI. The only exception
is the additional directive ScriptSock which gives the name of the socket to use for communication with the cgi
daemon.

Directives

• CGIDScriptTimeout

• ScriptLog (p. 549)

• ScriptLogBuffer (p. 550)

• ScriptLogLength (p. 550)

• ScriptSock

See also

• MOD CGI

• Running CGI programs under different user IDs (p. 105)

CGIDScriptTimeout Directive

Description: The length of time to wait for more output from the CGI program
Syntax: CGIDScriptTimeout time[s|ms]
Default: value of TIMEOUT directive when unset
Context: server config, virtual host, directory, .htaccess
Status: Base
Module: mod cgid
Compatibility: CGIDScriptTimeout defaults to zero in releases 2.4 and earlier

This directive limits the length of time to wait for more output from the CGI program. If the time is exceeded, the
request and CGI are terminated.

Example

CGIDScriptTimeout 20

552 CHAPTER 10. APACHE MODULES

ScriptSock Directive

Description: The filename prefix of the socket to use for communication with the cgi daemon
Syntax: ScriptSock file-path
Default: ScriptSock cgisock
Context: server config
Status: Base
Module: mod cgid

This directive sets the filename prefix of the socket to use for communication with the CGI daemon, an extension
corresponding to the process ID of the server will be appended. The socket will be opened using the permissions of
the user who starts Apache (usually root). To maintain the security of communications with CGI scripts, it is important
that no other user has permission to write in the directory where the socket is located.

If file-path is not an absolute path, the location specified will be relative to the value of DEFAULTRUNTIMEDIR.

Example

ScriptSock /var/run/cgid.sock

10.35. APACHE MODULE MOD CHARSET LITE 553

10.35 Apache Module mod charset lite

Description: Specify character set translation or recoding
Status: Extension
ModuleIdentifier: charset lite module
SourceFile: mod charset lite.c

Summary

MOD CHARSET LITE allows the server to change the character set of responses before sending them to the client. In an
EBCDIC environment, Apache always translates HTTP protocol content (e.g. response headers) from the code page
of the Apache process locale to ISO-8859-1, but not the body of responses. In any environment, MOD CHARSET LITE
can be used to specify that response bodies should be translated. For example, if files are stored in EBCDIC, then
MOD CHARSET LITE can translate them to ISO-8859-1 before sending them to the client.

This module provides a small subset of configuration mechanisms implemented by Russian Apache and its associated
mod charset.

Directives

• CharsetDefault

• CharsetOptions

• CharsetSourceEnc

Common Problems

Invalid character set names

The character set name parameters of CHARSETSOURCEENC and CHARSETDEFAULT must be acceptable to the
translation mechanism used by APR on the system where MOD CHARSET LITE is deployed. These character set
names are not standardized and are usually not the same as the corresponding values used in http headers. Currently,
APR can only use iconv(3), so you can easily test your character set names using the iconv(1) program, as follows:

iconv -f charsetsourceenc-value -t charsetdefault-value

Mismatch between character set of content and translation rules

If the translation rules don’t make sense for the content, translation can fail in various ways, including:

• The translation mechanism may return a bad return code, and the connection will be aborted.

• The translation mechanism may silently place special characters (e.g., question marks) in the output buffer when
it cannot translate the input buffer.

554 CHAPTER 10. APACHE MODULES

CharsetDefault Directive

Description: Charset to translate into
Syntax: CharsetDefault charset
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod charset lite

The CHARSETDEFAULT directive specifies the charset that content in the associated container should be translated to.

The value of the charset argument must be accepted as a valid character set name by the character set support in APR.
Generally, this means that it must be supported by iconv.

Example

<Directory "/export/home/trawick/apacheinst/htdocs/convert">
CharsetSourceEnc UTF-16BE
CharsetDefault ISO-8859-1

</Directory>

=⇒Specifying the same charset for both CHARSETSOURCEENC and CHARSETDEFAULT disables
translation. The charset need not match the charset of the response, but it must be a valid
charset on the system.

CharsetOptions Directive

Description: Configures charset translation behavior
Syntax: CharsetOptions option [option] ...
Default: CharsetOptions ImplicitAdd
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod charset lite

The CHARSETOPTIONS directive configures certain behaviors of MOD CHARSET LITE. Option can be one of

ImplicitAdd | NoImplicitAdd The ImplicitAdd keyword specifies that MOD CHARSET LITE should
implicitly insert its filter when the configuration specifies that the character set of content should be translated.
If the filter chain is explicitly configured using the ADDOUTPUTFILTER directive, NoImplicitAdd should
be specified so that MOD CHARSET LITE doesn’t add its filter.

TranslateAllMimeTypes | NoTranslateAllMimeTypes Normally, MOD CHARSET LITE will only
perform translation on a small subset of possible mimetypes. When the TranslateAllMimeTypes key-
word is specified for a given configuration section, translation is performed without regard for mimetype.

CharsetSourceEnc Directive

Description: Source charset of files
Syntax: CharsetSourceEnc charset
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod charset lite

10.35. APACHE MODULE MOD CHARSET LITE 555

The CHARSETSOURCEENC directive specifies the source charset of files in the associated container.

The value of the charset argument must be accepted as a valid character set name by the character set support in APR.
Generally, this means that it must be supported by iconv.

Example

<Directory "/export/home/trawick/apacheinst/htdocs/convert">
CharsetSourceEnc UTF-16BE
CharsetDefault ISO-8859-1

</Directory>

The character set names in this example work with the iconv translation support in Solaris 8.

=⇒Specifying the same charset for both CHARSETSOURCEENC and CHARSETDEFAULT disables
translation. The charset need not match the charset of the response, but it must be a valid
charset on the system.

556 CHAPTER 10. APACHE MODULES

10.36 Apache Module mod data

Description: Convert response body into an RFC2397 data URL
Status: Extension
ModuleIdentifier: data module
SourceFile: mod data.c
Compatibility: Available in Apache 2.3 and later

Summary

This module provides the ability to convert a response into an RFC2397 data URL23.

Data URLs can be embedded inline within web pages using something like the MOD INCLUDE module, to remove the
need for clients to make separate connections to fetch what may potentially be many small images. Data URLs may
also be included into pages generated by scripting languages such as PHP.

An example of a data URL

AAAC8IyPqcvt3wCcDkiLc7C0qwyGHhSWpjQu5yqmCYsapyuvUUlvONmOZtfzgFz
ByTB10QgxOR0TqBQejhRNzOfkVJ+5YiUqrXF5Y5lKh/DeuNcP5yLWGsEbtLiOSp
a/TPg7JpJHxyendzWTBfX0cxOnKPjgBzi4diinWGdkF8kjdfnycQZXZeYGejmJl
ZeGl9i2icVqaNVailT6F5iJ90m6mvuTS4OK05M0vDk0Q4XUtwvKOzrcd3iq9uis
F81M1OIcR7lEewwcLp7tuNNkM3uNna3F2JQFo97Vriy/Xl4/f1cf5VWzXyym7PH

hhx4dbgYKAAA7

The filter takes no parameters, and can be added to the filter stack using the SETOUTPUTFILTER directive, or any of
the directives supported by the MOD FILTER module.

Configuring the filter

<Location "/data/images">
SetOutputFilter DATA

</Location>

Directives This module provides no directives.

See also

• Filters (p. 100)

23http://tools.ietf.org/html/rfc2397

http://tools.ietf.org/html/rfc2397

10.37. APACHE MODULE MOD DAV 557

10.37 Apache Module mod dav

Description: Distributed Authoring and Versioning (WebDAV24) functionality
Status: Extension
ModuleIdentifier: dav module
SourceFile: mod dav.c

Summary

This module provides class 1 and class 2 WebDAV25 (’Web-based Distributed Authoring and Versioning’) function-
ality for Apache. This extension to the HTTP protocol allows creating, moving, copying, and deleting resources and
collections on a remote web server.

Directives

• Dav

• DavDepthInfinity

• DavMinTimeout

See also

• DAVLOCKDB

• LIMITXMLREQUESTBODY

• WebDAV Resources26

Enabling WebDAV

To enable MOD DAV, add the following to a container in your httpd.conf file:

Dav On

This enables the DAV file system provider, which is implemented by the MOD DAV FS module. Therefore, that module
must be compiled into the server or loaded at runtime using the LOADMODULE directive.

In addition, a location for the DAV lock database must be specified in the global section of your httpd.conf file
using the DAVLOCKDB directive:

DavLockDB /usr/local/apache2/var/DavLock

The directory containing the lock database file must be writable by the USER and GROUP under which Apache is
running.

You may wish to add a <LIMIT> clause inside the <LOCATION> directive to limit access to DAV-enabled locations.
If you want to set the maximum amount of bytes that a DAV client can send at one request, you have to use the
LIMITXMLREQUESTBODY directive. The "normal" LIMITREQUESTBODY directive has no effect on DAV requests.

25http://www.webdav.org
26http://www.webdav.org

http://www.webdav.org
http://www.webdav.org

558 CHAPTER 10. APACHE MODULES

Full Example

DavLockDB "/usr/local/apache2/var/DavLock"

<Directory "/usr/local/apache2/htdocs/foo">
Require all granted
Dav On

AuthType Basic
AuthName DAV
AuthUserFile "user.passwd"

<LimitExcept GET POST OPTIONS>
Require user admin

</LimitExcept>
</Directory>

Security Issues

Since DAV access methods allow remote clients to manipulate files on the server, you must take particular care to
assure that your server is secure before enabling MOD DAV.

Any location on the server where DAV is enabled should be protected by authentication. The use of HTTP Basic
Authentication is not recommended. You should use at least HTTP Digest Authentication, which is provided by the
MOD AUTH DIGEST module. Nearly all WebDAV clients support this authentication method. An alternative is Basic
Authentication over an SSL (p. 182) enabled connection.

In order for MOD DAV to manage files, it must be able to write to the directories and files under its control using the
USER and GROUP under which Apache is running. New files created will also be owned by this USER and GROUP.
For this reason, it is important to control access to this account. The DAV repository is considered private to Apache;
modifying files outside of Apache (for example using FTP or filesystem-level tools) should not be allowed.

MOD DAV may be subject to various kinds of denial-of-service attacks. The LIMITXMLREQUESTBODY directive can
be used to limit the amount of memory consumed in parsing large DAV requests. The DAVDEPTHINFINITY directive
can be used to prevent PROPFIND requests on a very large repository from consuming large amounts of memory.
Another possible denial-of-service attack involves a client simply filling up all available disk space with many large
files. There is no direct way to prevent this in Apache, so you should avoid giving DAV access to untrusted users.

Complex Configurations

One common request is to use MOD DAV to manipulate dynamic files (PHP scripts, CGI scripts, etc). This is difficult
because a GET request will always run the script, rather than downloading its contents. One way to avoid this is to map
two different URLs to the content, one of which will run the script, and one of which will allow it to be downloaded
and manipulated with DAV.

Alias "/phparea" "/home/gstein/php_files"
Alias "/php-source" "/home/gstein/php_files"
<Location "/php-source">

Dav On
ForceType text/plain

</Location>

With this setup, http://example.com/phparea can be used to access the output of the PHP scripts, and
http://example.com/php-source can be used with a DAV client to manipulate them.

10.37. APACHE MODULE MOD DAV 559

Dav Directive

Description: Enable WebDAV HTTP methods
Syntax: Dav On|Off|provider-name
Default: Dav Off
Context: directory
Status: Extension
Module: mod dav

Use the DAV directive to enable the WebDAV HTTP methods for the given container:

<Location "/foo">
Dav On

</Location>

The value On is actually an alias for the default provider filesystem which is served by the MOD DAV FS module.
Note, that once you have DAV enabled for some location, it cannot be disabled for sublocations. For a complete
configuration example have a look at the section above.

! Do not enable WebDAV until you have secured your server. Otherwise everyone will be able
to distribute files on your system.

DavDepthInfinity Directive

Description: Allow PROPFIND, Depth: Infinity requests
Syntax: DavDepthInfinity on|off
Default: DavDepthInfinity off
Context: server config, virtual host, directory
Status: Extension
Module: mod dav

Use the DAVDEPTHINFINITY directive to allow the processing of PROPFIND requests containing the header ’Depth:
Infinity’. Because this type of request could constitute a denial-of-service attack, by default it is not allowed.

DavMinTimeout Directive

Description: Minimum amount of time the server holds a lock on a DAV resource
Syntax: DavMinTimeout seconds
Default: DavMinTimeout 0
Context: server config, virtual host, directory
Status: Extension
Module: mod dav

When a client requests a DAV resource lock, it can also specify a time when the lock will be automatically removed
by the server. This value is only a request, and the server can ignore it or inform the client of an arbitrary value.

Use the DAVMINTIMEOUT directive to specify, in seconds, the minimum lock timeout to return to a client. Microsoft
Web Folders defaults to a timeout of 120 seconds; the DAVMINTIMEOUT can override this to a higher value (like 600
seconds) to reduce the chance of the client losing the lock due to network latency.

Example

<Location "/MSWord">
DavMinTimeout 600

</Location>

560 CHAPTER 10. APACHE MODULES

10.38 Apache Module mod dav fs

Description: Filesystem provider for MOD DAV
Status: Extension
ModuleIdentifier: dav fs module
SourceFile: mod dav fs.c

Summary

This module requires the service of MOD DAV. It acts as a support module for MOD DAV and provides access to
resources located in the server’s file system. The formal name of this provider is filesystem. MOD DAV backend
providers will be invoked by using the DAV directive:

Example

Dav filesystem

Since filesystem is the default provider for MOD DAV, you may simply use the value On instead.

Directives

• DavLockDB

See also

• MOD DAV

DavLockDB Directive

Description: Location of the DAV lock database
Syntax: DavLockDB file-path
Context: server config, virtual host
Status: Extension
Module: mod dav fs

Use the DAVLOCKDB directive to specify the full path to the lock database, excluding an extension. If the path is not
absolute, it will be taken relative to SERVERROOT. The implementation of MOD DAV FS uses a SDBM database to
track user locks.

Example

DavLockDB "var/DavLock"

The directory containing the lock database file must be writable by the USER and GROUP under which Apache is
running. For security reasons, you should create a directory for this purpose rather than changing the permissions on
an existing directory. In the above example, Apache will create files in the var/ directory under the SERVERROOT
with the base filename DavLock and extension name chosen by the server.

10.39. APACHE MODULE MOD DAV LOCK 561

10.39 Apache Module mod dav lock

Description: Generic locking module for MOD DAV
Status: Extension
ModuleIdentifier: dav lock module
SourceFile: mod dav lock.c
Compatibility: Available in version 2.1 and later

Summary

This module implements a generic locking API which can be used by any backend provider of MOD DAV. It requires
at least the service of MOD DAV. But without a backend provider which makes use of it, it’s useless and should not
be loaded into the server. A sample backend module which actually utilizes MOD DAV LOCK is mod dav svn27, the
subversion provider module.

Note that MOD DAV FS does not need this generic locking module, because it uses its own more specialized version.

In order to make MOD DAV LOCK functional, you just have to specify the location of the lock database using the
DAVGENERICLOCKDB directive described below.

=⇒Developer’s Note
In order to retrieve the pointer to the locking provider function, you have to use the
ap lookup provider API with the arguments dav-lock, generic, and 0.

Directives

• DavGenericLockDB

See also

• MOD DAV

DavGenericLockDB Directive

Description: Location of the DAV lock database
Syntax: DavGenericLockDB file-path
Context: server config, virtual host, directory
Status: Extension
Module: mod dav lock

Use the DAVGENERICLOCKDB directive to specify the full path to the lock database, excluding an extension. If the
path is not absolute, it will be interpreted relative to SERVERROOT. The implementation of MOD DAV LOCK uses a
SDBM database to track user locks.

Example

DavGenericLockDB var/DavLock

The directory containing the lock database file must be writable by the USER and GROUP under which Apache is
running. For security reasons, you should create a directory for this purpose rather than changing the permissions on
an existing directory. In the above example, Apache will create files in the var/ directory under the SERVERROOT
with the base filename DavLock and an extension added by the server.

27http://subversion.apache.org/

http://subversion.apache.org/

562 CHAPTER 10. APACHE MODULES

10.40 Apache Module mod dbd

Description: Manages SQL database connections
Status: Extension
ModuleIdentifier: dbd module
SourceFile: mod dbd.c
Compatibility: Version 2.1 and later

Summary

MOD DBD manages SQL database connections using APR. It provides database connections on request to modules
requiring SQL database functions, and takes care of managing databases with optimal efficiency and scalability for
both threaded and non-threaded MPMs. For details, see the APR28 website and this overview of the Apache DBD
Framework29 by its original developer.

Directives

• DBDExptime

• DBDInitSQL

• DBDKeep

• DBDMax

• DBDMin

• DBDParams

• DBDPersist

• DBDPrepareSQL

• DBDriver

See also

• Password Formats (p. 345)

Connection Pooling

This module manages database connections, in a manner optimised for the platform. On non-threaded platforms,
it provides a persistent connection in the manner of classic LAMP (Linux, Apache, Mysql, Perl/PHP/Python). On
threaded platform, it provides an altogether more scalable and efficient connection pool, as described in this article at
ApacheTutor30. Note that MOD DBD supersedes the modules presented in that article.

Apache DBD API

MOD DBD exports five functions for other modules to use. The API is as follows:

typedef struct {
apr_dbd_t *handle;
apr_dbd_driver_t *driver;

28http://apr.apache.org/
29http://people.apache.org/˜niq/dbd.html
30http://www.apachetutor.org/dev/reslist

http://apr.apache.org/
http://people.apache.org/~niq/dbd.html
http://www.apachetutor.org/dev/reslist

10.40. APACHE MODULE MOD DBD 563

apr_hash_t *prepared;
} ap_dbd_t;

/* Export functions to access the database */

/* acquire a connection that MUST be explicitly closed.

* Returns NULL on error

*/
AP_DECLARE(ap_dbd_t*) ap_dbd_open(apr_pool_t*, server_rec*);

/* release a connection acquired with ap_dbd_open */
AP_DECLARE(void) ap_dbd_close(server_rec*, ap_dbd_t*);

/* acquire a connection that will have the lifetime of a request

* and MUST NOT be explicitly closed. Return NULL on error.

* This is the preferred function for most applications.

*/
AP_DECLARE(ap_dbd_t*) ap_dbd_acquire(request_rec*);

/* acquire a connection that will have the lifetime of a connection

* and MUST NOT be explicitly closed. Return NULL on error.

*/
AP_DECLARE(ap_dbd_t*) ap_dbd_cacquire(conn_rec*);

/* Prepare a statement for use by a client module */
AP_DECLARE(void) ap_dbd_prepare(server_rec*, const char*, const char*);

/* Also export them as optional functions for modules that prefer it */
APR_DECLARE_OPTIONAL_FN(ap_dbd_t*, ap_dbd_open, (apr_pool_t*, server_rec*));
APR_DECLARE_OPTIONAL_FN(void, ap_dbd_close, (server_rec*, ap_dbd_t*));
APR_DECLARE_OPTIONAL_FN(ap_dbd_t*, ap_dbd_acquire, (request_rec*));
APR_DECLARE_OPTIONAL_FN(ap_dbd_t*, ap_dbd_cacquire, (conn_rec*));
APR_DECLARE_OPTIONAL_FN(void, ap_dbd_prepare, (server_rec*, const char*, const char*));

SQL Prepared Statements

MOD DBD supports SQL prepared statements on behalf of modules that may wish to use them. Each prepared state-
ment must be assigned a name (label), and they are stored in a hash: the prepared field of an ap dbd t. Hash
entries are of type apr dbd prepared t and can be used in any of the apr dbd prepared statement SQL query or
select commands.

It is up to dbd user modules to use the prepared statements and document what statements can be specified in
httpd.conf, or to provide their own directives and use ap dbd prepare.

! Caveat
When using prepared statements with a MySQL database, it is preferred to set reconnect
to 0 in the connection string as to avoid errors that arise from the MySQL client reconnecting
without properly resetting the prepared statements. If set to 1, any broken connections will be
attempted fixed, but as mod dbd is not informed, the prepared statements will be invalidated.

564 CHAPTER 10. APACHE MODULES

SECURITY WARNING

Any web/database application needs to secure itself against SQL injection attacks. In most cases, Apache DBD is
safe, because applications use prepared statements, and untrusted inputs are only ever used as data. Of course, if you
use it via third-party modules, you should ascertain what precautions they may require.

However, the FreeTDS driver is inherently unsafe. The underlying library doesn’t support prepared statements, so the
driver emulates them, and the untrusted input is merged into the SQL statement.

It can be made safe by untainting all inputs: a process inspired by Perl’s taint checking. Each input is matched against
a regexp, and only the match is used, according to the Perl idiom:

$untrusted =˜ /([a-z]+)/;
$trusted = $1;

To use this, the untainting regexps must be included in the prepared statements configured. The regexp follows imme-
diately after the % in the prepared statement, and is enclosed in curly brackets {}. For example, if your application
expects alphanumeric input, you can use:

"SELECT foo FROM bar WHERE input = %s"

with other drivers, and suffer nothing worse than a failed query. But with FreeTDS you’d need:

"SELECT foo FROM bar WHERE input = %{([A-Za-z0-9]+)}s"

Now anything that doesn’t match the regexp’s $1 match is discarded, so the statement is safe.

An alternative to this may be the third-party ODBC driver, which offers the security of genuine prepared statements.

DBDExptime Directive

Description: Keepalive time for idle connections
Syntax: DBDExptime time-in-seconds
Default: DBDExptime 300
Context: server config, virtual host
Status: Extension
Module: mod dbd

Set the time to keep idle connections alive when the number of connections specified in DBDKeep has been exceeded
(threaded platforms only).

DBDInitSQL Directive

Description: Execute an SQL statement after connecting to a database
Syntax: DBDInitSQL "SQL statement"
Context: server config, virtual host
Status: Extension
Module: mod dbd

Modules, that wish it, can have one or more SQL statements executed when a connection to a database is created.
Example usage could be initializing certain values or adding a log entry when a new connection is made to the
database.

10.40. APACHE MODULE MOD DBD 565

DBDKeep Directive

Description: Maximum sustained number of connections
Syntax: DBDKeep number
Default: DBDKeep 2
Context: server config, virtual host
Status: Extension
Module: mod dbd

Set the maximum number of connections per process to be sustained, other than for handling peak demand (threaded
platforms only).

DBDMax Directive

Description: Maximum number of connections
Syntax: DBDMax number
Default: DBDMax 10
Context: server config, virtual host
Status: Extension
Module: mod dbd

Set the hard maximum number of connections per process (threaded platforms only).

DBDMin Directive

Description: Minimum number of connections
Syntax: DBDMin number
Default: DBDMin 1
Context: server config, virtual host
Status: Extension
Module: mod dbd

Set the minimum number of connections per process (threaded platforms only).

DBDParams Directive

Description: Parameters for database connection
Syntax: DBDParams param1=value1[,param2=value2]
Context: server config, virtual host
Status: Extension
Module: mod dbd

As required by the underlying driver. Typically this will be used to pass whatever cannot be defaulted amongst
username, password, database name, hostname and port number for connection.

Connection string parameters for current drivers include:

FreeTDS (for MSSQL and SyBase) username, password, appname, dbname, host, charset, lang, server

MySQL host, port, user, pass, dbname, sock, flags, fldsz, group, reconnect

Oracle user, pass, dbname, server

PostgreSQL The connection string is passed straight through to PQconnectdb

566 CHAPTER 10. APACHE MODULES

SQLite2 The connection string is split on a colon, and part1:part2 is used as sqlite open(part1,
atoi(part2), NULL)

SQLite3 The connection string is passed straight through to sqlite3 open

ODBC datasource, user, password, connect, ctimeout, stimeout, access, txmode, bufsize

DBDPersist Directive

Description: Whether to use persistent connections
Syntax: DBDPersist On|Off
Context: server config, virtual host
Status: Extension
Module: mod dbd

If set to Off, persistent and pooled connections are disabled. A new database connection is opened when requested by
a client, and closed immediately on release. This option is for debugging and low-usage servers.

The default is to enable a pool of persistent connections (or a single LAMP-style persistent connection in the case of
a non-threaded server), and should almost always be used in operation.

Prior to version 2.2.2, this directive accepted only the values 0 and 1 instead of Off and On, respectively.

DBDPrepareSQL Directive

Description: Define an SQL prepared statement
Syntax: DBDPrepareSQL "SQL statement" label
Context: server config, virtual host
Status: Extension
Module: mod dbd

For modules such as authentication that repeatedly use a single SQL statement, optimum performance is achieved
by preparing the statement at startup rather than every time it is used. This directive prepares an SQL statement and
assigns it a label.

DBDriver Directive

Description: Specify an SQL driver
Syntax: DBDriver name
Context: server config, virtual host
Status: Extension
Module: mod dbd

Selects an apr dbd driver by name. The driver must be installed on your system (on most systems, it will be a shared
object or dll). For example, DBDriver mysql will select the MySQL driver in apr dbd mysql.so.

10.41. APACHE MODULE MOD DEFLATE 567

10.41 Apache Module mod deflate

Description: Compress content before it is delivered to the client
Status: Extension
ModuleIdentifier: deflate module
SourceFile: mod deflate.c

Summary

The MOD DEFLATE module provides the DEFLATE output filter that allows output from your server to be compressed
before being sent to the client over the network.

Directives

• DeflateBufferSize

• DeflateCompressionLevel

• DeflateFilterNote

• DeflateInflateLimitRequestBody

• DeflateInflateRatioBurst

• DeflateInflateRatioLimit

• DeflateMemLevel

• DeflateWindowSize

See also

• Filters (p. 100)

Sample Configurations

! Compression and TLS
Some web applications are vulnerable to an information disclosure attack when a TLS con-
nection carries deflate compressed data. For more information, review the details of the
"BREACH" family of attacks.

This is a simple configuration that compresses common text-based content types.

Compress only a few types

AddOutputFilterByType DEFLATE text/html text/plain text/xml text/css text/javascript application/javascript

Enabling Compression

! Compression and TLS
Some web applications are vulnerable to an information disclosure attack when a TLS con-
nection carries deflate compressed data. For more information, review the details of the
"BREACH" family of attacks.

568 CHAPTER 10. APACHE MODULES

Output Compression

Compression is implemented by the DEFLATE filter (p. 100) . The following directive will enable compression for
documents in the container where it is placed:

SetOutputFilter DEFLATE
SetEnvIfNoCase Request_URI "\.(?:gif|jpe?g|png)$" no-gzip

If you want to restrict the compression to particular MIME types in general, you may use the ADDOUTPUTFILTER-
BYTYPE directive. Here is an example of enabling compression only for the html files of the Apache documentation:

<Directory "/your-server-root/manual">
AddOutputFilterByType DEFLATE text/html

</Directory>

=⇒Note
The DEFLATE filter is always inserted after RESOURCE filters like PHP or SSI. It never
touches internal subrequests.

=⇒Note
There is an environment variable force-gzip, set via SETENV, which will ignore the
accept-encoding setting of your browser and will send compressed output.

Output Decompression

The MOD DEFLATE module also provides a filter for inflating/uncompressing a gzip compressed response body. In or-
der to activate this feature you have to insert the INFLATE filter into the output filter chain using SETOUTPUTFILTER
or ADDOUTPUTFILTER, for example:

<Location "/dav-area">
ProxyPass "http://example.com/"
SetOutputFilter INFLATE

</Location>

This Example will uncompress gzip’ed output from example.com, so other filters can do further processing with it.

Input Decompression

The MOD DEFLATE module also provides a filter for decompressing a gzip compressed request body . In order to
activate this feature you have to insert the DEFLATE filter into the input filter chain using SETINPUTFILTER or
ADDINPUTFILTER, for example:

<Location "/dav-area">
SetInputFilter DEFLATE

</Location>

Now if a request contains a Content-Encoding: gzip header, the body will be automatically decompressed.
Few browsers have the ability to gzip request bodies. However, some special applications actually do support request
compression, for instance some WebDAV31 clients.

31http://www.webdav.org

http://www.webdav.org

10.41. APACHE MODULE MOD DEFLATE 569

! Note on Content-Length
If you evaluate the request body yourself, don’t trust the Content-Length header! The
Content-Length header reflects the length of the incoming data from the client and not the byte
count of the decompressed data stream.

Dealing with proxy servers

The MOD DEFLATE module sends a Vary: Accept-Encoding HTTP response header to alert proxies that a
cached response should be sent only to clients that send the appropriate Accept-Encoding request header. This
prevents compressed content from being sent to a client that will not understand it.

If you use some special exclusions dependent on, for example, the User-Agent header, you must manually configure
an addition to the Vary header to alert proxies of the additional restrictions. For example, in a typical configuration
where the addition of the DEFLATE filter depends on the User-Agent, you should add:

Header append Vary User-Agent

If your decision about compression depends on other information than request headers (e.g. HTTP version), you have
to set the Vary header to the value *. This prevents compliant proxies from caching entirely.

Example

Header set Vary *

Serving pre-compressed content

Since MOD DEFLATE re-compresses content each time a request is made, some performance benefit can be derived
by pre-compressing the content and telling mod deflate to serve them without re-compressing them. This may be
accomplished using a configuration like the following:

<IfModule mod_headers.c>
Serve gzip compressed CSS files if they exist
and the client accepts gzip.
RewriteCond "%{HTTP:Accept-encoding}" "gzip"
RewriteCond "%{REQUEST_FILENAME}\.gz" -s
RewriteRule "ˆ(.*)\.css" "$1\.css\.gz" [QSA]

Serve gzip compressed JS files if they exist
and the client accepts gzip.
RewriteCond "%{HTTP:Accept-encoding}" "gzip"
RewriteCond "%{REQUEST_FILENAME}\.gz" -s
RewriteRule "ˆ(.*)\.js" "$1\.js\.gz" [QSA]

Serve correct content types, and prevent mod_deflate double gzip.
RewriteRule "\.css\.gz$" "-" [T=text/css,E=no-gzip:1]
RewriteRule "\.js\.gz$" "-" [T=text/javascript,E=no-gzip:1]

<FilesMatch "(\.js\.gz|\.css\.gz)$">

570 CHAPTER 10. APACHE MODULES

Serve correct encoding type.
Header append Content-Encoding gzip

Force proxies to cache gzipped &
non-gzipped css/js files separately.
Header append Vary Accept-Encoding

</FilesMatch>
</IfModule>

DeflateBufferSize Directive

Description: Fragment size to be compressed at one time by zlib
Syntax: DeflateBufferSize value
Default: DeflateBufferSize 8096
Context: server config, virtual host
Status: Extension
Module: mod deflate

The DEFLATEBUFFERSIZE directive specifies the size in bytes of the fragments that zlib should compress at one time.

DeflateCompressionLevel Directive

Description: How much compression do we apply to the output
Syntax: DeflateCompressionLevel value
Default: Zlib’s default
Context: server config, virtual host
Status: Extension
Module: mod deflate

The DEFLATECOMPRESSIONLEVEL directive specifies what level of compression should be used, the higher the
value, the better the compression, but the more CPU time is required to achieve this.

The value must between 1 (less compression) and 9 (more compression).

DeflateFilterNote Directive

Description: Places the compression ratio in a note for logging
Syntax: DeflateFilterNote [type] notename
Context: server config, virtual host
Status: Extension
Module: mod deflate

The DEFLATEFILTERNOTE directive specifies that a note about compression ratios should be attached to the request.
The name of the note is the value specified for the directive. You can use that note for statistical purposes by adding
the value to your access log (p. 53) .

Example

DeflateFilterNote ratio

LogFormat ’"%r" %b (%{ratio}n) "%{User-agent}i"’ deflate
CustomLog "logs/deflate_log" deflate

If you want to extract more accurate values from your logs, you can use the type argument to specify the type of data
left as a note for logging. type can be one of:

10.41. APACHE MODULE MOD DEFLATE 571

Input Store the byte count of the filter’s input stream in the note.

Output Store the byte count of the filter’s output stream in the note.

Ratio Store the compression ratio (output/input * 100) in the note. This is the default, if the type argument
is omitted.

Thus you may log it this way:

Accurate Logging

DeflateFilterNote Input instream
DeflateFilterNote Output outstream
DeflateFilterNote Ratio ratio

LogFormat ’"%r" %{outstream}n/%{instream}n (%{ratio}n%%)’ deflate
CustomLog "logs/deflate_log" deflate

See also

• MOD LOG CONFIG

DeflateInflateLimitRequestBody Directive

Description: Maximum size of inflated request bodies
Syntax: DeflateInflateLimitRequestBodyvalue
Default: None, but LimitRequestBody applies after deflation
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod deflate
Compatibility: 2.4.10 and later

The DEFLATEINFLATELIMITREQUESTBODY directive specifies the maximum size of an inflated request body. If it
is unset, LIMITREQUESTBODY is applied to the inflated body.

DeflateInflateRatioBurst Directive

Description: Maximum number of times the inflation ratio for request bodies can be crossed
Syntax: DeflateInflateRatioBurst value
Default: 3
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod deflate
Compatibility: 2.4.10 and later

The DEFLATEINFLATERATIOBURST directive specifies the maximum number of times the DEFLATEINFLATERATI-
OLIMIT can be crossed before terminating the request.

572 CHAPTER 10. APACHE MODULES

DeflateInflateRatioLimit Directive

Description: Maximum inflation ratio for request bodies
Syntax: DeflateInflateRatioLimit value
Default: 200
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod deflate
Compatibility: 2.4.10 and later

The DEFLATEINFLATERATIOLIMIT directive specifies the maximum ratio of deflated to inflated size of an inflated re-
quest body. This ratio is checked as the body is streamed in, and if crossed more than DEFLATEINFLATERATIOBURST
times, the request will be terminated.

DeflateMemLevel Directive

Description: How much memory should be used by zlib for compression
Syntax: DeflateMemLevel value
Default: DeflateMemLevel 9
Context: server config, virtual host
Status: Extension
Module: mod deflate

The DEFLATEMEMLEVEL directive specifies how much memory should be used by zlib for compression (a value
between 1 and 9).

DeflateWindowSize Directive

Description: Zlib compression window size
Syntax: DeflateWindowSize value
Default: DeflateWindowSize 15
Context: server config, virtual host
Status: Extension
Module: mod deflate

The DEFLATEWINDOWSIZE directive specifies the zlib compression window size (a value between 1 and 15). Gen-
erally, the higher the window size, the higher can the compression ratio be expected.

10.42. APACHE MODULE MOD DIALUP 573

10.42 Apache Module mod dialup

Description: Send static content at a bandwidth rate limit, defined by the various old modem standards
Status: Experimental
ModuleIdentifier: dialup module
SourceFile: mod dialup.c

Summary

It is a module that sends static content at a bandwidth rate limit, defined by the various old modem standards. So, you
can browse your site with a 56k V.92 modem, by adding something like this:

<Location "/mysite">
ModemStandard "V.92"

</Location>

Previously to do bandwidth rate limiting modules would have to block an entire thread, for each client, and insert
sleeps to slow the bandwidth down. Using the new suspend feature, a handler can get callback N milliseconds in the
future, and it will be invoked by the Event MPM on a different thread, once the timer hits. From there the handler can
continue to send data to the client.

Directives

• ModemStandard

ModemStandard Directive

Description: Modem standard to simulate
Syntax: ModemStandard V.21|V.26bis|V.32|V.92
Context: directory
Status: Experimental
Module: mod dialup

Specify what modem standard you wish to simulate.

<Location "/mysite">
ModemStandard "V.26bis"

</Location>

574 CHAPTER 10. APACHE MODULES

10.43 Apache Module mod dir

Description: Provides for "trailing slash" redirects and serving directory index files
Status: Base
ModuleIdentifier: dir module
SourceFile: mod dir.c

Summary

The index of a directory can come from one of two sources:

• A file written by the user, typically called index.html. The DIRECTORYINDEX directive sets the name of
this file. This is controlled by MOD DIR.

• Otherwise, a listing generated by the server. This is provided by MOD AUTOINDEX.

The two functions are separated so that you can completely remove (or replace) automatic index generation should
you want to.

A "trailing slash" redirect is issued when the server receives a request for a URL
http://servername/foo/dirname where dirname is a directory. Directories require a trailing
slash, so MOD DIR issues a redirect to http://servername/foo/dirname/.

Directives

• DirectoryCheckHandler

• DirectoryIndex

• DirectoryIndexRedirect

• DirectorySlash

• FallbackResource

DirectoryCheckHandler Directive

Description: Toggle how this module responds when another handler is configured
Syntax: DirectoryCheckHandler On|Off
Default: DirectoryCheckHandler Off
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod dir
Compatibility: Available in 2.4.8 and later. Releases prior to 2.4 implicitly act as if "DirectoryCheckHandler

ON" was specified.

The DIRECTORYCHECKHANDLER directive determines whether MOD DIR should check for directory indexes or add
trailing slashes when some other handler has been configured for the current URL. Handlers can be set by directives
such as SETHANDLER or by other modules, such as MOD REWRITE during per-directory substitutions.

In releases prior to 2.4, this module did not take any action if any other handler was configured for a URL. This allows
directory indexes to be served even when a SETHANDLER directive is specified for an entire directory, but it can also
result in some conflicts with modules such as MOD REWRITE.

10.43. APACHE MODULE MOD DIR 575

DirectoryIndex Directive

Description: List of resources to look for when the client requests a directory
Syntax: DirectoryIndex disabled | local-url [local-url] ...
Default: DirectoryIndex index.html
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod dir

The DIRECTORYINDEX directive sets the list of resources to look for, when the client requests an index of the directory
by specifying a / at the end of the directory name. Local-url is the (%-encoded) URL of a document on the server
relative to the requested directory; it is usually the name of a file in the directory. Several URLs may be given, in
which case the server will return the first one that it finds. If none of the resources exist and the Indexes option is
set, the server will generate its own listing of the directory.

Example

DirectoryIndex index.html

then a request for http://example.com/docs/ would return
http://example.com/docs/index.html if it exists, or would list the directory if it did not.

Note that the documents do not need to be relative to the directory;

DirectoryIndex index.html index.txt /cgi-bin/index.pl

would cause the CGI script /cgi-bin/index.pl to be executed if neither index.html or index.txt existed
in a directory.

A single argument of "disabled" prevents MOD DIR from searching for an index. An argument of "disabled" will be
interpreted literally if it has any arguments before or after it, even if they are "disabled" as well.

Note: Multiple DIRECTORYINDEX directives within the same context (p. 33) will add to the list of resources to look
for rather than replace:

Example A: Set index.html as an index page, then add index.php to that list as well.
<Directory "/foo">

DirectoryIndex index.html
DirectoryIndex index.php

</Directory>

Example B: This is identical to example A, except it’s done with a single directive.
<Directory "/foo">

DirectoryIndex index.html index.php
</Directory>

Example C: To replace the list, you must explicitly reset it first:
In this example, only index.php will remain as an index resource.
<Directory "/foo">

DirectoryIndex index.html
DirectoryIndex disabled
DirectoryIndex index.php

</Directory>

576 CHAPTER 10. APACHE MODULES

DirectoryIndexRedirect Directive

Description: Configures an external redirect for directory indexes.
Syntax: DirectoryIndexRedirect on | off | permanent | temp | seeother

| 3xx-code
Default: DirectoryIndexRedirect off
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod dir
Compatibility: Available in version 2.3.14 and later

By default, the DIRECTORYINDEX is selected and returned transparently to the client. DIRECTORYINDEXREDIRECT
causes an external redirect to instead be issued.

The argument can be:

• on: issues a 302 redirection to the index resource.

• off: does not issue a redirection. This is the legacy behaviour of mod dir.

• permanent: issues a 301 (permanent) redirection to the index resource.

• temp: this has the same effect as on

• seeother: issues a 303 redirection (also known as "See Other") to the index resource.

• 3xx-code: issues a redirection marked by the chosen 3xx code.

Example

DirectoryIndexRedirect on

A request for http://example.com/docs/ would return a temporary redirect to
http://example.com/docs/index.html if it exists.

DirectorySlash Directive

Description: Toggle trailing slash redirects on or off
Syntax: DirectorySlash On|Off
Default: DirectorySlash On
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod dir

The DIRECTORYSLASH directive determines whether MOD DIR should fixup URLs pointing to a directory or not.

Typically if a user requests a resource without a trailing slash, which points to a directory, MOD DIR redirects him to
the same resource, but with trailing slash for some good reasons:

• The user is finally requesting the canonical URL of the resource

• MOD AUTOINDEX works correctly. Since it doesn’t emit the path in the link, it would point to the wrong path.

• DIRECTORYINDEX will be evaluated only for directories requested with trailing slash.

• Relative URL references inside html pages will work correctly.

10.43. APACHE MODULE MOD DIR 577

If you don’t want this effect and the reasons above don’t apply to you, you can turn off the redirect as shown below.
However, be aware that there are possible security implications to doing this.

see security warning below!
<Location "/some/path">

DirectorySlash Off
SetHandler some-handler

</Location>

! Security Warning
Turning off the trailing slash redirect may result in an information disclosure. Consider a
situation where MOD AUTOINDEX is active (Options +Indexes) and DIRECTORYINDEX
is set to a valid resource (say, index.html) and there’s no other special handler defined for
that URL. In this case a request with a trailing slash would show the index.html file. But
a request without trailing slash would list the directory contents.

Also note that some browsers may erroneously change POST requests into GET (thus discarding POST data) when a
redirect is issued.

FallbackResource Directive

Description: Define a default URL for requests that don’t map to a file
Syntax: FallbackResource disabled | local-url
Default: disabled - httpd will return 404 (Not Found)
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod dir
Compatibility: The disabled argument is available in version 2.4.4 and later

Use this to set a handler for any URL that doesn’t map to anything in your filesystem, and would otherwise return
HTTP 404 (Not Found). For example

FallbackResource /not-404.php

will cause requests for non-existent files to be handled by not-404.php, while requests for files that exist are
unaffected.

It is frequently desirable to have a single file or resource handle all requests to a particular directory, except those
requests that correspond to an existing file or script. This is often referred to as a ’front controller.’

In earlier versions of httpd, this effect typically required MOD REWRITE, and the use of the -f and -d tests for file
and directory existence. This now requires only one line of configuration.

FallbackResource /index.php

Existing files, such as images, css files, and so on, will be served normally.

Use the disabled argument to disable that feature if inheritance from a parent directory is not desired.

In a sub-URI, such as http://example.com/blog/ this sub-URI has to be supplied as local-url:

<Directory "/web/example.com/htdocs/blog">
FallbackResource /blog/index.php

578 CHAPTER 10. APACHE MODULES

</Directory>
<Directory "/web/example.com/htdocs/blog/images">

FallbackResource disabled
</Directory>

10.44. APACHE MODULE MOD DUMPIO 579

10.44 Apache Module mod dumpio

Description: Dumps all I/O to error log as desired.
Status: Extension
ModuleIdentifier: dumpio module
SourceFile: mod dumpio.c

Summary

mod dumpio allows for the logging of all input received by Apache and/or all output sent by Apache to be logged
(dumped) to the error.log file.

The data logging is done right after SSL decoding (for input) and right before SSL encoding (for output). As can be
expected, this can produce extreme volumes of data, and should only be used when debugging problems.

Directives

• DumpIOInput

• DumpIOOutput

Enabling dumpio Support

To enable the module, it should be compiled and loaded in to your running Apache configuration. Logging can then
be enabled or disabled separately for input and output via the below directives. Additionally, MOD DUMPIO needs to
be configured to LOGLEVEL trace7:

LogLevel dumpio:trace7

DumpIOInput Directive

Description: Dump all input data to the error log
Syntax: DumpIOInput On|Off
Default: DumpIOInput Off
Context: server config
Status: Extension
Module: mod dumpio
Compatibility: DumpIOInput is only available in Apache 2.1.3 and later.

Enable dumping of all input.

Example

DumpIOInput On

580 CHAPTER 10. APACHE MODULES

DumpIOOutput Directive

Description: Dump all output data to the error log
Syntax: DumpIOOutput On|Off
Default: DumpIOOutput Off
Context: server config
Status: Extension
Module: mod dumpio
Compatibility: DumpIOOutput is only available in Apache 2.1.3 and later.

Enable dumping of all output.

Example

DumpIOOutput On

10.45. APACHE MODULE MOD ECHO 581

10.45 Apache Module mod echo

Description: A simple echo server to illustrate protocol modules
Status: Experimental
ModuleIdentifier: echo module
SourceFile: mod echo.c

Summary

This module provides an example protocol module to illustrate the concept. It provides a simple echo server. Telnet
to it and type stuff, and it will echo it.

Directives

• ProtocolEcho

ProtocolEcho Directive

Description: Turn the echo server on or off
Syntax: ProtocolEcho On|Off
Default: ProtocolEcho Off
Context: server config, virtual host
Status: Experimental
Module: mod echo

The PROTOCOLECHO directive enables or disables the echo server.

Example

ProtocolEcho On

582 CHAPTER 10. APACHE MODULES

10.46 Apache Module mod env

Description: Modifies the environment which is passed to CGI scripts and SSI pages
Status: Base
ModuleIdentifier: env module
SourceFile: mod env.c

Summary

This module allows for control of internal environment variables that are used by various Apache HTTP Server mod-
ules. These variables are also provided to CGI scripts as native system environment variables, and available for use
in SSI pages. Environment variables may be passed from the shell which invoked the httpd process. Alternatively,
environment variables may be set or unset within the configuration process.

Directives

• PassEnv

• SetEnv

• UnsetEnv

See also

• Environment Variables (p. 82)

• SETENVIF

PassEnv Directive

Description: Passes environment variables from the shell
Syntax: PassEnv env-variable [env-variable] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod env

Specifies one or more native system environment variables to make available as internal environment variables, which
are available to Apache HTTP Server modules as well as propagated to CGI scripts and SSI pages. Values come from
the native OS environment of the shell which invoked the httpd process.

Example

PassEnv LD_LIBRARY_PATH

SetEnv Directive

Description: Sets environment variables
Syntax: SetEnv env-variable [value]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod env

10.46. APACHE MODULE MOD ENV 583

Sets an internal environment variable, which is then available to Apache HTTP Server modules, and passed on to CGI
scripts and SSI pages.

Example

SetEnv SPECIAL_PATH /foo/bin

If you omit the value argument, the variable is set to an empty string.

=⇒The internal environment variables set by this directive are set after most early request pro-
cessing directives are run, such as access control and URI-to-filename mapping. If the envi-
ronment variable you’re setting is meant as input into this early phase of processing such as the
REWRITERULE directive, you should instead set the environment variable with SETENVIF.

See also

• Environment Variables (p. 82)

UnsetEnv Directive

Description: Removes variables from the environment
Syntax: UnsetEnv env-variable [env-variable] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod env

Removes one or more internal environment variables from those passed on to CGI scripts and SSI pages.

Example

UnsetEnv LD_LIBRARY_PATH

584 CHAPTER 10. APACHE MODULES

10.47 Apache Module mod example hooks

Description: Illustrates the Apache module API
Status: Experimental
ModuleIdentifier: example hooks module
SourceFile: mod example hooks.c

Summary

The files in the modules/examples directory under the Apache distribution directory tree are provided as an
example to those that wish to write modules that use the Apache API.

The main file is mod example hooks.c, which illustrates all the different callback mechanisms and call syntaxes.
By no means does an add-on module need to include routines for all of the callbacks - quite the contrary!

The example module is an actual working module. If you link it into your server, enable the "example-hooks-handler"
handler for a location, and then browse to that location, you will see a display of some of the tracing the example
module did as the various callbacks were made.

Directives

• Example

Compiling the example hooks module

To include the example hooks module in your server, follow the steps below:

1. Run configure with --enable-example-hooks option.

2. Make the server (run "make").

To add another module of your own:

1. cp modules/examples/mod example hooks.c modules/new module/mod myexample.c

2. Modify the file.

3. Create modules/new module/config.m4.

(a) Add APACHE MODPATH INIT(new module).

(b) Copy APACHE MODULE line with "example hooks" from modules/examples/config.m4.

(c) Replace the first argument "example hooks" with myexample.

(d) Replace the second argument with brief description of your module. It will be used in configure
--help.

(e) If your module needs additional C compiler flags, linker flags or libraries, add them to CFLAGS, LD-
FLAGS and LIBS accordingly. See other config.m4 files in modules directory for examples.

(f) Add APACHE MODPATH FINISH.

4. Create module/new module/Makefile.in. If your module doesn’t need special build instructions, all
you need to have in that file is include $(top srcdir)/build/special.mk.

5. Run ./buildconf from the top-level directory.

6. Build the server with –enable-myexample

10.47. APACHE MODULE MOD EXAMPLE HOOKS 585

Using the mod example hooks Module

To activate the example hooks module, include a block similar to the following in your httpd.conf file:

<Location "/example-hooks-info">
SetHandler example-hooks-handler

</Location>

As an alternative, you can put the following into a .htaccess (p. 354) file and then request the file "test.example"
from that location:

AddHandler example-hooks-handler ".example"

After reloading/restarting your server, you should be able to browse to this location and see the brief display mentioned
earlier.

Example Directive

Description: Demonstration directive to illustrate the Apache module API
Syntax: Example
Context: server config, virtual host, directory, .htaccess
Status: Experimental
Module: mod example hooks

The EXAMPLE directive just sets a demonstration flag which the example module’s content handler displays. It takes
no arguments. If you browse to an URL to which the example-hooks content-handler applies, you will get a display of
the routines within the module and how and in what order they were called to service the document request. The effect
of this directive one can observe under the point "Example directive declared here: YES/NO".

586 CHAPTER 10. APACHE MODULES

10.48 Apache Module mod expires

Description: Generation of Expires and Cache-Control HTTP headers according to user-
specified criteria

Status: Extension
ModuleIdentifier: expires module
SourceFile: mod expires.c

Summary

This module controls the setting of the Expires HTTP header and the max-age directive of the Cache-Control
HTTP header in server responses. The expiration date can set to be relative to either the time the source file was last
modified, or to the time of the client access.

These HTTP headers are an instruction to the client about the document’s validity and persistence. If cached, the
document may be fetched from the cache rather than from the source until this time has passed. After that, the cache
copy is considered "expired" and invalid, and a new copy must be obtained from the source.

To modify Cache-Control directives other than max-age (see RFC 2616 section 14.932), you can use the
HEADER directive.

When the Expires header is already part of the response generated by the server, for example when generated by a
CGI script or proxied from an origin server, this module does not change or add an Expires or Cache-Control
header.

Directives

• ExpiresActive

• ExpiresByType

• ExpiresDefault

Alternate Interval Syntax

The EXPIRESDEFAULT and EXPIRESBYTYPE directives can also be defined in a more readable syntax of the form:

ExpiresDefault "base [plus num type] [num type] ..."
ExpiresByType type/encoding "base [plus num type] [num type] ..."

where base is one of:

• access

• now (equivalent to ’access’)

• modification

The plus keyword is optional. num should be an integer value [acceptable to atoi()], and type is one of:

• years

• months

• weeks

32http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

10.48. APACHE MODULE MOD EXPIRES 587

• days

• hours

• minutes

• seconds

For example, any of the following directives can be used to make documents expire 1 month after being accessed, by
default:

ExpiresDefault "access plus 1 month"
ExpiresDefault "access plus 4 weeks"
ExpiresDefault "access plus 30 days"

The expiry time can be fine-tuned by adding several ’num type’ clauses:

ExpiresByType text/html "access plus 1 month 15 days 2 hours"
ExpiresByType image/gif "modification plus 5 hours 3 minutes"

Note that if you use a modification date based setting, the Expires header will not be added to content that does not
come from a file on disk. This is due to the fact that there is no modification time for such content.

ExpiresActive Directive

Description: Enables generation of Expires headers
Syntax: ExpiresActive On|Off
Default: ExpiresActive Off
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: mod expires

This directive enables or disables the generation of the Expires and Cache-Control headers for the document
realm in question. (That is, if found in an .htaccess file, for instance, it applies only to documents generated from
that directory.) If set to Off, the headers will not be generated for any document in the realm (unless overridden at
a lower level, such as an .htaccess file overriding a server config file). If set to On, the headers will be added to
served documents according to the criteria defined by the EXPIRESBYTYPE and EXPIRESDEFAULT directives (q.v.).

Note that this directive does not guarantee that an Expires or Cache-Control header will be generated. If the
criteria aren’t met, no header will be sent, and the effect will be as though this directive wasn’t even specified.

ExpiresByType Directive

Description: Value of the Expires header configured by MIME type
Syntax: ExpiresByType MIME-type <code>seconds
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: mod expires

This directive defines the value of the Expires header and the max-age directive of the Cache-Control header
generated for documents of the specified type (e.g., text/html). The second argument sets the number of seconds
that will be added to a base time to construct the expiration date. The Cache-Control: max-age is calculated
by subtracting the request time from the expiration date and expressing the result in seconds.

588 CHAPTER 10. APACHE MODULES

The base time is either the last modification time of the file, or the time of the client’s access to the document. Which
should be used is specified by the <code> field; M means that the file’s last modification time should be used as the
base time, and A means the client’s access time should be used.

The difference in effect is subtle. If M is used, all current copies of the document in all caches will expire at the same
time, which can be good for something like a weekly notice that’s always found at the same URL. If A is used, the
date of expiration is different for each client; this can be good for image files that don’t change very often, particularly
for a set of related documents that all refer to the same images (i.e., the images will be accessed repeatedly within a
relatively short timespan).

Example:

enable expirations
ExpiresActive On
expire GIF images after a month in the client’s cache
ExpiresByType image/gif A2592000
HTML documents are good for a week from the
time they were changed
ExpiresByType text/html M604800

Note that this directive only has effect if ExpiresActive On has been specified. It overrides, for the specified
MIME type only, any expiration date set by the EXPIRESDEFAULT directive.

You can also specify the expiration time calculation using an alternate syntax, described earlier in this document.

ExpiresDefault Directive

Description: Default algorithm for calculating expiration time
Syntax: ExpiresDefault <code>seconds
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Extension
Module: mod expires

This directive sets the default algorithm for calculating the expiration time for all documents in the affected realm. It
can be overridden on a type-by-type basis by the EXPIRESBYTYPE directive. See the description of that directive for
details about the syntax of the argument, and the alternate syntax description as well.

10.49. APACHE MODULE MOD EXT FILTER 589

10.49 Apache Module mod ext filter

Description: Pass the response body through an external program before delivery to the client
Status: Extension
ModuleIdentifier: ext filter module
SourceFile: mod ext filter.c

Summary

MOD EXT FILTER presents a simple and familiar programming model for filters (p. 100) . With this module, a program
which reads from stdin and writes to stdout (i.e., a Unix-style filter command) can be a filter for Apache. This filtering
mechanism is much slower than using a filter which is specially written for the Apache API and runs inside of the
Apache server process, but it does have the following benefits:

• the programming model is much simpler

• any programming/scripting language can be used, provided that it allows the program to read from standard
input and write to standard output

• existing programs can be used unmodified as Apache filters

Even when the performance characteristics are not suitable for production use, MOD EXT FILTER can be used as a
prototype environment for filters.

Directives

• ExtFilterDefine

• ExtFilterOptions

See also

• Filters (p. 100)

Examples

Generating HTML from some other type of response

mod_ext_filter directive to define a filter
to HTML-ize text/c files using the external
program /usr/bin/enscript, with the type of
the result set to text/html
ExtFilterDefine c-to-html mode=output \

intype=text/c outtype=text/html \
cmd="/usr/bin/enscript --color -W html -Ec -o - -"

<Directory "/export/home/trawick/apacheinst/htdocs/c">
core directive to cause the new filter to
be run on output
SetOutputFilter c-to-html

mod_mime directive to set the type of .c
files to text/c
AddType text/c .c

</Directory>

590 CHAPTER 10. APACHE MODULES

Implementing a content encoding filter

Note: this gzip example is just for the purposes of illustration. Please refer to MOD DEFLATE for a practical imple-
mentation.

mod_ext_filter directive to define the external filter
ExtFilterDefine gzip mode=output cmd=/bin/gzip

<Location "/gzipped">

core directive to cause the gzip filter to be
run on output
SetOutputFilter gzip

mod_headers directive to add
"Content-Encoding: gzip" header field
Header set Content-Encoding gzip

</Location>

Slowing down the server

mod_ext_filter directive to define a filter
which runs everything through cat; cat doesn’t
modify anything; it just introduces extra pathlength
and consumes more resources
ExtFilterDefine slowdown mode=output cmd=/bin/cat \

preservescontentlength

<Location "/">
core directive to cause the slowdown filter to
be run several times on output
#
SetOutputFilter slowdown;slowdown;slowdown

</Location>

Using sed to replace text in the response

mod_ext_filter directive to define a filter which
replaces text in the response
#
ExtFilterDefine fixtext mode=output intype=text/html \

cmd="/bin/sed s/verdana/arial/g"

<Location "/">
core directive to cause the fixtext filter to
be run on output
SetOutputFilter fixtext

</Location>

=⇒You can do the same thing using MOD SUBSTITUTE without invoking an external process.

10.49. APACHE MODULE MOD EXT FILTER 591

Tracing another filter

Trace the data read and written by mod_deflate
for a particular client (IP 192.168.1.31)
experiencing compression problems.
This filter will trace what goes into mod_deflate.
ExtFilterDefine tracebefore \

cmd="/bin/tracefilter.pl /tmp/tracebefore" \
EnableEnv=trace_this_client

This filter will trace what goes after mod_deflate.
Note that without the ftype parameter, the default
filter type of AP_FTYPE_RESOURCE would cause the
filter to be placed *before* mod_deflate in the filter
chain. Giving it a numeric value slightly higher than
AP_FTYPE_CONTENT_SET will ensure that it is placed
after mod_deflate.
ExtFilterDefine traceafter \

cmd="/bin/tracefilter.pl /tmp/traceafter" \
EnableEnv=trace_this_client ftype=21

<Directory "/usr/local/docs">
SetEnvIf Remote_Addr 192.168.1.31 trace_this_client
SetOutputFilter tracebefore;deflate;traceafter

</Directory>

Here is the filter which traces the data:

#!/usr/local/bin/perl -w
use strict;

open(SAVE, ">$ARGV[0]")
or die "can’t open $ARGV[0]: $?";

while (<STDIN>) {
print SAVE $_;
print $_;

}

close(SAVE);

ExtFilterDefine Directive

Description: Define an external filter
Syntax: ExtFilterDefine filtername parameters
Context: server config
Status: Extension
Module: mod ext filter

The EXTFILTERDEFINE directive defines the characteristics of an external filter, including the program to run and its
arguments.

filtername specifies the name of the filter being defined. This name can then be used in SETOUTPUTFILTER directives.
It must be unique among all registered filters. At the present time, no error is reported by the register-filter API, so a
problem with duplicate names isn’t reported to the user.

592 CHAPTER 10. APACHE MODULES

Subsequent parameters can appear in any order and define the external command to run and certain other characteris-
tics. The only required parameter is cmd=. These parameters are:

cmd=cmdline The cmd= keyword allows you to specify the external command to run. If there are arguments after
the program name, the command line should be surrounded in quotation marks (e.g., cmd="/bin/mypgm
arg1 arg2".) Normal shell quoting is not necessary since the program is run directly, bypassing the shell.
Program arguments are blank-delimited. A backslash can be used to escape blanks which should be part of a
program argument. Any backslashes which are part of the argument must be escaped with backslash themselves.
In addition to the standard CGI environment variables, DOCUMENT URI, DOCUMENT PATH INFO, and
QUERY STRING UNESCAPED will also be set for the program.

mode=mode Use mode=output (the default) for filters which process the response. Use mode=input for filters
which process the request. mode=input is available in Apache 2.1 and later.

intype=imt This parameter specifies the internet media type (i.e., MIME type) of documents which should be
filtered. By default, all documents are filtered. If intype= is specified, the filter will be disabled for documents
of other types.

outtype=imt This parameter specifies the internet media type (i.e., MIME type) of filtered documents. It is useful
when the filter changes the internet media type as part of the filtering operation. By default, the internet media
type is unchanged.

PreservesContentLength The PreservesContentLength keyword specifies that the filter preserves the
content length. This is not the default, as most filters change the content length. In the event that the filter
doesn’t modify the length, this keyword should be specified.

ftype=filtertype This parameter specifies the numeric value for filter type that the filter should be registered as.
The default value, AP FTYPE RESOURCE, is sufficient in most cases. If the filter needs to operate at a different
point in the filter chain than resource filters, then this parameter will be necessary. See the AP FTYPE foo
definitions in util filter.h for appropriate values.

disableenv=env This parameter specifies the name of an environment variable which, if set, will disable the
filter.

enableenv=env This parameter specifies the name of an environment variable which must be set, or the filter will
be disabled.

ExtFilterOptions Directive

Description: Configure MOD EXT FILTER options
Syntax: ExtFilterOptions option [option] ...
Default: ExtFilterOptions NoLogStderr
Context: directory
Status: Extension
Module: mod ext filter

The EXTFILTEROPTIONS directive specifies special processing options for MOD EXT FILTER. Option can be one of

LogStderr | NoLogStderr The LogStderr keyword specifies that messages written to standard error by the
external filter program will be saved in the Apache error log. NoLogStderr disables this feature.

Onfail=[abort|remove] Determines how to proceed if the external filter program cannot be started. With
abort (the default value) the request will be aborted. With remove, the filter is removed and the request
continues without it.

ExtFilterOptions LogStderr

Messages written to the filter’s standard error will be stored in the Apache error log.

10.50. APACHE MODULE MOD FILE CACHE 593

10.50 Apache Module mod file cache

Description: Caches a static list of files in memory
Status: Experimental
ModuleIdentifier: file cache module
SourceFile: mod file cache.c

Summary

! This module should be used with care. You can easily create a broken site using
MOD FILE CACHE, so read this document carefully.

Caching frequently requested files that change very infrequently is a technique for reducing server load.
MOD FILE CACHE provides two techniques for caching frequently requested static files. Through configuration di-
rectives, you can direct MOD FILE CACHE to either open then mmap() a file, or to pre-open a file and save the file’s
open file handle. Both techniques reduce server load when processing requests for these files by doing part of the work
(specifically, the file I/O) for serving the file when the server is started rather than during each request.

Notice: You cannot use this for speeding up CGI programs or other files which are served by special content handlers.
It can only be used for regular files which are usually served by the Apache core content handler.

This module is an extension of and borrows heavily from the mod mmap static module in Apache 1.3.

Directives

• CacheFile

• MMapFile

Using mod file cache

MOD FILE CACHE caches a list of statically configured files via MMAPFILE or CACHEFILE directives in the main
server configuration.

Not all platforms support both directives. You will receive an error message in the server error log if you attempt to
use an unsupported directive. If given an unsupported directive, the server will start but the file will not be cached. On
platforms that support both directives, you should experiment with both to see which works best for you.

MMapFile Directive

The MMAPFILE directive of MOD FILE CACHE maps a list of statically configured files into memory through the
system call mmap(). This system call is available on most modern Unix derivatives, but not on all. There are
sometimes system-specific limits on the size and number of files that can be mmap()ed, experimentation is probably
the easiest way to find out.

This mmap()ing is done once at server start or restart, only. So whenever one of the mapped files changes on
the filesystem you have to restart the server (see the Stopping and Restarting (p. 27) documentation). To reiterate
that point: if the files are modified in place without restarting the server you may end up serving requests that are
completely bogus. You should update files by unlinking the old copy and putting a new copy in place. Most tools such
as rdist and mv do this. The reason why this modules doesn’t take care of changes to the files is that this check
would need an extra stat() every time which is a waste and against the intent of I/O reduction.

594 CHAPTER 10. APACHE MODULES

CacheFile Directive

The CACHEFILE directive of MOD FILE CACHE opens an active handle or file descriptor to the file (or files) listed
in the configuration directive and places these open file handles in the cache. When the file is requested, the server
retrieves the handle from the cache and passes it to the sendfile() (or TransmitFile() on Windows), socket
API.

This file handle caching is done once at server start or restart, only. So whenever one of the cached files changes
on the filesystem you have to restart the server (see the Stopping and Restarting (p. 27) documentation). To reiterate
that point: if the files are modified in place without restarting the server you may end up serving requests that are
completely bogus. You should update files by unlinking the old copy and putting a new copy in place. Most tools such
as rdist and mv do this.

=⇒Note
Don’t bother asking for a directive which recursively caches all the files in a directory. Try this
instead... See the INCLUDE directive, and consider this command:

find /www/htdocs -type f -print \
| sed -e ’s/.*/mmapfile &/’ > /www/conf/mmap.conf

CacheFile Directive

Description: Cache a list of file handles at startup time
Syntax: CacheFile file-path [file-path] ...
Context: server config
Status: Experimental
Module: mod file cache

The CACHEFILE directive opens handles to one or more files (given as whitespace separated arguments) and places
these handles into the cache at server startup time. Handles to cached files are automatically closed on a server
shutdown. When the files have changed on the filesystem, the server should be restarted to re-cache them.

Be careful with the file-path arguments: They have to literally match the filesystem path Apache’s URL-to-filename
translation handlers create. We cannot compare inodes or other stuff to match paths through symbolic links etc.
because that again would cost extra stat() system calls which is not acceptable. This module may or may not work
with filenames rewritten by MOD ALIAS or MOD REWRITE.

Example

CacheFile /usr/local/apache/htdocs/index.html

MMapFile Directive

Description: Map a list of files into memory at startup time
Syntax: MMapFile file-path [file-path] ...
Context: server config
Status: Experimental
Module: mod file cache

The MMAPFILE directive maps one or more files (given as whitespace separated arguments) into memory at server
startup time. They are automatically unmapped on a server shutdown. When the files have changed on the filesystem
at least a HUP or USR1 signal should be send to the server to re-mmap() them.

10.50. APACHE MODULE MOD FILE CACHE 595

Be careful with the file-path arguments: They have to literally match the filesystem path Apache’s URL-to-filename
translation handlers create. We cannot compare inodes or other stuff to match paths through symbolic links etc.
because that again would cost extra stat() system calls which is not acceptable. This module may or may not work
with filenames rewritten by MOD ALIAS or MOD REWRITE.

Example

MMapFile /usr/local/apache/htdocs/index.html

596 CHAPTER 10. APACHE MODULES

10.51 Apache Module mod filter

Description: Context-sensitive smart filter configuration module
Status: Base
ModuleIdentifier: filter module
SourceFile: mod filter.c
Compatibility: Version 2.1 and later

Summary

This module enables smart, context-sensitive configuration of output content filters. For example, apache can be
configured to process different content-types through different filters, even when the content-type is not known in
advance (e.g. in a proxy).

MOD FILTER works by introducing indirection into the filter chain. Instead of inserting filters in the chain, we insert a
filter harness which in turn dispatches conditionally to a filter provider. Any content filter may be used as a provider
to MOD FILTER; no change to existing filter modules is required (although it may be possible to simplify them).

Directives

• AddOutputFilterByType

• FilterChain

• FilterDeclare

• FilterProtocol

• FilterProvider

• FilterTrace

Smart Filtering

In the traditional filtering model, filters are inserted unconditionally using ADDOUTPUTFILTER and family. Each
filter then needs to determine whether to run, and there is little flexibility available for server admins to allow the chain
to be configured dynamically.

MOD FILTER by contrast gives server administrators a great deal of flexibility in configuring the filter chain. In fact,
filters can be inserted based on complex boolean expressions (p. 89) This generalises the limited flexibility offered by
ADDOUTPUTFILTERBYTYPE.

10.51. APACHE MODULE MOD FILTER 597

Filter Declarations, Providers and Chains

Figure 1: The traditional filter model

In the traditional model, output filters are a simple chain from the content generator (handler) to the client. This works
well provided the filter chain can be correctly configured, but presents problems when the filters need to be configured
dynamically based on the outcome of the handler.

598 CHAPTER 10. APACHE MODULES

Figure 2: The MOD FILTER model

MOD FILTER works by introducing indirection into the filter chain. Instead of inserting filters in the chain, we insert a
filter harness which in turn dispatches conditionally to a filter provider. Any content filter may be used as a provider
to MOD FILTER; no change to existing filter modules is required (although it may be possible to simplify them). There
can be multiple providers for one filter, but no more than one provider will run for any single request.

A filter chain comprises any number of instances of the filter harness, each of which may have any number of providers.
A special case is that of a single provider with unconditional dispatch: this is equivalent to inserting the provider filter
directly into the chain.

Configuring the Chain

There are three stages to configuring a filter chain with MOD FILTER. For details of the directives, see below.

Declare Filters The FILTERDECLARE directive declares a filter, assigning it a name and filter type. Required only if
the filter is not the default type AP FTYPE RESOURCE.

Register Providers The FILTERPROVIDER directive registers a provider with a filter. The filter may have
been declared with FILTERDECLARE; if not, FilterProvider will implicitly declare it with the default type
AP FTYPE RESOURCE. The provider must have been registered with ap register output filter by
some module. The final argument to FILTERPROVIDER is an expression: the provider will be selected to run for
a request if and only if the expression evaluates to true. The expression may evaluate HTTP request or response
headers, environment variables, or the Handler used by this request. Unlike earlier versions, mod filter now
supports complex expressions involving multiple criteria with AND / OR logic (&& / ——) and brackets. The
details of the expression syntax are described in the ap expr documentation (p. 89) .

10.51. APACHE MODULE MOD FILTER 599

Configure the Chain The above directives build components of a smart filter chain, but do not configure it to run.
The FILTERCHAIN directive builds a filter chain from smart filters declared, offering the flexibility to insert
filters at the beginning or end of the chain, remove a filter, or clear the chain.

Filtering and Response Status

mod filter normally only runs filters on responses with HTTP status 200 (OK). If you want to filter documents with
other response statuses, you can set the filter-errordocs environment variable, and it will work on all responses regard-
less of status. To refine this further, you can use expression conditions with FILTERPROVIDER.

Upgrading from Apache HTTP Server 2.2 Configuration

The FILTERPROVIDER directive has changed from httpd 2.2: the match and dispatch arguments are replaced with
a single but more versatile expression. In general, you can convert a match/dispatch pair to the two sides of an
expression, using something like:

"dispatch = ’match’"

The Request headers, Response headers and Environment variables are now interpreted from syntax %{req:foo},
%{resp:foo} and %{env:foo} respectively. The variables %{HANDLER} and %{CONTENT TYPE} are also sup-
ported.

Note that the match no longer support substring matches. They can be replaced by regular expression matches.

Examples

Server side Includes (SSI) A simple case of replacing ADDOUTPUTFILTERBYTYPE

FilterDeclare SSI
FilterProvider SSI INCLUDES "%{CONTENT_TYPE} =˜ m|ˆtext/html|"
FilterChain SSI

Server side Includes (SSI) The same as the above but dispatching on handler (classic SSI behaviour; .shtml files get
processed).

FilterProvider SSI INCLUDES "%{HANDLER} = ’server-parsed’"
FilterChain SSI

Emulating mod gzip with mod deflate Insert INFLATE filter only if "gzip" is NOT in the Accept-Encoding header.
This filter runs with ftype CONTENT SET.

FilterDeclare gzip CONTENT_SET
FilterProvider gzip inflate "%{req:Accept-Encoding} !˜ /gzip/"
FilterChain gzip

Image Downsampling Suppose we want to downsample all web images, and have filters for GIF, JPEG and PNG.

FilterProvider unpack jpeg_unpack "%{CONTENT_TYPE} = ’image/jpeg’"
FilterProvider unpack gif_unpack "%{CONTENT_TYPE} = ’image/gif’"
FilterProvider unpack png_unpack "%{CONTENT_TYPE} = ’image/png’"

600 CHAPTER 10. APACHE MODULES

FilterProvider downsample downsample_filter "%{CONTENT_TYPE} = m|ˆimage/(jpeg|gif|png)|"
FilterProtocol downsample "change=yes"

FilterProvider repack jpeg_pack "%{CONTENT_TYPE} = ’image/jpeg’"
FilterProvider repack gif_pack "%{CONTENT_TYPE} = ’image/gif’"
FilterProvider repack png_pack "%{CONTENT_TYPE} = ’image/png’"
<Location "/image-filter">

FilterChain unpack downsample repack
</Location>

Protocol Handling

Historically, each filter is responsible for ensuring that whatever changes it makes are correctly represented in the
HTTP response headers, and that it does not run when it would make an illegal change. This imposes a burden on
filter authors to re-implement some common functionality in every filter:

• Many filters will change the content, invalidating existing content tags, checksums, hashes, and lengths.

• Filters that require an entire, unbroken response in input need to ensure they don’t get byteranges from a back-
end.

• Filters that transform output in a filter need to ensure they don’t violate a Cache-Control:
no-transform header from the backend.

• Filters may make responses uncacheable.

MOD FILTER aims to offer generic handling of these details of filter implementation, reducing the com-
plexity required of content filter modules. This is work-in-progress; the FILTERPROTOCOL implements
some of this functionality for back-compatibility with Apache 2.0 modules. For httpd 2.1 and later, the
ap register output filter protocol and ap filter protocol API enables filter modules to declare
their own behaviour.

At the same time, MOD FILTER should not interfere with a filter that wants to handle all aspects of the protocol. By
default (i.e. in the absence of any FILTERPROTOCOL directives), MOD FILTER will leave the headers untouched.

At the time of writing, this feature is largely untested, as modules in common use are designed to work with 2.0.
Modules using it should test it carefully.

AddOutputFilterByType Directive

Description: assigns an output filter to a particular media-type
Syntax: AddOutputFilterByType filter[;filter...] media-type

[media-type] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod filter
Compatibility: Had severe limitations before being moved to MOD FILTER in version 2.3.7

This directive activates a particular output filter (p. 100) for a request depending on the response media-type.

The following example uses the DEFLATE filter, which is provided by MOD DEFLATE. It will compress all output
(either static or dynamic) which is labeled as text/html or text/plain before it is sent to the client.

AddOutputFilterByType DEFLATE text/html text/plain

10.51. APACHE MODULE MOD FILTER 601

If you want the content to be processed by more than one filter, their names have to be separated by semicolons. It’s
also possible to use one ADDOUTPUTFILTERBYTYPE directive for each of these filters.

The configuration below causes all script output labeled as text/html to be processed at first by the INCLUDES
filter and then by the DEFLATE filter.

<Location "/cgi-bin/">
Options Includes
AddOutputFilterByType INCLUDES;DEFLATE text/html

</Location>

See also

• ADDOUTPUTFILTER

• SETOUTPUTFILTER

• filters (p. 100)

FilterChain Directive

Description: Configure the filter chain
Syntax: FilterChain [+=-@!]filter-name ...
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Base
Module: mod filter

This configures an actual filter chain, from declared filters. FILTERCHAIN takes any number of arguments, each
optionally preceded with a single-character control that determines what to do:

+filter-name Add filter-name to the end of the filter chain

@filter-name Insert filter-name at the start of the filter chain

-filter-name Remove filter-name from the filter chain

=filter-name Empty the filter chain and insert filter-name

! Empty the filter chain

filter-name Equivalent to +filter-name

FilterDeclare Directive

Description: Declare a smart filter
Syntax: FilterDeclare filter-name [type]
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Base
Module: mod filter

This directive declares an output filter together with a header or environment variable that will determine runtime
configuration. The first argument is a filter-name for use in FILTERPROVIDER, FILTERCHAIN and FILTERPROTOCOL
directives.

The final (optional) argument is the type of filter, and takes values of ap filter type - namely RESOURCE (the
default), CONTENT SET, PROTOCOL, TRANSCODE, CONNECTION or NETWORK.

602 CHAPTER 10. APACHE MODULES

FilterProtocol Directive

Description: Deal with correct HTTP protocol handling
Syntax: FilterProtocol filter-name [provider-name] proto-flags
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Base
Module: mod filter

This directs MOD FILTER to deal with ensuring the filter doesn’t run when it shouldn’t, and that the HTTP response
headers are correctly set taking into account the effects of the filter.

There are two forms of this directive. With three arguments, it applies specifically to a filter-name and a provider-name
for that filter. With two arguments it applies to a filter-name whenever the filter runs any provider.

Flags specified with this directive are merged with the flags that underlying providers may have registerd with
MOD FILTER. For example, a filter may internally specify the equivalent of change=yes, but a particular con-
figuration of the module can override with change=no.

proto-flags is one or more of

change=yes|no Specifies whether the filter changes the content, including possibly the content length. The "no"
argument is supported in 2.4.7 and later.

change=1:1 The filter changes the content, but will not change the content length

byteranges=no The filter cannot work on byteranges and requires complete input

proxy=no The filter should not run in a proxy context

proxy=transform The filter transforms the response in a manner incompatible with the HTTP
Cache-Control: no-transform header.

cache=no The filter renders the output uncacheable (eg by introducing randomised content changes)

FilterProvider Directive

Description: Register a content filter
Syntax: FilterProvider filter-name provider-name expression
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Base
Module: mod filter

This directive registers a provider for the smart filter. The provider will be called if and only if the expression declared
evaluates to true when the harness is first called.

provider-name must have been registered by loading a module that registers the name with
ap register output filter.

expression is an ap expr (p. 89) .

See also

• Expressions in Apache HTTP Server (p. 89) , for a complete reference and examples.

• MOD INCLUDE

10.51. APACHE MODULE MOD FILTER 603

FilterTrace Directive

Description: Get debug/diagnostic information from MOD FILTER
Syntax: FilterTrace filter-name level
Context: server config, virtual host, directory
Status: Base
Module: mod filter

This directive generates debug information from MOD FILTER. It is designed to help test and debug providers (filter
modules), although it may also help with MOD FILTER itself.

The debug output depends on the level set:

0 (default) No debug information is generated.

1 MOD FILTER will record buckets and brigades passing through the filter to the error log, before the provider has
processed them. This is similar to the information generated by mod diagnostics33.

2 (not yet implemented) Will dump the full data passing through to a tempfile before the provider. For single-user
debug only; this will not support concurrent hits.

33http://apache.webthing.com/mod diagnostics/

http://apache.webthing.com/mod_diagnostics/

604 CHAPTER 10. APACHE MODULES

10.52 Apache Module mod headers

Description: Customization of HTTP request and response headers
Status: Extension
ModuleIdentifier: headers module
SourceFile: mod headers.c

Summary

This module provides directives to control and modify HTTP request and response headers. Headers can be merged,
replaced or removed.

Directives

• Header

• RequestHeader

Order of Processing

The directives provided by MOD HEADERS can occur almost anywhere within the server configuration, and can be
limited in scope by enclosing them in configuration sections (p. 33) .

Order of processing is important and is affected both by the order in the configuration file and by placement in config-
uration sections (p. 33) . These two directives have a different effect if reversed:

RequestHeader append MirrorID "mirror 12"
RequestHeader unset MirrorID

This way round, the MirrorID header is not set. If reversed, the MirrorID header is set to "mirror 12".

Early and Late Processing

MOD HEADERS can be applied either early or late in the request. The normal mode is late, when Request Headers are
set immediately before running the content generator and Response Headers just as the response is sent down the wire.
Always use Late mode in an operational server.

Early mode is designed as a test/debugging aid for developers. Directives defined using the early keyword are set
right at the beginning of processing the request. This means they can be used to simulate different requests and set up
test cases, but it also means that headers may be changed at any time by other modules before generating a Response.

Because early directives are processed before the request path’s configuration is traversed, early headers can only be
set in a main server or virtual host context. Early directives cannot depend on a request path, so they will fail in
contexts such as <DIRECTORY> or <LOCATION>.

Examples

1. Copy all request headers that begin with "TS" to the response headers:

Header echo ˆTS

10.52. APACHE MODULE MOD HEADERS 605

2. Add a header, MyHeader, to the response including a timestamp for when the request was received and how
long it took to begin serving the request. This header can be used by the client to intuit load on the server or in
isolating bottlenecks between the client and the server.

Header set MyHeader "%D %t"

results in this header being added to the response:

MyHeader: D=3775428 t=991424704447256

3. Say hello to Joe

Header set MyHeader "Hello Joe. It took %D microseconds for Apache to serve this request."

results in this header being added to the response:

MyHeader: Hello Joe. It took D=3775428 microseconds for Apache to

serve this request.

4. Conditionally send MyHeader on the response if and only if header MyRequestHeader is present on the
request. This is useful for constructing headers in response to some client stimulus. Note that this example
requires the services of the MOD SETENVIF module.

SetEnvIf MyRequestHeader myvalue HAVE_MyRequestHeader
Header set MyHeader "%D %t mytext" env=HAVE_MyRequestHeader

If the header MyRequestHeader: myvalue is present on the HTTP request, the response will contain the
following header:

MyHeader: D=3775428 t=991424704447256 mytext

5. Enable DAV to work with Apache running HTTP through SSL hardware (problem description34) by replacing
https: with http: in the Destination header:

RequestHeader edit Destination ˆhttps: http: early

6. Set the same header value under multiple nonexclusive conditions, but do not duplicate the value in the final
header. If all of the following conditions applied to a request (i.e., if the CGI, NO CACHE and NO STORE
environment variables all existed for the request):

Header merge Cache-Control no-cache env=CGI
Header merge Cache-Control no-cache env=NO_CACHE
Header merge Cache-Control no-store env=NO_STORE

then the response would contain the following header:

Cache-Control: no-cache, no-store

34http://svn.haxx.se/users/archive-2006-03/0549.shtml

http://svn.haxx.se/users/archive-2006-03/0549.shtml

606 CHAPTER 10. APACHE MODULES

If append was used instead of merge, then the response would contain the following header:

Cache-Control: no-cache, no-cache, no-store

7. Set a test cookie if and only if the client didn’t send us a cookie

Header set Set-Cookie testcookie "expr=-z %{req:Cookie}"

8. Append a Caching header for responses with a HTTP status code of 200

Header append Cache-Control s-maxage=600 "expr=%{REQUEST_STATUS} == 200"

Header Directive

Description: Configure HTTP response headers
Syntax: Header [condition] add|append|echo|edit|edit*|merge|set|setifempty|unset|note

header [[expr=]value [replacement] [early|env=[!]varname|expr=expression]]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod headers
Compatibility: SetIfEmpty available in 2.4.7 and later, expr=value available in 2.4.10 and later

This directive can replace, merge or remove HTTP response headers. The header is modified just after the content
handler and output filters are run, allowing outgoing headers to be modified.

The optional condition argument determines which internal table of responses headers this directive will operate
against. Despite the name, the default value of onsuccess does not limit an action to responses with a 2xx status
code. Headers set under this condition are still used when, for example, a request is successfully proxied or generated
by CGI, even when they have generated a failing status code.

When your action is a function of an existing header, you may need to specify a condition of always, depending on
which internal table the original header was set in. The table that corresponds to always is used for locally generated
error responses as well as successful responses. Note also that repeating this directive with both conditions makes
sense in some scenarios because always is not a superset of onsuccess with respect to existing headers:

• You’re adding a header to a locally generated non-success (non-2xx) response, such as a redirect, in which case
only the table corresponding to always is used in the ultimate response.

• You’re modifying or removing a header generated by a CGI script, in which case the CGI scripts are in the table
corresponding to always and not in the default table.

• You’re modifying or removing a header generated by some piece of the server but that header is not being found
by the default onsuccess condition.

Separately from the condition parameter described above, you can limit an action based on HTTP status codes for e.g.
proxied or CGI requests. See the example that uses %{REQUEST STATUS} in the section above.

The action it performs is determined by the first argument (second argument if a condition is specified). This can be
one of the following values:

add The response header is added to the existing set of headers, even if this header already exists. This can result in
two (or more) headers having the same name. This can lead to unforeseen consequences, and in general set,
append or merge should be used instead.

10.52. APACHE MODULE MOD HEADERS 607

append The response header is appended to any existing header of the same name. When a new value is merged
onto an existing header it is separated from the existing header with a comma. This is the HTTP standard way
of giving a header multiple values.

echo Request headers with this name are echoed back in the response headers. header may be a regular expression.
value must be omitted.

edit

edit* If this response header exists, its value is transformed according to a regular expression search-and-replace.
The value argument is a regular expression, and the replacement is a replacement string, which may contain
backreferences or format specifiers. The edit form will match and replace exactly once in a header value,
whereas the edit* form will replace every instance of the search pattern if it appears more than once.

merge The response header is appended to any existing header of the same name, unless the value to be appended
already appears in the header’s comma-delimited list of values. When a new value is merged onto an existing
header it is separated from the existing header with a comma. This is the HTTP standard way of giving a
header multiple values. Values are compared in a case sensitive manner, and after all format specifiers have
been processed. Values in double quotes are considered different from otherwise identical unquoted values.

set The response header is set, replacing any previous header with this name. The value may be a format string.

setifempty The request header is set, but only if there is no previous header with this name.
Available in 2.4.7 and later.

unset The response header of this name is removed, if it exists. If there are multiple headers of the same name, all
will be removed. value must be omitted.

note The value of the named response header is copied into an internal note whose name is given by value. This is
useful if a header sent by a CGI or proxied resource is configured to be unset but should also be logged.
Available in 2.4.7 and later.

This argument is followed by a header name, which can include the final colon, but it is not required. Case is ignored
for set, append, merge, add, unset and edit. The header name for echo is case sensitive and may be a
regular expression.

For set, append, merge and add a value is specified as the next argument. If value contains spaces, it should
be surrounded by double quotes. value may be a character string, a string containing MOD HEADERS specific format
specifiers (and character literals), or an ap expr (p. 89) expression prefixed with expr=

The following format specifiers are supported in value:

Format Description
%% The percent sign
%t The time the request was received in Universal Coordinated Time since the epoch (Jan. 1, 1970)

measured in microseconds. The value is preceded by t=.
%D The time from when the request was received to the time the headers are sent on the wire. This is

a measure of the duration of the request. The value is preceded by D=. The value is measured in
microseconds.

%l The current load averages of the actual server itself. It is designed to expose the values obtained
by getloadavg() and this represents the current load average, the 5 minute average, and the 15
minute average. The value is preceded by l= with each average separated by /.
Available in 2.4.4 and later.

%i The current idle percentage of httpd (0 to 100) based on available processes and threads. The value
is preceded by i=.
Available in 2.4.4 and later.

%b The current busy percentage of httpd (0 to 100) based on available processes and threads. The
value is preceded by b=.
Available in 2.4.4 and later.

%{VARNAME}e The contents of the environment variable (p. 82) VARNAME.
%{VARNAME}s The contents of the SSL environment variable (p. 847) VARNAME, if MOD SSL is enabled.

608 CHAPTER 10. APACHE MODULES

=⇒Note
The %s format specifier is only available in Apache 2.1 and later; it can be used instead of
%e to avoid the overhead of enabling SSLOptions +StdEnvVars. If SSLOptions
+StdEnvVars must be enabled anyway for some other reason, %e will be more efficient
than %s.

=⇒Note on expression values
When the value parameter uses the ap expr (p. 89) parser, some expression syntax will differ
from examples that evaluate boolean expressions such as <If>:

• The starting point of the grammar is ’string’ rather than ’expr’.

• Function calls use the %{funcname:arg} syntax rather than funcname(arg).

• Multi-argument functions are not currently accessible from this starting point

• Quote the entire parameter, such as

Header set foo-checksum "expr=%{md5:foo}"

For edit there is both a value argument which is a regular expression, and an additional replacement string. As of
version 2.4.7 the replacement string may also contain format specifiers.

The HEADER directive may be followed by an additional argument, which may be any of:

early Specifies early processing.

env=[!]varname The directive is applied if and only if the environment variable (p. 82) varname exists. A ! in
front of varname reverses the test, so the directive applies only if varname is unset.

expr=expression The directive is applied if and only if expression evaluates to true. Details of expression syntax
and evaluation are documented in the ap expr (p. 89) documentation.

Except in early mode, the HEADER directives are processed just before the response is sent to the network. This means
that it is possible to set and/or override most headers, except for some headers added by the HTTP header filter. Prior
to 2.2.12, it was not possible to change the Content-Type header with this directive.

RequestHeader Directive

Description: Configure HTTP request headers
Syntax: RequestHeader add|append|edit|edit*|merge|set|setifempty|unset

header [[expr=]value [replacement] [early|env=[!]varname|expr=expression]]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod headers
Compatibility: SetIfEmpty available in 2.4.7 and later, expr=value available in 2.4.10 and later

This directive can replace, merge, change or remove HTTP request headers. The header is modified just before the
content handler is run, allowing incoming headers to be modified. The action it performs is determined by the first
argument. This can be one of the following values:

add The request header is added to the existing set of headers, even if this header already exists. This can result in
two (or more) headers having the same name. This can lead to unforeseen consequences, and in general set,
append or merge should be used instead.

10.52. APACHE MODULE MOD HEADERS 609

append The request header is appended to any existing header of the same name. When a new value is merged onto
an existing header it is separated from the existing header with a comma. This is the HTTP standard way of
giving a header multiple values.

edit

edit* If this request header exists, its value is transformed according to a regular expression search-and-replace.
The value argument is a regular expression, and the replacement is a replacement string, which may contain
backreferences or format specifiers. The edit form will match and replace exactly once in a header value,
whereas the edit* form will replace every instance of the search pattern if it appears more than once.

merge The request header is appended to any existing header of the same name, unless the value to be appended
already appears in the existing header’s comma-delimited list of values. When a new value is merged onto an
existing header it is separated from the existing header with a comma. This is the HTTP standard way of giving
a header multiple values. Values are compared in a case sensitive manner, and after all format specifiers have
been processed. Values in double quotes are considered different from otherwise identical unquoted values.

set The request header is set, replacing any previous header with this name

setifempty The request header is set, but only if there is no previous header with this name.
Available in 2.4.7 and later.

unset The request header of this name is removed, if it exists. If there are multiple headers of the same name, all
will be removed. value must be omitted.

This argument is followed by a header name, which can include the final colon, but it is not required. Case is ignored.
For set, append, merge and add a value is given as the third argument. If a value contains spaces, it should
be surrounded by double quotes. For unset, no value should be given. value may be a character string, a string
containing format specifiers or a combination of both. The supported format specifiers are the same as for the HEADER,
please have a look there for details. For edit both a value and a replacement are required, and are a regular expression
and a replacement string respectively.

The REQUESTHEADER directive may be followed by an additional argument, which may be any of:

early Specifies early processing.

env=[!]varname The directive is applied if and only if the environment variable (p. 82) varname exists. A ! in
front of varname reverses the test, so the directive applies only if varname is unset.

expr=expression The directive is applied if and only if expression evaluates to true. Details of expression syntax
and evaluation are documented in the ap expr (p. 89) documentation.

Except in early mode, the REQUESTHEADER directive is processed just before the request is run by its handler in
the fixup phase. This should allow headers generated by the browser, or by Apache input filters to be overridden or
modified.

610 CHAPTER 10. APACHE MODULES

10.53 Apache Module mod heartbeat

Description: Sends messages with server status to frontend proxy
Status: Experimental
ModuleIdentifier: heartbeat module
SourceFile: mod heartbeat
Compatibility: Available in Apache 2.3 and later

Summary

MOD HEARTBEAT sends multicast messages to a MOD HEARTMONITOR listener that advertises the servers
current connection count. Usually, MOD HEARTMONITOR will be running on a proxy server with
MOD LBMETHOD HEARTBEAT loaded, which allows PROXYPASS to use the "heartbeat" lbmethod inside of PROX-
YPASS.

MOD HEARTBEAT itself is loaded on the origin server(s) that serve requests through the proxy server(s).

! To use MOD HEARTBEAT, MOD STATUS and MOD WATCHDOG must be either a static modules
or, if a dynamic module, must be loaded before MOD HEARTBEAT.

Directives

• HeartbeatAddress

Consuming mod heartbeat Output

Every 1 second, this module generates a single multicast UDP packet, containing the number of busy and idle workers.
The packet is a simple ASCII format, similar to GET query parameters in HTTP.

An Example Packet
v=1&ready=75&busy=0

Consumers should handle new variables besides busy and ready, separated by ’&’, being added in the future.

HeartbeatAddress Directive

Description: Multicast address for heartbeat packets
Syntax: HeartbeatAddress addr:port
Default: disabled
Context: server config
Status: Experimental
Module: mod heartbeat

The HEARTBEATADDRESS directive specifies the multicast address to which MOD HEARTBEAT will send status in-
formation. This address will usually correspond to a configured HEARTBEATLISTEN on a frontend proxy system.

HeartbeatAddress 239.0.0.1:27999

10.54. APACHE MODULE MOD HEARTMONITOR 611

10.54 Apache Module mod heartmonitor

Description: Centralized monitor for mod heartbeat origin servers
Status: Experimental
ModuleIdentifier: heartmonitor module
SourceFile: mod heartmonitor.c
Compatibility: Available in Apache 2.3 and later

Summary

MOD HEARTMONITOR listens for server status messages generated by MOD HEARTBEAT enabled origin servers and
makes their status available to MOD LBMETHOD HEARTBEAT. This allows PROXYPASS to use the "heartbeat" lb-
method inside of PROXYPASS.

This module uses the services of MOD SLOTMEM SHM when available instead of flat-file storage. No configuration is
required to use MOD SLOTMEM SHM.

! To use MOD HEARTMONITOR, MOD STATUS and MOD WATCHDOG must be either a static
modules or, if a dynamic module, it must be loaded before MOD HEARTMONITOR.

Directives

• HeartbeatListen

• HeartbeatMaxServers

• HeartbeatStorage

HeartbeatListen Directive

Description: multicast address to listen for incoming heartbeat requests
Syntax: HeartbeatListenaddr:port
Default: disabled
Context: server config
Status: Experimental
Module: mod heartmonitor

The HEARTBEATLISTEN directive specifies the multicast address on which the server will listen for status information
from MOD HEARTBEAT-enabled servers. This address will usually correspond to a configured HEARTBEATADDRESS
on an origin server.

HeartbeatListen 239.0.0.1:27999

This module is inactive until this directive is used.

HeartbeatMaxServers Directive

Description: Specifies the maximum number of servers that will be sending heartbeat requests to this server
Syntax: HeartbeatMaxServers number-of-servers
Default: HeartbeatMaxServers 10
Context: server config
Status: Experimental
Module: mod heartmonitor

612 CHAPTER 10. APACHE MODULES

The HEARTBEATMAXSERVERS directive specifies the maximum number of servers that will be sending requests to
this monitor server. It is used to control the size of the shared memory allocated to store the heartbeat info when
MOD SLOTMEM SHM is in use.

HeartbeatStorage Directive

Description: Path to store heartbeat data
Syntax: HeartbeatStorage file-path
Default: HeartbeatStorage logs/hb.dat
Context: server config
Status: Experimental
Module: mod heartmonitor

The HEARTBEATSTORAGE directive specifies the path to store heartbeat data. This flat-file is used only when
MOD SLOTMEM SHM is not loaded.

10.55. APACHE MODULE MOD IDENT 613

10.55 Apache Module mod ident

Description: RFC 1413 ident lookups
Status: Extension
ModuleIdentifier: ident module
SourceFile: mod ident.c
Compatibility: Available in Apache 2.1 and later

Summary

This module queries an RFC 141335 compatible daemon on a remote host to look up the owner of a connection.

Directives

• IdentityCheck

• IdentityCheckTimeout

See also

• MOD LOG CONFIG

IdentityCheck Directive

Description: Enables logging of the RFC 1413 identity of the remote user
Syntax: IdentityCheck On|Off
Default: IdentityCheck Off
Context: server config, virtual host, directory
Status: Extension
Module: mod ident
Compatibility: Moved out of core in Apache 2.1

This directive enables RFC 141336-compliant logging of the remote user name for each connection, where the client
machine runs identd or something similar. This information is logged in the access log using the %...l format string
(p. 656) .

=⇒The information should not be trusted in any way except for rudimentary usage tracking.

Note that this can cause serious latency problems accessing your server since every request requires one of these
lookups to be performed. When firewalls or proxy servers are involved, each lookup might possibly fail and add a
latency duration as defined by the IDENTITYCHECKTIMEOUT directive to each hit. So in general this is not very
useful on public servers accessible from the Internet.

IdentityCheckTimeout Directive

Description: Determines the timeout duration for ident requests
Syntax: IdentityCheckTimeout seconds
Default: IdentityCheckTimeout 30
Context: server config, virtual host, directory
Status: Extension
Module: mod ident

35http://www.ietf.org/rfc/rfc1413.txt
36http://www.ietf.org/rfc/rfc1413.txt

http://www.ietf.org/rfc/rfc1413.txt
http://www.ietf.org/rfc/rfc1413.txt

614 CHAPTER 10. APACHE MODULES

This directive specifies the timeout duration of an ident request. The default value of 30 seconds is recommended
by RFC 141337, mainly because of possible network latency. However, you may want to adjust the timeout value
according to your local network speed.

37http://www.ietf.org/rfc/rfc1413.txt

http://www.ietf.org/rfc/rfc1413.txt

10.56. APACHE MODULE MOD IMAGEMAP 615

10.56 Apache Module mod imagemap

Description: Server-side imagemap processing
Status: Base
ModuleIdentifier: imagemap module
SourceFile: mod imagemap.c

Summary

This module processes .map files, thereby replacing the functionality of the imagemap CGI program. Any directory
or document type configured to use the handler imap-file (using either ADDHANDLER or SETHANDLER) will be
processed by this module.

The following directive will activate files ending with .map as imagemap files:

AddHandler imap-file map

Note that the following is still supported:

AddType application/x-httpd-imap map

However, we are trying to phase out "magic MIME types" so we are deprecating this method.

Directives

• ImapBase

• ImapDefault

• ImapMenu

New Features

The imagemap module adds some new features that were not possible with previously distributed imagemap programs.

• URL references relative to the Referer: information.

• Default <base> assignment through a new map directive base.

• No need for imagemap.conf file.

• Point references.

• Configurable generation of imagemap menus.

Imagemap File

The lines in the imagemap files can have one of several formats:

directive value [x,y ...]
directive value "Menu text" [x,y ...]

directive value x,y ... "Menu text"

The directive is one of base, default, poly, circle, rect, or point. The value is an absolute or relative
URL, or one of the special values listed below. The coordinates are x,y pairs separated by whitespace. The quoted
text is used as the text of the link if a imagemap menu is generated. Lines beginning with ’#’ are comments.

616 CHAPTER 10. APACHE MODULES

Imagemap File Directives

There are six directives allowed in the imagemap file. The directives can come in any order, but are processed in the
order they are found in the imagemap file.

base Directive Has the effect of <base href="value"> . The non-absolute URLs of the map-file are
taken relative to this value. The base directive overrides IMAPBASE as set in a .htaccess file or in
the server configuration files. In the absence of an IMAPBASE configuration directive, base defaults to
http://server name/.

base uri is synonymous with base. Note that a trailing slash on the URL is significant.

default Directive The action taken if the coordinates given do not fit any of the poly, circle or rect di-
rectives, and there are no point directives. Defaults to nocontent in the absence of an IMAPDEFAULT
configuration setting, causing a status code of 204 No Content to be returned. The client should keep the
same page displayed.

poly Directive Takes three to one-hundred points, and is obeyed if the user selected coordinates fall within the
polygon defined by these points.

circle Takes the center coordinates of a circle and a point on the circle. Is obeyed if the user selected point is with
the circle.

rect Directive Takes the coordinates of two opposing corners of a rectangle. Obeyed if the point selected is within
this rectangle.

point Directive Takes a single point. The point directive closest to the user selected point is obeyed if no other
directives are satisfied. Note that default will not be followed if a point directive is present and valid
coordinates are given.

Values

The values for each of the directives can be any of the following:

a URL The URL can be relative or absolute URL. Relative URLs can contain ’..’ syntax and will be resolved relative
to the base value.

base itself will not be resolved according to the current value. A statement base mailto: will work
properly, though.

map Equivalent to the URL of the imagemap file itself. No coordinates are sent with this, so a menu will be generated
unless IMAPMENU is set to none.

menu Synonymous with map.

referer Equivalent to the URL of the referring document. Defaults to http://servername/ if no Referer:
header was present.

nocontent Sends a status code of 204 No Content, telling the client to keep the same page displayed. Valid
for all but base.

error Fails with a 500 Server Error. Valid for all but base, but sort of silly for anything but default.

Coordinates

0,0 200,200 A coordinate consists of an x and a y value separated by a comma. The coordinates are separated
from each other by whitespace. To accommodate the way Lynx handles imagemaps, should a user select the
coordinate 0,0, it is as if no coordinate had been selected.

10.56. APACHE MODULE MOD IMAGEMAP 617

Quoted Text

"Menu Text" After the value or after the coordinates, the line optionally may contain text within double quotes.
This string is used as the text for the link if a menu is generated:

Menu text

If no quoted text is present, the name of the link will be used as the text:

http://example.com

If you want to use double quotes within this text, you have to write them as ".

Example Mapfile

#Comments are printed in a ’formatted’ or ’semiformatted’ menu.
#And can contain html tags. <hr>
base referer
poly map "Could I have a menu, please?" 0,0 0,10 10,10 10,0
rect .. 0,0 77,27 "the directory of the referer"
circle http://www.inetnebr.example.com/lincoln/feedback/ 195,0 305,27
rect another file "in same directory as referer" 306,0 419,27
point http://www.zyzzyva.example.com/ 100,100
point http://www.tripod.example.com/ 200,200

rect mailto:nate@tripod.example.com 100,150 200,0 "Bugs?"

Referencing your mapfile

HTML example

XHTML example

ImapBase Directive

Description: Default base for imagemap files
Syntax: ImapBase map|referer|URL
Default: ImapBase http://servername/
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod imagemap

618 CHAPTER 10. APACHE MODULES

The IMAPBASE directive sets the default base used in the imagemap files. Its value is overridden by a base directive
within the imagemap file. If not present, the base defaults to http://servername/.

See also

• USECANONICALNAME

ImapDefault Directive

Description: Default action when an imagemap is called with coordinates that are not explicitly mapped
Syntax: ImapDefault error|nocontent|map|referer|URL
Default: ImapDefault nocontent
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod imagemap

The IMAPDEFAULT directive sets the default default used in the imagemap files. Its value is overridden by a
default directive within the imagemap file. If not present, the default action is nocontent, which means that
a 204 No Content is sent to the client. In this case, the client should continue to display the original page.

ImapMenu Directive

Description: Action if no coordinates are given when calling an imagemap
Syntax: ImapMenu none|formatted|semiformatted|unformatted
Default: ImapMenu formatted
Context: server config, virtual host, directory, .htaccess
Override: Indexes
Status: Base
Module: mod imagemap

The IMAPMENU directive determines the action taken if an imagemap file is called without valid coordinates.

none If ImapMenu is none, no menu is generated, and the default action is performed.

formatted A formatted menu is the simplest menu. Comments in the imagemap file are ignored. A level one
header is printed, then an hrule, then the links each on a separate line. The menu has a consistent, plain look
close to that of a directory listing.

semiformatted In the semiformatted menu, comments are printed where they occur in the imagemap file.
Blank lines are turned into HTML breaks. No header or hrule is printed, but otherwise the menu is the same as
a formatted menu.

unformatted Comments are printed, blank lines are ignored. Nothing is printed that does not appear in the im-
agemap file. All breaks and headers must be included as comments in the imagemap file. This gives you the
most flexibility over the appearance of your menus, but requires you to treat your map files as HTML instead of
plaintext.

10.57. APACHE MODULE MOD INCLUDE 619

10.57 Apache Module mod include

Description: Server-parsed html documents (Server Side Includes)
Status: Base
ModuleIdentifier: include module
SourceFile: mod include.c

Summary

This module provides a filter which will process files before they are sent to the client. The processing is controlled
by specially formatted SGML comments, referred to as elements. These elements allow conditional text, the inclusion
of other files or programs, as well as the setting and printing of environment variables.

Directives

• SSIEndTag

• SSIErrorMsg

• SSIETag

• SSILastModified

• SSILegacyExprParser

• SSIStartTag

• SSITimeFormat

• SSIUndefinedEcho

• XBitHack

See also

• OPTIONS

• ACCEPTPATHINFO

• Filters (p. 100)

• SSI Tutorial (p. 233)

Enabling Server-Side Includes

Server Side Includes are implemented by the INCLUDES filter (p. 100) . If documents containing server-side include
directives are given the extension .shtml, the following directives will make Apache parse them and assign the resulting
document the mime type of text/html:

AddType text/html .shtml
AddOutputFilter INCLUDES .shtml

The following directive must be given for the directories containing the shtml files (typically in a <DIRECTORY>
section, but this directive is also valid in .htaccess files if ALLOWOVERRIDE Options is set):

Options +Includes

For backwards compatibility, the server-parsed handler (p. 98) also activates the INCLUDES filter. As well,
Apache will activate the INCLUDES filter for any document with mime type text/x-server-parsed-html or
text/x-server-parsed-html3 (and the resulting output will have the mime type text/html).

For more information, see our Tutorial on Server Side Includes (p. 233) .

620 CHAPTER 10. APACHE MODULES

PATH INFO with Server Side Includes

Files processed for server-side includes no longer accept requests with PATH INFO (trailing pathname information)
by default. You can use the ACCEPTPATHINFO directive to configure the server to accept requests with PATH INFO.

Available Elements

The document is parsed as an HTML document, with special commands embedded as SGML comments. A command
has the syntax:

<!--#element attribute=value attribute=value ... -->

The value will often be enclosed in double quotes, but single quotes (’) and backticks (‘) are also possible. Many
commands only allow a single attribute-value pair. Note that the comment terminator (-->) should be preceded by
whitespace to ensure that it isn’t considered part of an SSI token. Note that the leading <!--# is one token and may
not contain any whitespaces.

The allowed elements are listed in the following table:

Element Description
config configure output formats
echo print variables
exec execute external programs
fsize print size of a file
flastmod print last modification time of a file
include include a file
printenv print all available variables
set set a value of a variable

SSI elements may be defined by modules other than MOD INCLUDE. In fact, the exec element is provided by
MOD CGI, and will only be available if this module is loaded.

The config Element

This command controls various aspects of the parsing. The valid attributes are:

echomsg (Apache 2.1 and later) The value is a message that is sent back to the client if the echo element attempts
to echo an undefined variable. This overrides any SSIUNDEFINEDECHO directives.

<!--#config echomsg="[Value Undefined]" -->

errmsg The value is a message that is sent back to the client if an error occurs while parsing the document. This
overrides any SSIERRORMSG directives.

<!--#config errmsg="[Oops, something broke.]" -->

sizefmt The value sets the format to be used when displaying the size of a file. Valid values are bytes for a count
in bytes, or abbrev for a count in Kb or Mb as appropriate, for example a size of 1024 bytes will be printed as
"1K".

10.57. APACHE MODULE MOD INCLUDE 621

<!--#config sizefmt="abbrev" -->

timefmt The value is a string to be used by the strftime(3) library routine when printing dates.

<!--#config timefmt=""%R, %B %d, %Y"" -->

The echo Element

This command prints one of the include variables defined below. If the variable is unset, the result is determined by
the SSIUNDEFINEDECHO directive. Any dates printed are subject to the currently configured timefmt.

Attributes:

var The value is the name of the variable to print.

decoding Specifies whether Apache should strip an encoding from the variable before processing the variable
further. The default is none, where no decoding will be done. If set to url, then URL decoding (also known as
%-encoding; this is appropriate for use within URLs in links, etc.) will be performed. If set to urlencoded,
application/x-www-form-urlencoded compatible encoding (found in query strings) will be stripped. If set to
base64, base64 will be decoded, and if set to entity, HTML entity encoding will be stripped. Decoding is
done prior to any further encoding on the variable. Multiple encodings can be stripped by specifying more than
one comma separated encoding. The decoding setting will remain in effect until the next decoding attribute is
encountered, or the element ends.

The decoding attribute must precede the corresponding var attribute to be effective.

encoding Specifies how Apache should encode special characters contained in the variable before outputting them.
If set to none, no encoding will be done. If set to url, then URL encoding (also known as %-encoding; this
is appropriate for use within URLs in links, etc.) will be performed. If set to urlencoded, application/x-
www-form-urlencoded compatible encoding will be performed instead, and should be used with query strings.
If set to base64, base64 encoding will be performed. At the start of an echo element, the default is set to
entity, resulting in entity encoding (which is appropriate in the context of a block-level HTML element, e.g.
a paragraph of text). This can be changed by adding an encoding attribute, which will remain in effect until
the next encoding attribute is encountered or the element ends, whichever comes first.

The encoding attribute must precede the corresponding var attribute to be effective.

! In order to avoid cross-site scripting issues, you should always encode user supplied data.

Example
<!--#echo encoding="entity" var="QUERY STRING" -->

The exec Element

The exec command executes a given shell command or CGI script. It requires MOD CGI to be present in the server.
If OPTIONS IncludesNOEXEC is set, this command is completely disabled. The valid attributes are:

622 CHAPTER 10. APACHE MODULES

cgi The value specifies a (%-encoded) URL-path to the CGI script. If the path does not begin with a slash (/), then it
is taken to be relative to the current document. The document referenced by this path is invoked as a CGI script,
even if the server would not normally recognize it as such. However, the directory containing the script must be
enabled for CGI scripts (with SCRIPTALIAS or OPTIONS ExecCGI).

The CGI script is given the PATH INFO and query string (QUERY STRING) of the original request from the
client; these cannot be specified in the URL path. The include variables will be available to the script in addition
to the standard CGI (p. 548) environment.

Example
<!--#exec cgi="/cgi-bin/example.cgi" -->

If the script returns a Location: header instead of output, then this will be translated into an HTML anchor.

The include virtual element should be used in preference to exec cgi. In particular, if you need to
pass additional arguments to a CGI program, using the query string, this cannot be done with exec cgi, but
can be done with include virtual, as shown here:

<!--#include virtual="/cgi-bin/example.cgi?argument=value" -->

cmd The server will execute the given string using /bin/sh. The include variables are available to the command,
in addition to the usual set of CGI variables.

The use of #include virtual is almost always prefered to using either #exec cgi or #exec cmd. The
former (#include virtual) uses the standard Apache sub-request mechanism to include files or scripts. It
is much better tested and maintained.

In addition, on some platforms, like Win32, and on unix when using suexec (p. 105) , you cannot pass arguments
to a command in an exec directive, or otherwise include spaces in the command. Thus, while the following
will work under a non-suexec configuration on unix, it will not produce the desired result under Win32, or when
running suexec:

<!--#exec cmd="perl /path/to/perlscript arg1 arg2" -->

The fsize Element

This command prints the size of the specified file, subject to the sizefmt format specification. Attributes:

file The value is a path relative to the directory containing the current document being parsed.

This file is <!--#fsize file="mod include.html" --> bytes.

The value of file cannot start with a slash (/), nor can it contain ../ so as to refer to a file above the current
directory or outside of the document root. Attempting to so will result in the error message: The given
path was above the root path.

virtual The value is a (%-encoded) URL-path. If it does not begin with a slash (/) then it is taken to be relative to
the current document. Note, that this does not print the size of any CGI output, but the size of the CGI script
itself.

This file is <!--#fsize virtual="/docs/mod/mod include.html" -->

bytes.

Note that in many cases these two are exactly the same thing. However, the file attribute doesn’t respect URL-space
aliases.

10.57. APACHE MODULE MOD INCLUDE 623

The flastmod Element

This command prints the last modification date of the specified file, subject to the timefmt format specification. The
attributes are the same as for the fsize command.

The include Element

This command inserts the text of another document or file into the parsed file. Any included file is subject to the usual
access control. If the directory containing the parsed file has Options (p. 354) IncludesNOEXEC set, then only
documents with a text MIME-type (text/plain, text/html etc.) will be included. Otherwise CGI scripts are
invoked as normal using the complete URL given in the command, including any query string.

An attribute defines the location of the document, and may appear more than once in an include element; an inclusion
is done for each attribute given to the include command in turn. The valid attributes are:

file The value is a path relative to the directory containing the current document being parsed. It cannot contain
../, nor can it be an absolute path. Therefore, you cannot include files that are outside of the document root,
or above the current document in the directory structure. The virtual attribute should always be used in
preference to this one.

virtual The value is a (%-encoded) URL-path. The URL cannot contain a scheme or hostname, only a path and an
optional query string. If it does not begin with a slash (/) then it is taken to be relative to the current document.

A URL is constructed from the attribute, and the output the server would return if the URL were accessed by
the client is included in the parsed output. Thus included files can be nested.

If the specified URL is a CGI program, the program will be executed and its output inserted in place of the
directive in the parsed file. You may include a query string in a CGI url:

<!--#include virtual="/cgi-bin/example.cgi?argument=value" -->

include virtual should be used in preference to exec cgi to include the output of CGI programs into
an HTML document.

If the KEPTBODYSIZE directive is correctly configured and valid for this included file, attempts to POST re-
quests to the enclosing HTML document will be passed through to subrequests as POST requests as well.
Without the directive, all subrequests are processed as GET requests.

onerror The value is a (%-encoded) URL-path which is shown should a previous attempt to include a file or virtual
attribute failed. To be effective, this attribute must be specified after the file or virtual attributes being covered.
If the attempt to include the onerror path fails, or if onerror is not specified, the default error message will be
included.

Simple example

<!--#include virtual="/not-exist.html" onerror="/error.html" -->

Dedicated onerror paths

<!--#include virtual="/path-a.html" onerror="/error-a.html"

virtual="/path-b.html" onerror="/error-b.html" -->

624 CHAPTER 10. APACHE MODULES

The printenv Element

This prints out a plain text listing of all existing variables and their values. Special characters are entity encoded (see
the echo element for details) before being output. There are no attributes.

Example
<pre> <!--#printenv --> </pre>

The set Element

This sets the value of a variable. Attributes:

var The name of the variable to set.

value The value to give a variable.

decoding Specifies whether Apache should strip an encoding from the variable before processing the variable
further. The default is none, where no decoding will be done. If set to url, urlencoded, base64 or
entity, URL decoding, application/x-www-form-urlencoded decoding, base64 decoding or HTML entity
decoding will be performed respectively. More than one decoding can be specified by separating with commas.
The decoding setting will remain in effect until the next decoding attribute is encountered, or the element ends.
The decoding attribute must precede the corresponding var attribute to be effective.

encoding Specifies how Apache should encode special characters contained in the variable before setting them.
The default is none, where no encoding will be done. If set to url, urlencoding, base64 or entity,
URL encoding, application/x-www-form-urlencoded encoding, base64 encoding or HTML entity encoding will
be performed respectively. More than one encoding can be specified by separating with commas. The en-
coding setting will remain in effect until the next encoding attribute is encountered, or the element ends. The
encoding attribute must precede the corresponding var attribute to be effective. Encodings are applied after
all decodings have been stripped.

Example
<!--#set var="category" value="help" -->

Include Variables

In addition to the variables in the standard CGI environment, these are available for the echo command, for if and
elif, and to any program invoked by the document.

DATE GMT The current date in Greenwich Mean Time.

DATE LOCAL The current date in the local time zone.

DOCUMENT NAME The filename (excluding directories) of the document requested by the user.

DOCUMENT URI The (%-decoded) URL path of the document requested by the user. Note that in the case of nested
include files, this is not the URL for the current document. Note also that if the URL is modified internally (e.g.
by an ALIAS or DIRECTORYINDEX), the modified URL is shown.

LAST MODIFIED The last modification date of the document requested by the user.

QUERY STRING UNESCAPED If a query string is present, this variable contains the (%-decoded) query string, which
is escaped for shell usage (special characters like & etc. are preceded by backslashes).

10.57. APACHE MODULE MOD INCLUDE 625

Variable Substitution

Variable substitution is done within quoted strings in most cases where they may reasonably occur as an argument to
an SSI directive. This includes the config, exec, flastmod, fsize, include, echo, and set directives. If
SSILEGACYEXPRPARSER is set to on, substitution also occurs in the arguments to conditional operators. You can
insert a literal dollar sign into the string using backslash quoting:

<!--#set var="cur" value="\$test" -->

If a variable reference needs to be substituted in the middle of a character sequence that might otherwise be considered
a valid identifier in its own right, it can be disambiguated by enclosing the reference in braces, a la shell substitution:

<!--#set var="Zed" value="${REMOTE HOST} ${REQUEST METHOD}" -->

This will result in the Zed variable being set to "X Y" if REMOTE HOST is "X" and REQUEST METHOD is "Y".

Flow Control Elements

The basic flow control elements are:

<!--#if expr="test condition" -->
<!--#elif expr="test condition" -->
<!--#else -->

<!--#endif -->

The if element works like an if statement in a programming language. The test condition is evaluated and if the result
is true, then the text until the next elif, else or endif element is included in the output stream.

The elif or else statements are used to put text into the output stream if the original test condition was false. These
elements are optional.

The endif element ends the if element and is required.

test condition is a boolean expression which follows the ap expr (p. 89) syntax. The syntax can be changed to be
compatible with Apache HTTPD 2.2.x using SSILEGACYEXPRPARSER.

The SSI variables set with the var element are exported into the request environment and can be accessed with the
reqenv function. As a short-cut, the function name v is also available inside MOD INCLUDE.

The below example will print "from local net" if client IP address belongs to the 10.0.0.0/8 subnet.

<!--#if expr=’-R "10.0.0.0/8"’ -->

from local net

<!--#else -->

from somewhere else

<!--#endif -->

The below example will print "foo is bar" if the variable foo is set to the value "bar".

<!--#if expr=’v("foo") = "bar"’ -->

foo is bar

<!--#endif -->

626 CHAPTER 10. APACHE MODULES

=⇒Reference Documentation
See also: Expressions in Apache HTTP Server (p. 89) , for a complete reference and examples.
The restricted functions are not available inside MOD INCLUDE

Legacy expression syntax

This section describes the syntax of the #if expr element if SSILEGACYEXPRPARSER is set to on.

string true if string is not empty

-A string true if the URL represented by the string is accessible by configuration, false otherwise. This is useful
where content on a page is to be hidden from users who are not authorized to view the URL, such as a link to
that URL. Note that the URL is only tested for whether access would be granted, not whether the URL exists.

Example
<!--#if expr="-A /private" -->

Click here to access private information.

<!--#endif -->

string1 = string2string1 == string2string1 != string2 Compare string1 with string2. If
string2 has the form /string2/ then it is treated as a regular expression. Regular expressions are imple-
mented by the PCRE38 engine and have the same syntax as those in perl 539. Note that == is just an alias for =
and behaves exactly the same way.

If you are matching positive (= or ==), you can capture grouped parts of the regular expression. The captured
parts are stored in the special variables $1 .. $9. The whole string matched by the regular expression is stored
in the special variable $0

Example
<!--#if expr="$QUERY STRING = /ˆsid=([a-zA-Z0-9]+)/" -->

<!--#set var="session" value="$1" -->

<!--#endif -->

string1 < string2string1 <= string2string1 > string2string1 >= string2 Compare
string1 with string2. Note, that strings are compared literally (using strcmp(3)). Therefore the string "100"
is less than "20".

(test condition) true if test condition is true

! test condition true if test condition is false

test condition1 && test condition2 true if both test condition1 and test condition2 are true

test condition1 || test condition2 true if either test condition1 or test condition2 is true

"=" and "!=" bind more tightly than "&&" and "||". "!" binds most tightly. Thus, the following are equivalent:

<!--#if expr="$a = test1 && $b = test2" -->

<!--#if expr="($a = test1) && ($b = test2)" -->

38http://www.pcre.org
39http://www.perl.com

http://www.pcre.org
http://www.perl.com

10.57. APACHE MODULE MOD INCLUDE 627

The boolean operators && and || share the same priority. So if you want to bind such an operator more tightly, you
should use parentheses.

Anything that’s not recognized as a variable or an operator is treated as a string. Strings can also be quoted:
’string’. Unquoted strings can’t contain whitespace (blanks and tabs) because it is used to separate tokens such as
variables. If multiple strings are found in a row, they are concatenated using blanks. So,

string1string2 results in string1string2

and

’string1string2’ results in string1string2.

=⇒Optimization of Boolean Expressions
If the expressions become more complex and slow down processing significantly, you can try
to optimize them according to the evaluation rules:

• Expressions are evaluated from left to right

• Binary boolean operators (&& and ||) are short circuited wherever possible. In conclu-
sion with the rule above that means, MOD INCLUDE evaluates at first the left expression.
If the left result is sufficient to determine the end result, processing stops here. Otherwise
it evaluates the right side and computes the end result from both left and right results.

• Short circuit evaluation is turned off as long as there are regular expressions to deal with.
These must be evaluated to fill in the backreference variables ($1 .. $9).

If you want to look how a particular expression is handled, you can recompile MOD INCLUDE
using the -DDEBUG INCLUDE compiler option. This inserts for every parsed expression tok-
enizer information, the parse tree and how it is evaluated into the output sent to the client.

=⇒Escaping slashes in regex strings
All slashes which are not intended to act as delimiters in your regex must be escaped. This is
regardless of their meaning to the regex engine.

SSIEndTag Directive

Description: String that ends an include element
Syntax: SSIEndTag tag
Default: SSIEndTag "-->"
Context: server config, virtual host
Status: Base
Module: mod include

This directive changes the string that MOD INCLUDE looks for to mark the end of an include element.

SSIEndTag "%>"

See also

• SSISTARTTAG

628 CHAPTER 10. APACHE MODULES

SSIErrorMsg Directive

Description: Error message displayed when there is an SSI error
Syntax: SSIErrorMsg message
Default: SSIErrorMsg "[an error occurred while processing this

directive]"
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Base
Module: mod include

The SSIERRORMSG directive changes the error message displayed when MOD INCLUDE encounters an error. For
production servers you may consider changing the default error message to "<!-- Error -->" so that the mes-
sage is not presented to the user.

This directive has the same effect as the <!--#config errmsg=message --> element.

SSIErrorMsg "<!-- Error -->"

SSIETag Directive

Description: Controls whether ETags are generated by the server.
Syntax: SSIETag on|off
Default: SSIETag off
Context: directory, .htaccess
Status: Base
Module: mod include
Compatibility: Available in version 2.2.15 and later.

Under normal circumstances, a file filtered by MOD INCLUDE may contain elements that are either dynamically gen-
erated, or that may have changed independently of the original file. As a result, by default the server is asked not to
generate an ETag header for the response by adding no-etag to the request notes.

The SSIETAG directive suppresses this behaviour, and allows the server to generate an ETag header. This can be
used to enable caching of the output. Note that a backend server or dynamic content generator may generate an ETag
of its own, ignoring no-etag, and this ETag will be passed by MOD INCLUDE regardless of the value of this setting.
SSIETAG can take on the following values:

off no-etag will be added to the request notes, and the server is asked not to generate an ETag. Where a server
ignores the value of no-etag and generates an ETag anyway, the ETag will be respected.

on Existing ETags will be respected, and ETags generated by the server will be passed on in the response.

SSILastModified Directive

Description: Controls whether Last-Modified headers are generated by the server.
Syntax: SSILastModified on|off
Default: SSILastModified off
Context: directory, .htaccess
Status: Base
Module: mod include
Compatibility: Available in version 2.2.15 and later.

Under normal circumstances, a file filtered by MOD INCLUDE may contain elements that are either dynamically gen-
erated, or that may have changed independently of the original file. As a result, by default the Last-Modified
header is stripped from the response.

10.57. APACHE MODULE MOD INCLUDE 629

The SSILASTMODIFIED directive overrides this behaviour, and allows the Last-Modified header to be respected
if already present, or set if the header is not already present. This can be used to enable caching of the output.
SSILASTMODIFIED can take on the following values:

off The Last-Modified header will be stripped from responses, unless the XBITHACK directive is set to full
as described below.

on The Last-Modified header will be respected if already present in a response, and added to the response
if the response is a file and the header is missing. The SSILASTMODIFIED directive takes precedence over
XBITHACK.

SSILegacyExprParser Directive

Description: Enable compatibility mode for conditional expressions.
Syntax: SSILegacyExprParser on|off
Default: SSILegacyExprParser off
Context: directory, .htaccess
Status: Base
Module: mod include
Compatibility: Available in version 2.3.13 and later.

As of version 2.3.13, MOD INCLUDE has switched to the new ap expr (p. 89) syntax for conditional expressions in
#if flow control elements. This directive allows to switch to the old syntax which is compatible with Apache HTTPD
version 2.2.x and earlier.

SSIStartTag Directive

Description: String that starts an include element
Syntax: SSIStartTag tag
Default: SSIStartTag "<!--#"
Context: server config, virtual host
Status: Base
Module: mod include

This directive changes the string that MOD INCLUDE looks for to mark an include element to process.

You may want to use this option if you have 2 servers parsing the output of a file each processing different commands
(possibly at different times).

SSIStartTag "<%"
SSIEndTag "%>"

The example given above, which also specifies a matching SSIENDTAG, will allow you to use SSI directives as shown
in the example below:

SSI directives with alternate start and end tags
<%printenv %>

See also

• SSIENDTAG

630 CHAPTER 10. APACHE MODULES

SSITimeFormat Directive

Description: Configures the format in which date strings are displayed
Syntax: SSITimeFormat formatstring
Default: SSITimeFormat "%A, %d-%b-%Y %H:%M:%S %Z"
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Base
Module: mod include

This directive changes the format in which date strings are displayed when echoing DATE environment variables. The
formatstring is as in strftime(3) from the C standard library.

This directive has the same effect as the <!--#config timefmt=formatstring --> element.

SSITimeFormat "%R, %B %d, %Y"

The above directive would cause times to be displayed in the format "22:26, June 14, 2002".

SSIUndefinedEcho Directive

Description: String displayed when an unset variable is echoed
Syntax: SSIUndefinedEcho string
Default: SSIUndefinedEcho "(none)"
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Base
Module: mod include

This directive changes the string that MOD INCLUDE displays when a variable is not set and "echoed".

SSIUndefinedEcho "<!-- undef -->"

XBitHack Directive

Description: Parse SSI directives in files with the execute bit set
Syntax: XBitHack on|off|full
Default: XBitHack off
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Base
Module: mod include

The XBITHACK directive controls the parsing of ordinary html documents. This directive only affects files associated
with the MIME-type text/html. XBITHACK can take on the following values:

off No special treatment of executable files.

on Any text/html file that has the user-execute bit set will be treated as a server-parsed html document.

full As for on but also test the group-execute bit. If it is set, then set the Last-modified date of the returned
file to be the last modified time of the file. If it is not set, then no last-modified date is sent. Setting this bit
allows clients and proxies to cache the result of the request.

10.57. APACHE MODULE MOD INCLUDE 631

=⇒Note
You would not want to use the full option, unless you assure the group-execute bit is unset
for every SSI script which might #include a CGI or otherwise produces different output on
each hit (or could potentially change on subsequent requests).
The SSILASTMODIFIED directive takes precedence over the XBITHACK directive when SSI-
LASTMODIFIED is set to on.

632 CHAPTER 10. APACHE MODULES

10.58 Apache Module mod info

Description: Provides a comprehensive overview of the server configuration
Status: Extension
ModuleIdentifier: info module
SourceFile: mod info.c

Summary

To configure MOD INFO, add the following to your httpd.conf file.

<Location "/server-info">
SetHandler server-info

</Location>

You may wish to use MOD AUTHZ HOST inside the <LOCATION> directive to limit access to your server configura-
tion information:

<Location "/server-info">
SetHandler server-info
Require host example.com

</Location>

Once configured, the server information is obtained by accessing
http://your.host.example.com/server-info

Directives

• AddModuleInfo

Security Issues

Once MOD INFO is loaded into the server, its handler capability is available in all configuration files, including per-
directory files (e.g., .htaccess). This may have security-related ramifications for your site.

In particular, this module can leak sensitive information from the configuration directives of other Apache modules
such as system paths, usernames/passwords, database names, etc. Therefore, this module should only be used in a
controlled environment and always with caution.

You will probably want to use MOD AUTHZ HOST to limit access to your server configuration information.

Access control

<Location "/server-info">
SetHandler server-info
Order allow,deny
Allow access from server itself
Allow from 127.0.0.1
Additionally, allow access from local workstation
Allow from 192.168.1.17

</Location>

10.58. APACHE MODULE MOD INFO 633

Selecting the information shown

By default, the server information includes a list of all enabled modules, and for each module, a description of the
directives understood by that module, the hooks implemented by that module, and the relevant directives from the
current configuration.

Other views of the configuration information are available by appending a query to the server-info request.
For example, http://your.host.example.com/server-info?config will show all configuration di-
rectives.

?<module-name> Only information relevant to the named module

?config Just the configuration directives, not sorted by module

?hooks Only the list of Hooks each module is attached to

?list Only a simple list of enabled modules

?server Only the basic server information

Dumping the configuration on startup

If the config define -DDUMP CONFIG is set, MOD INFO will dump the pre-parsed configuration to stdout during
server startup. Pre-parsed means that directives like <IFDEFINE> and <IFMODULE> are evaluated and environment
varialbles are replaced. However it does not represent the final state of the configuration. In particular, it does not
represent the merging or overriding that may happen for repeated directives.

This is roughly equivalent to the ?config query.

Known Limitations

MOD INFO provides its information by reading the parsed configuration, rather than reading the original configuration
file. There are a few limitations as a result of the way the parsed configuration tree is created:

• Directives which are executed immediately rather than being stored in the parsed configuration are not listed.
These include SERVERROOT, LOADMODULE, and LOADFILE.

• Directives which control the configuration file itself, such as INCLUDE, <IFMODULE> and <IFDEFINE> are
not listed, but the included configuration directives are.

• Comments are not listed. (This may be considered a feature.)

• Configuration directives from .htaccess files are not listed (since they do not form part of the permanent
server configuration).

• Container directives such as <DIRECTORY> are listed normally, but MOD INFO cannot figure out the line
number for the closing </DIRECTORY>.

• Directives generated by third party modules such as mod perl40 might not be listed.

40http://perl.apache.org

http://perl.apache.org

634 CHAPTER 10. APACHE MODULES

AddModuleInfo Directive

Description: Adds additional information to the module information displayed by the server-info handler
Syntax: AddModuleInfo module-name string
Context: server config, virtual host
Status: Extension
Module: mod info

This allows the content of string to be shown as HTML interpreted, Additional Information for the module module-
name. Example:

AddModuleInfo mod_deflate.c ’See <a \
href="http://httpd.apache.org/docs/2.4/mod/mod_deflate.html">\
http://httpd.apache.org/docs/2.4/mod/mod_deflate.html’

10.59. APACHE MODULE MOD ISAPI 635

10.59 Apache Module mod isapi

Description: ISAPI Extensions within Apache for Windows
Status: Base
ModuleIdentifier: isapi module
SourceFile: mod isapi.c
Compatibility: Win32 only

Summary

This module implements the Internet Server extension API. It allows Internet Server extensions (e.g. ISAPI .dll
modules) to be served by Apache for Windows, subject to the noted restrictions.

ISAPI extension modules (.dll files) are written by third parties. The Apache Group does not author these modules, so
we provide no support for them. Please contact the ISAPI’s author directly if you are experiencing problems running
their ISAPI extension. Please do not post such problems to Apache’s lists or bug reporting pages.

Directives

• ISAPIAppendLogToErrors

• ISAPIAppendLogToQuery

• ISAPICacheFile

• ISAPIFakeAsync

• ISAPILogNotSupported

• ISAPIReadAheadBuffer

Usage

In the server configuration file, use the ADDHANDLER directive to associate ISAPI files with the isapi-handler
handler, and map it to them with their file extensions. To enable any .dll file to be processed as an ISAPI extension,
edit the httpd.conf file and add the following line:

AddHandler isapi-handler .dll

=⇒In older versions of the Apache server, isapi-isa was the proper handler name, rather than
isapi-handler. As of 2.3 development versions of the Apache server, isapi-isa is no
longer valid. You will need to change your configuration to use isapi-handler instead.

There is no capability within the Apache server to leave a requested module loaded. However, you may preload and
keep a specific module loaded by using the following syntax in your httpd.conf:

ISAPICacheFile c:/WebWork/Scripts/ISAPI/mytest.dll

Whether or not you have preloaded an ISAPI extension, all ISAPI extensions are governed by the same permissions
and restrictions as CGI scripts. That is, OPTIONS ExecCGI must be set for the directory that contains the ISAPI .dll
file.

Review the Additional Notes and the Programmer’s Journal for additional details and clarification of the specific ISAPI
support offered by MOD ISAPI.

636 CHAPTER 10. APACHE MODULES

Additional Notes

Apache’s ISAPI implementation conforms to all of the ISAPI 2.0 specification, except for some "Microsoft-specific"
extensions dealing with asynchronous I/O. Apache’s I/O model does not allow asynchronous reading and writing
in a manner that the ISAPI could access. If an ISA tries to access unsupported features, including async I/O, a
message is placed in the error log to help with debugging. Since these messages can become a flood, the directive
ISAPILogNotSupported Off exists to quiet this noise.

Some servers, like Microsoft IIS, load the ISAPI extension into the server and keep it loaded until memory usage is
too high, or unless configuration options are specified. Apache currently loads and unloads the ISAPI extension each
time it is requested, unless the ISAPICACHEFILE directive is specified. This is inefficient, but Apache’s memory
model makes this the most effective method. Many ISAPI modules are subtly incompatible with the Apache server,
and unloading these modules helps to ensure the stability of the server.

Also, remember that while Apache supports ISAPI Extensions, it does not support ISAPI Filters. Support for filters
may be added at a later date, but no support is planned at this time.

Programmer’s Journal

If you are programming Apache 2.0 MOD ISAPI modules, you must limit your calls to ServerSupportFunction
to the following directives:

HSE REQ SEND URL REDIRECT RESP Redirect the user to another location.
This must be a fully qualified URL (e.g. http://server/location).

HSE REQ SEND URL Redirect the user to another location.
This cannot be a fully qualified URL, you are not allowed to pass the protocol or a server name (e.g. simply
/location).
This redirection is handled by the server, not the browser.

! Warning
In their recent documentation, Microsoft appears to have abandoned the distinction between the
two HSE REQ SEND URL functions. Apache continues to treat them as two distinct functions
with different requirements and behaviors.

HSE REQ SEND RESPONSE HEADER Apache accepts a response body following the header if it follows the blank
line (two consecutive newlines) in the headers string argument. This body cannot contain NULLs, since the
headers argument is NULL terminated.

HSE REQ DONE WITH SESSION Apache considers this a no-op, since the session will be finished when the ISAPI
returns from processing.

HSE REQ MAP URL TO PATH Apache will translate a virtual name to a physical name.

HSE APPEND LOG PARAMETER This logged message may be captured in any of the following logs:

• in the \"%{isapi-parameter}n\" component in a CUSTOMLOG directive
• in the %q log component with the ISAPIAPPENDLOGTOQUERY On directive
• in the error log with the ISAPIAPPENDLOGTOERRORS On directive

The first option, the %{isapi-parameter}n component, is always available and preferred.

HSE REQ IS KEEP CONN Will return the negotiated Keep-Alive status.

HSE REQ SEND RESPONSE HEADER EX Will behave as documented, although the fKeepConn flag is ignored.

10.59. APACHE MODULE MOD ISAPI 637

HSE REQ IS CONNECTED Will report false if the request has been aborted.

Apache returns FALSE to any unsupported call to ServerSupportFunction, and sets the GetLastError
value to ERROR INVALID PARAMETER.

ReadClient retrieves the request body exceeding the initial buffer (defined by ISAPIREADAHEADBUFFER).
Based on the ISAPIREADAHEADBUFFER setting (number of bytes to buffer prior to calling the ISAPI handler)
shorter requests are sent complete to the extension when it is invoked. If the request is longer, the ISAPI extension
must use ReadClient to retrieve the remaining request body.

WriteClient is supported, but only with the HSE IO SYNC flag or no option flag (value of 0). Any
other WriteClient request will be rejected with a return value of FALSE, and a GetLastError value of
ERROR INVALID PARAMETER.

GetServerVariable is supported, although extended server variables do not exist (as defined by other servers.)
All the usual Apache CGI environment variables are available from GetServerVariable, as well as the
ALL HTTP and ALL RAW values.

Since httpd 2.0, MOD ISAPI supports additional features introduced in later versions of the ISAPI specification, as well
as limited emulation of async I/O and the TransmitFile semantics. Apache httpd also supports preloading ISAPI
.dlls for performance.

ISAPIAppendLogToErrors Directive

Description: Record HSE APPEND LOG PARAMETER requests from ISAPI extensions to the error log
Syntax: ISAPIAppendLogToErrors on|off
Default: ISAPIAppendLogToErrors off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod isapi

Record HSE APPEND LOG PARAMETER requests from ISAPI extensions to the server error log.

ISAPIAppendLogToQuery Directive

Description: Record HSE APPEND LOG PARAMETER requests from ISAPI extensions to the query field
Syntax: ISAPIAppendLogToQuery on|off
Default: ISAPIAppendLogToQuery on
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod isapi

Record HSE APPEND LOG PARAMETER requests from ISAPI extensions to the query field (appended to the CUS-
TOMLOG %q component).

ISAPICacheFile Directive

Description: ISAPI .dll files to be loaded at startup
Syntax: ISAPICacheFile file-path [file-path] ...
Context: server config, virtual host
Status: Base
Module: mod isapi

638 CHAPTER 10. APACHE MODULES

Specifies a space-separated list of file names to be loaded when the Apache server is launched, and remain loaded until
the server is shut down. This directive may be repeated for every ISAPI .dll file desired. The full path name of each
file should be specified. If the path name is not absolute, it will be treated relative to SERVERROOT.

ISAPIFakeAsync Directive

Description: Fake asynchronous support for ISAPI callbacks
Syntax: ISAPIFakeAsync on|off
Default: ISAPIFakeAsync off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod isapi

While set to on, asynchronous support for ISAPI callbacks is simulated.

ISAPILogNotSupported Directive

Description: Log unsupported feature requests from ISAPI extensions
Syntax: ISAPILogNotSupported on|off
Default: ISAPILogNotSupported off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod isapi

Logs all requests for unsupported features from ISAPI extensions in the server error log. This may help administrators
to track down problems. Once set to on and all desired ISAPI modules are functioning, it should be set back to off.

ISAPIReadAheadBuffer Directive

Description: Size of the Read Ahead Buffer sent to ISAPI extensions
Syntax: ISAPIReadAheadBuffer size
Default: ISAPIReadAheadBuffer 49152
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod isapi

Defines the maximum size of the Read Ahead Buffer sent to ISAPI extensions when they are initially invoked. All
remaining data must be retrieved using the ReadClient callback; some ISAPI extensions may not support the
ReadClient function. Refer questions to the ISAPI extension’s author.

10.60. APACHE MODULE MOD LBMETHOD BYBUSYNESS 639

10.60 Apache Module mod lbmethod bybusyness

Description: Pending Request Counting load balancer scheduler algorithm for
MOD PROXY BALANCER

Status: Extension
ModuleIdentifier: lbmethod bybusyness module
SourceFile: mod lbmethod bybusyness.c
Compatibility: Split off from MOD PROXY BALANCER in 2.3

Summary

This module does not provide any configuration directives of its own. It requires the services of
MOD PROXY BALANCER, and provides the bybusyness load balancing method.

Directives This module provides no directives.

See also

• MOD PROXY

• MOD PROXY BALANCER

Pending Request Counting Algorithm

Enabled via lbmethod=bybusyness, this scheduler keeps track of how many requests each worker is currently
assigned at present. A new request is automatically assigned to the worker with the lowest number of active requests.
This is useful in the case of workers that queue incoming requests independently of Apache, to ensure that queue
length stays even and a request is always given to the worker most likely to service it the fastest and reduce latency.

In the case of multiple least-busy workers, the statistics (and weightings) used by the Request Counting method are
used to break the tie. Over time, the distribution of work will come to resemble that characteristic of byrequests
(as implemented by MOD LBMETHOD BYREQUESTS).

640 CHAPTER 10. APACHE MODULES

10.61 Apache Module mod lbmethod byrequests

Description: Request Counting load balancer scheduler algorithm for MOD PROXY BALANCER
Status: Extension
ModuleIdentifier: lbmethod byrequests module
SourceFile: mod lbmethod byrequests.c
Compatibility: Split off from MOD PROXY BALANCER in 2.3

Summary

This module does not provide any configuration directives of its own. It requires the services of
MOD PROXY BALANCER, and provides the byrequests load balancing method..

Directives This module provides no directives.

See also

• MOD PROXY

• MOD PROXY BALANCER

Request Counting Algorithm

Enabled via lbmethod=byrequests, the idea behind this scheduler is that we distribute the requests among the
various workers to ensure that each gets their configured share of the number of requests. It works as follows:

lbfactor is how much we expect this worker to work, or the workers’ work quota. This is a normalized value represent-
ing their "share" of the amount of work to be done.

lbstatus is how urgent this worker has to work to fulfill its quota of work.

The worker is a member of the load balancer, usually a remote host serving one of the supported protocols.

We distribute each worker’s work quota to the worker, and then look which of them needs to work most urgently
(biggest lbstatus). This worker is then selected for work, and its lbstatus reduced by the total work quota we distributed
to all workers. Thus the sum of all lbstatus does not change(*) and we distribute the requests as desired.

If some workers are disabled, the others will still be scheduled correctly.

for each worker in workers
worker lbstatus += worker lbfactor
total factor += worker lbfactor
if worker lbstatus > candidate lbstatus

candidate = worker

candidate lbstatus -= total factor

If a balancer is configured as follows:

worker a b c d
lbfactor 25 25 25 25
lbstatus 0 0 0 0

And b gets disabled, the following schedule is produced:

10.61. APACHE MODULE MOD LBMETHOD BYREQUESTS 641

worker a b c d
lbstatus -50 0 25 25
lbstatus -25 0 -25 50
lbstatus 0 0 0 0
(repeat)

That is it schedules: a c d a c d a c d ... Please note that:

worker a b c d
lbfactor 25 25 25 25

Has the exact same behavior as:

worker a b c d
lbfactor 1 1 1 1

This is because all values of lbfactor are normalized with respect to the others. For:

worker a b c
lbfactor 1 4 1

worker b will, on average, get 4 times the requests that a and c will.

The following asymmetric configuration works as one would expect:

worker a b
lbfactor 70 30

lbstatus -30 30
lbstatus 40 -40
lbstatus 10 -10
lbstatus -20 20
lbstatus -50 50
lbstatus 20 -20
lbstatus -10 10
lbstatus -40 40
lbstatus 30 -30
lbstatus 0 0
(repeat)

That is after 10 schedules, the schedule repeats and 7 a are selected with 3 b interspersed.

642 CHAPTER 10. APACHE MODULES

10.62 Apache Module mod lbmethod bytraffic

Description: Weighted Traffic Counting load balancer scheduler algorithm for
MOD PROXY BALANCER

Status: Extension
ModuleIdentifier: lbmethod bytraffic module
SourceFile: mod lbmethod bytraffic.c
Compatibility: Split off from MOD PROXY BALANCER in 2.3

Summary

This module does not provide any configuration directives of its own. It requires the services of
MOD PROXY BALANCER, and provides the bytraffic load balancing method..

Directives This module provides no directives.

See also

• MOD PROXY

• MOD PROXY BALANCER

Weighted Traffic Counting Algorithm

Enabled via lbmethod=bytraffic, the idea behind this scheduler is very similar to the Request Counting method,
with the following changes:

lbfactor is how much traffic, in bytes, we want this worker to handle. This is also a normalized value representing
their "share" of the amount of work to be done, but instead of simply counting the number of requests, we take into
account the amount of traffic this worker has either seen or produced.

If a balancer is configured as follows:

worker a b c
lbfactor 1 2 1

Then we mean that we want b to process twice the amount of bytes than a or c should. It does not necessarily mean that
b would handle twice as many requests, but it would process twice the I/O. Thus, the size of the request and response
are applied to the weighting and selection algorithm.

Note: input and output bytes are weighted the same.

10.63. APACHE MODULE MOD LBMETHOD HEARTBEAT 643

10.63 Apache Module mod lbmethod heartbeat

Description: Heartbeat Traffic Counting load balancer scheduler algorithm for
MOD PROXY BALANCER

Status: Experimental
ModuleIdentifier: lbmethod heartbeat module
SourceFile: mod lbmethod heartbeat.c
Compatibility: Available in version 2.3 and later

Summary

lbmethod=heartbeat uses the services of MOD HEARTMONITOR to balance between origin servers that are providing
heartbeat info via the MOD HEARTBEAT module.

This modules load balancing algorithm favors servers with more ready (idle) capacity over time, but does not select the
server with the most ready capacity every time. Servers that have 0 active clients are penalized, with the assumption
that they are not fully initialized.

Directives

• HeartbeatStorage

See also

• MOD PROXY

• MOD PROXY BALANCER

• MOD HEARTBEAT

• MOD HEARTMONITOR

HeartbeatStorage Directive

Description: Path to read heartbeat data
Syntax: HeartbeatStorage file-path
Default: HeartbeatStorage logs/hb.dat
Context: server config
Status: Experimental
Module: mod lbmethod heartbeat

The HEARTBEATSTORAGE directive specifies the path to read heartbeat data. This flat-file is used only when
MOD SLOTMEM SHM is not loaded.

644 CHAPTER 10. APACHE MODULES

10.64 Apache Module mod ldap

Description: LDAP connection pooling and result caching services for use by other LDAP modules
Status: Extension
ModuleIdentifier: ldap module
SourceFile: util ldap.c

Summary

This module was created to improve the performance of websites relying on backend connections to LDAP servers.
In addition to the functions provided by the standard LDAP libraries, this module adds an LDAP connection pool and
an LDAP shared memory cache.

To enable this module, LDAP support must be compiled into apr-util. This is achieved by adding the --with-ldap
flag to the configure script when building Apache.

SSL/TLS support is dependent on which LDAP toolkit has been linked to APR. As of this writing, APR-util supports:
OpenLDAP SDK41 (2.x or later), Novell LDAP SDK42, Mozilla LDAP SDK43, native Solaris LDAP SDK (Mozilla
based) or the native Microsoft LDAP SDK. See the APR44 website for details.

Directives

• LDAPCacheEntries

• LDAPCacheTTL

• LDAPConnectionPoolTTL

• LDAPConnectionTimeout

• LDAPLibraryDebug

• LDAPOpCacheEntries

• LDAPOpCacheTTL

• LDAPReferralHopLimit

• LDAPReferrals

• LDAPRetries

• LDAPRetryDelay

• LDAPSharedCacheFile

• LDAPSharedCacheSize

• LDAPTimeout

• LDAPTrustedClientCert

• LDAPTrustedGlobalCert

• LDAPTrustedMode

• LDAPVerifyServerCert

41http://www.openldap.org/
42http://developer.novell.com/ndk/cldap.htm
43https://wiki.mozilla.org/LDAP C SDK
44http://apr.apache.org

http://www.openldap.org/
http://developer.novell.com/ndk/cldap.htm
https://wiki.mozilla.org/LDAP_C_SDK
http://apr.apache.org

10.64. APACHE MODULE MOD LDAP 645

Example Configuration

The following is an example configuration that uses MOD LDAP to increase the performance of HTTP Basic authenti-
cation provided by MOD AUTHNZ LDAP.

Enable the LDAP connection pool and shared
memory cache. Enable the LDAP cache status
handler. Requires that mod_ldap and mod_authnz_ldap
be loaded. Change the "yourdomain.example.com" to
match your domain.

LDAPSharedCacheSize 500000
LDAPCacheEntries 1024
LDAPCacheTTL 600
LDAPOpCacheEntries 1024
LDAPOpCacheTTL 600

<Location "/ldap-status">
SetHandler ldap-status

Require host yourdomain.example.com

Satisfy any
AuthType Basic
AuthName "LDAP Protected"
AuthBasicProvider ldap
AuthLDAPURL "ldap://127.0.0.1/dc=example,dc=com?uid?one"
Require valid-user

</Location>

LDAP Connection Pool

LDAP connections are pooled from request to request. This allows the LDAP server to remain connected and bound
ready for the next request, without the need to unbind/connect/rebind. The performance advantages are similar to the
effect of HTTP keepalives.

On a busy server it is possible that many requests will try and access the same LDAP server connection simultaneously.
Where an LDAP connection is in use, Apache will create a new connection alongside the original one. This ensures
that the connection pool does not become a bottleneck.

There is no need to manually enable connection pooling in the Apache configuration. Any module using this module
for access to LDAP services will share the connection pool.

LDAP connections can keep track of the ldap client credentials used when binding to an LDAP server. These cre-
dentials can be provided to LDAP servers that do not allow anonymous binds during referral chasing. To control this
feature, see the LDAPREFERRALS and LDAPREFERRALHOPLIMIT directives. By default, this feature is enabled.

LDAP Cache

For improved performance, MOD LDAP uses an aggressive caching strategy to minimize the number of times that the
LDAP server must be contacted. Caching can easily double or triple the throughput of Apache when it is serving pages
protected with mod authnz ldap. In addition, the load on the LDAP server will be significantly decreased.

646 CHAPTER 10. APACHE MODULES

MOD LDAP supports two types of LDAP caching during the search/bind phase with a search/bind cache and during
the compare phase with two operation caches. Each LDAP URL that is used by the server has its own set of these
three caches.

The Search/Bind Cache

The process of doing a search and then a bind is the most time-consuming aspect of LDAP operation, especially if the
directory is large. The search/bind cache is used to cache all searches that resulted in successful binds. Negative results
(i.e., unsuccessful searches, or searches that did not result in a successful bind) are not cached. The rationale behind
this decision is that connections with invalid credentials are only a tiny percentage of the total number of connections,
so by not caching invalid credentials, the size of the cache is reduced.

MOD LDAP stores the username, the DN retrieved, the password used to bind, and the time of the bind in the cache.
Whenever a new connection is initiated with the same username, MOD LDAP compares the password of the new
connection with the password in the cache. If the passwords match, and if the cached entry is not too old, MOD LDAP
bypasses the search/bind phase.

The search and bind cache is controlled with the LDAPCACHEENTRIES and LDAPCACHETTL directives.

Operation Caches

During attribute and distinguished name comparison functions, MOD LDAP uses two operation caches to cache the
compare operations. The first compare cache is used to cache the results of compares done to test for LDAP group
membership. The second compare cache is used to cache the results of comparisons done between distinguished
names.

Note that, when group membership is being checked, any sub-group comparison results are cached to speed future
sub-group comparisons.

The behavior of both of these caches is controlled with the LDAPOPCACHEENTRIES and LDAPOPCACHETTL
directives.

Monitoring the Cache

MOD LDAP has a content handler that allows administrators to monitor the cache performance. The name of the content
handler is ldap-status, so the following directives could be used to access the MOD LDAP cache information:

<Location "/server/cache-info">
SetHandler ldap-status

</Location>

By fetching the URL http://servername/cache-info, the administrator can get a status report of every
cache that is used by MOD LDAP cache. Note that if Apache does not support shared memory, then each httpd
instance has its own cache, so reloading the URL will result in different information each time, depending on which
httpd instance processes the request.

Using SSL/TLS

The ability to create an SSL and TLS connections to an LDAP server is defined by the directives LDAPTRUST-
EDGLOBALCERT, LDAPTRUSTEDCLIENTCERT and LDAPTRUSTEDMODE. These directives specify the CA and
optional client certificates to be used, as well as the type of encryption to be used on the connection (none, SSL or
TLS/STARTTLS).

10.64. APACHE MODULE MOD LDAP 647

Establish an SSL LDAP connection on port 636. Requires that
mod_ldap and mod_authnz_ldap be loaded. Change the
"yourdomain.example.com" to match your domain.

LDAPTrustedGlobalCert CA_DER "/certs/certfile.der"

<Location "/ldap-status">
SetHandler ldap-status

Require host yourdomain.example.com

Satisfy any
AuthType Basic
AuthName "LDAP Protected"
AuthBasicProvider ldap
AuthLDAPURL "ldaps://127.0.0.1/dc=example,dc=com?uid?one"
Require valid-user

</Location>

Establish a TLS LDAP connection on port 389. Requires that
mod_ldap and mod_authnz_ldap be loaded. Change the
"yourdomain.example.com" to match your domain.

LDAPTrustedGlobalCert CA_DER "/certs/certfile.der:

<Location "/ldap-status">
SetHandler ldap-status

Require host yourdomain.example.com

Satisfy any
AuthType Basic
AuthName "LDAP Protected"
AuthBasicProvider ldap
AuthLDAPURL "ldap://127.0.0.1/dc=example,dc=com?uid?one" TLS
Require valid-user

</Location>

SSL/TLS Certificates

The different LDAP SDKs have widely different methods of setting and handling both CA and client side certificates.

If you intend to use SSL or TLS, read this section CAREFULLY so as to understand the differences between configu-
rations on the different LDAP toolkits supported.

Netscape/Mozilla/iPlanet SDK

CA certificates are specified within a file called cert7.db. The SDK will not talk to any LDAP server whose certificate
was not signed by a CA specified in this file. If client certificates are required, an optional key3.db file may be specified
with an optional password. The secmod file can be specified if required. These files are in the same format as used by
the Netscape Communicator or Mozilla web browsers. The easiest way to obtain these files is to grab them from your
browser installation.

648 CHAPTER 10. APACHE MODULES

Client certificates are specified per connection using the LDAPTrustedClientCert directive by referring to the certificate
"nickname". An optional password may be specified to unlock the certificate’s private key.

The SDK supports SSL only. An attempt to use STARTTLS will cause an error when an attempt is made to contact
the LDAP server at runtime.

Specify a Netscape CA certificate file
LDAPTrustedGlobalCert CA_CERT7_DB "/certs/cert7.db"
Specify an optional key3.db file for client certificate support
LDAPTrustedGlobalCert CERT_KEY3_DB "/certs/key3.db"
Specify the secmod file if required
LDAPTrustedGlobalCert CA_SECMOD "/certs/secmod"
<Location "/ldap-status">

SetHandler ldap-status

Require host yourdomain.example.com

Satisfy any
AuthType Basic
AuthName "LDAP Protected"
AuthBasicProvider ldap
LDAPTrustedClientCert CERT_NICKNAME <nickname> [password]
AuthLDAPURL "ldaps://127.0.0.1/dc=example,dc=com?uid?one"
Require valid-user

</Location>

Novell SDK

One or more CA certificates must be specified for the Novell SDK to work correctly. These certificates can be specified
as binary DER or Base64 (PEM) encoded files.

Note: Client certificates are specified globally rather than per connection, and so must be specified with the LDAP-
TrustedGlobalCert directive as below. Trying to set client certificates via the LDAPTrustedClientCert directive will
cause an error to be logged when an attempt is made to connect to the LDAP server..

The SDK supports both SSL and STARTTLS, set using the LDAPTrustedMode parameter. If an ldaps:// URL is
specified, SSL mode is forced, override this directive.

Specify two CA certificate files
LDAPTrustedGlobalCert CA_DER "/certs/cacert1.der"
LDAPTrustedGlobalCert CA_BASE64 "/certs/cacert2.pem"
Specify a client certificate file and key
LDAPTrustedGlobalCert CERT_BASE64 "/certs/cert1.pem"
LDAPTrustedGlobalCert KEY_BASE64 "/certs/key1.pem" [password]
Do not use this directive, as it will throw an error
#LDAPTrustedClientCert CERT_BASE64 "/certs/cert1.pem"

OpenLDAP SDK

One or more CA certificates must be specified for the OpenLDAP SDK to work correctly. These certificates can be
specified as binary DER or Base64 (PEM) encoded files.

Both CA and client certificates may be specified globally (LDAPTrustedGlobalCert) or per-connection (LDAPTrust-
edClientCert). When any settings are specified per-connection, the global settings are superceded.

10.64. APACHE MODULE MOD LDAP 649

The documentation for the SDK claims to support both SSL and STARTTLS, however STARTTLS does not seem
to work on all versions of the SDK. The SSL/TLS mode can be set using the LDAPTrustedMode parameter. If an
ldaps:// URL is specified, SSL mode is forced. The OpenLDAP documentation notes that SSL (ldaps://) support has
been deprecated to be replaced with TLS, although the SSL functionality still works.

Specify two CA certificate files
LDAPTrustedGlobalCert CA_DER "/certs/cacert1.der"
LDAPTrustedGlobalCert CA_BASE64 "/certs/cacert2.pem"
<Location "/ldap-status">

SetHandler ldap-status

Require host yourdomain.example.com

LDAPTrustedClientCert CERT_BASE64 "/certs/cert1.pem"
LDAPTrustedClientCert KEY_BASE64 "/certs/key1.pem"
CA certs respecified due to per-directory client certs
LDAPTrustedClientCert CA_DER "/certs/cacert1.der"
LDAPTrustedClientCert CA_BASE64 "/certs/cacert2.pem"
Satisfy any
AuthType Basic
AuthName "LDAP Protected"
AuthBasicProvider ldap
AuthLDAPURL "ldaps://127.0.0.1/dc=example,dc=com?uid?one"
Require valid-user

</Location>

Solaris SDK

SSL/TLS for the native Solaris LDAP libraries is not yet supported. If required, install and use the OpenLDAP libraries
instead.

Microsoft SDK

SSL/TLS certificate configuration for the native Microsoft LDAP libraries is done inside the system registry, and no
configuration directives are required.

Both SSL and TLS are supported by using the ldaps:// URL format, or by using the LDAPTrustedMode directive
accordingly.

Note: The status of support for client certificates is not yet known for this toolkit.

LDAPCacheEntries Directive

Description: Maximum number of entries in the primary LDAP cache
Syntax: LDAPCacheEntries number
Default: LDAPCacheEntries 1024
Context: server config
Status: Extension
Module: mod ldap

Specifies the maximum size of the primary LDAP cache. This cache contains successful search/binds. Set it to 0 to
turn off search/bind caching. The default size is 1024 cached searches.

650 CHAPTER 10. APACHE MODULES

LDAPCacheTTL Directive

Description: Time that cached items remain valid
Syntax: LDAPCacheTTL seconds
Default: LDAPCacheTTL 600
Context: server config
Status: Extension
Module: mod ldap

Specifies the time (in seconds) that an item in the search/bind cache remains valid. The default is 600 seconds (10
minutes).

LDAPConnectionPoolTTL Directive

Description: Discard backend connections that have been sitting in the connection pool too long
Syntax: LDAPConnectionPoolTTL n
Default: LDAPConnectionPoolTTL -1
Context: server config, virtual host
Status: Extension
Module: mod ldap
Compatibility: Apache HTTP Server 2.3.12 and later

Specifies the maximum age, in seconds, that a pooled LDAP connection can remain idle and still be available for use.
Connections are cleaned up when they are next needed, not asynchronously.

A setting of 0 causes connections to never be saved in the backend connection pool. The default value of -1, and any
other negative value, allows connections of any age to be reused.

For performance reasons, the reference time used by this directive is based on when the LDAP connection is returned
to the pool, not the time of the last successful I/O with the LDAP server.

Since 2.4.10, new measures are in place to avoid the reference time from being inflated by cache hits or slow requests.
First, the reference time is not updated if no backend LDAP conncetions were needed. Second, the reference time uses
the time the HTTP request was received instead of the time the request is completed.

=⇒This timeout defaults to units of seconds, but accepts suffixes for milliseconds (ms), minutes
(min), and hours (h).

LDAPConnectionTimeout Directive

Description: Specifies the socket connection timeout in seconds
Syntax: LDAPConnectionTimeout seconds
Context: server config
Status: Extension
Module: mod ldap

This directive configures the LDAP OPT NETWORK TIMEOUT (or LDAP OPT CONNECT TIMEOUT) option in
the underlying LDAP client library, when available. This value typically controls how long the LDAP client library
will wait for the TCP connection to the LDAP server to complete.

If a connection is not successful with the timeout period, either an error will be returned or the LDAP client library
will attempt to connect to a secondary LDAP server if one is specified (via a space-separated list of hostnames in the
AUTHLDAPURL).

The default is 10 seconds, if the LDAP client library linked with the server supports the
LDAP OPT NETWORK TIMEOUT option.

10.64. APACHE MODULE MOD LDAP 651

=⇒LDAPConnectionTimeout is only available when the LDAP client library
linked with the server supports the LDAP OPT NETWORK TIMEOUT (or
LDAP OPT CONNECT TIMEOUT) option, and the ultimate behavior is dictated entirely by
the LDAP client library.

LDAPLibraryDebug Directive

Description: Enable debugging in the LDAP SDK
Syntax: LDAPLibraryDebug 7
Default: disabled
Context: server config
Status: Extension
Module: mod ldap

Turns on SDK-specific LDAP debug options that generally cause the LDAP SDK to log verbose trace information to
the main Apache error log. The trace messages from the LDAP SDK provide gory details that can be useful during
debugging of connectivity problems with backend LDAP servers

This option is only configurable when Apache HTTP Server is linked with an LDAP SDK that implements
LDAP OPT DEBUG or LDAP OPT DEBUG LEVEL, such as OpenLDAP (a value of 7 is verbose) or Tivoli Directory
Server (a value of 65535 is verbose).

! The logged information will likely contain plaintext credentials being used or validated by
LDAP authentication, so care should be taken in protecting and purging the error log when this
directive is used.

LDAPOpCacheEntries Directive

Description: Number of entries used to cache LDAP compare operations
Syntax: LDAPOpCacheEntries number
Default: LDAPOpCacheEntries 1024
Context: server config
Status: Extension
Module: mod ldap

This specifies the number of entries MOD LDAP will use to cache LDAP compare operations. The default is 1024
entries. Setting it to 0 disables operation caching.

LDAPOpCacheTTL Directive

Description: Time that entries in the operation cache remain valid
Syntax: LDAPOpCacheTTL seconds
Default: LDAPOpCacheTTL 600
Context: server config
Status: Extension
Module: mod ldap

Specifies the time (in seconds) that entries in the operation cache remain valid. The default is 600 seconds.

652 CHAPTER 10. APACHE MODULES

LDAPReferralHopLimit Directive

Description: The maximum number of referral hops to chase before terminating an LDAP query.
Syntax: LDAPReferralHopLimit number
Default: SDK dependent, typically between 5 and 10
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod ldap

This directive, if enabled by the LDAPREFERRALS directive, limits the number of referral hops that are followed
before terminating an LDAP query.

! Support for this tunable is uncommon in LDAP SDKs.

LDAPReferrals Directive

Description: Enable referral chasing during queries to the LDAP server.
Syntax: LDAPReferrals On|Off|default
Default: LDAPReferrals On
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod ldap
Compatibility: The default parameter is available in Apache 2.4.7 and later

Some LDAP servers divide their directory among multiple domains and use referrals to direct a client when a domain
boundary is crossed. This is similar to a HTTP redirect. LDAP client libraries may or may not chase referrals by
default. This directive explicitly configures the referral chasing in the underlying SDK.

LDAPREFERRALS takes the following values:

"on" When set to "on", the underlying SDK’s referral chasing state is enabled, LDAPREFERRALHOPLIMIT is used
to override the SDK’s hop limit, and an LDAP rebind callback is registered.

"off" When set to "off", the underlying SDK’s referral chasing state is disabled completely.

"default" When set to "default", the underlying SDK’s referral chasing state is not changed, LDAPREFERRALHO-
PLIMIT is not used to overide the SDK’s hop limit, and no LDAP rebind callback is registered.

The directive LDAPREFERRALHOPLIMIT works in conjunction with this directive to limit the number of referral
hops to follow before terminating the LDAP query. When referral processing is enabled by a value of "On", client
credentials will be provided, via a rebind callback, for any LDAP server requiring them.

LDAPRetries Directive

Description: Configures the number of LDAP server retries.
Syntax: LDAPRetries number-of-retries
Default: LDAPRetries 3
Context: server config
Status: Extension
Module: mod ldap

The server will retry failed LDAP requests up to LDAPRETRIES times. Setting this directive to 0 disables retries.

LDAP errors such as timeouts and refused connections are retryable.

10.64. APACHE MODULE MOD LDAP 653

LDAPRetryDelay Directive

Description: Configures the delay between LDAP server retries.
Syntax: LDAPRetryDelay seconds
Default: LDAPRetryDelay 0
Context: server config
Status: Extension
Module: mod ldap

If LDAPRETRYDELAY is set to a non-zero value, the server will delay retrying an LDAP request for the specified
amount of time. Setting this directive to 0 will result in any retry to occur without delay.

LDAP errors such as timeouts and refused connections are retryable.

LDAPSharedCacheFile Directive

Description: Sets the shared memory cache file
Syntax: LDAPSharedCacheFile directory-path/filename
Context: server config
Status: Extension
Module: mod ldap

Specifies the directory path and file name of the shared memory cache file. If not set, anonymous shared memory will
be used if the platform supports it.

LDAPSharedCacheSize Directive

Description: Size in bytes of the shared-memory cache
Syntax: LDAPSharedCacheSize bytes
Default: LDAPSharedCacheSize 500000
Context: server config
Status: Extension
Module: mod ldap

Specifies the number of bytes to allocate for the shared memory cache. The default is 500kb. If set to 0, shared
memory caching will not be used and every HTTPD process will create its own cache.

LDAPTimeout Directive

Description: Specifies the timeout for LDAP search and bind operations, in seconds
Syntax: LDAPTimeout seconds
Default: LDAPTimeout 60
Context: server config
Status: Extension
Module: mod ldap
Compatibility: Apache HTTP Server 2.3.5 and later

This directive configures the timeout for bind and search operations, as well as the LDAP OPT TIMEOUT option in
the underlying LDAP client library, when available.

If the timeout expires, httpd will retry in case an existing connection has been silently dropped by a firewall. However,
performance will be much better if the firewall is configured to send TCP RST packets instead of silently dropping
packets.

=⇒Timeouts for ldap compare operations requires an SDK with LDAP OPT TIMEOUT, such as
OpenLDAP >= 2.4.4.

654 CHAPTER 10. APACHE MODULES

LDAPTrustedClientCert Directive

Description: Sets the file containing or nickname referring to a per connection client certificate. Not all
LDAP toolkits support per connection client certificates.

Syntax: LDAPTrustedClientCert type directory-path/filename/nickname
[password]

Context: directory, .htaccess
Status: Extension
Module: mod ldap

It specifies the directory path, file name or nickname of a per connection client certificate used when establishing an
SSL or TLS connection to an LDAP server. Different locations or directories may have their own independent client
certificate settings. Some LDAP toolkits (notably Novell) do not support per connection client certificates, and will
throw an error on LDAP server connection if you try to use this directive (Use the LDAPTrustedGlobalCert directive
instead for Novell client certificates - See the SSL/TLS certificate guide above for details). The type specifies the kind
of certificate parameter being set, depending on the LDAP toolkit being used. Supported types are:

• CA DER - binary DER encoded CA certificate

• CA BASE64 - PEM encoded CA certificate

• CERT DER - binary DER encoded client certificate

• CERT BASE64 - PEM encoded client certificate

• CERT NICKNAME - Client certificate "nickname" (Netscape SDK)

• KEY DER - binary DER encoded private key

• KEY BASE64 - PEM encoded private key

LDAPTrustedGlobalCert Directive

Description: Sets the file or database containing global trusted Certificate Authority or global client certifi-
cates

Syntax: LDAPTrustedGlobalCert type directory-path/filename [password]
Context: server config
Status: Extension
Module: mod ldap

It specifies the directory path and file name of the trusted CA certificates and/or system wide client certificates
MOD LDAP should use when establishing an SSL or TLS connection to an LDAP server. Note that all certificate
information specified using this directive is applied globally to the entire server installation. Some LDAP toolkits
(notably Novell) require all client certificates to be set globally using this directive. Most other toolkits require clients
certificates to be set per Directory or per Location using LDAPTrustedClientCert. If you get this wrong, an error may
be logged when an attempt is made to contact the LDAP server, or the connection may silently fail (See the SSL/TLS
certificate guide above for details). The type specifies the kind of certificate parameter being set, depending on the
LDAP toolkit being used. Supported types are:

• CA DER - binary DER encoded CA certificate

• CA BASE64 - PEM encoded CA certificate

• CA CERT7 DB - Netscape cert7.db CA certificate database file

• CA SECMOD - Netscape secmod database file

• CERT DER - binary DER encoded client certificate

• CERT BASE64 - PEM encoded client certificate

• CERT KEY3 DB - Netscape key3.db client certificate database file

10.64. APACHE MODULE MOD LDAP 655

• CERT NICKNAME - Client certificate "nickname" (Netscape SDK)

• CERT PFX - PKCS#12 encoded client certificate (Novell SDK)

• KEY DER - binary DER encoded private key

• KEY BASE64 - PEM encoded private key

• KEY PFX - PKCS#12 encoded private key (Novell SDK)

LDAPTrustedMode Directive

Description: Specifies the SSL/TLS mode to be used when connecting to an LDAP server.
Syntax: LDAPTrustedMode type
Context: server config, virtual host
Status: Extension
Module: mod ldap

The following modes are supported:

• NONE - no encryption

• SSL - ldaps:// encryption on default port 636

• TLS - STARTTLS encryption on default port 389

Not all LDAP toolkits support all the above modes. An error message will be logged at runtime if a mode is not
supported, and the connection to the LDAP server will fail.

If an ldaps:// URL is specified, the mode becomes SSL and the setting of LDAPTrustedMode is ignored.

LDAPVerifyServerCert Directive

Description: Force server certificate verification
Syntax: LDAPVerifyServerCert On|Off
Default: LDAPVerifyServerCert On
Context: server config
Status: Extension
Module: mod ldap

Specifies whether to force the verification of a server certificate when establishing an SSL connection to the LDAP
server.

656 CHAPTER 10. APACHE MODULES

10.65 Apache Module mod log config

Description: Logging of the requests made to the server
Status: Base
ModuleIdentifier: log config module
SourceFile: mod log config.c

Summary

This module provides for flexible logging of client requests. Logs are written in a customizable format, and may be
written directly to a file, or to an external program. Conditional logging is provided so that individual requests may be
included or excluded from the logs based on characteristics of the request.

Three directives are provided by this module: TRANSFERLOG to create a log file, LOGFORMAT to set a custom format,
and CUSTOMLOG to define a log file and format in one step. The TRANSFERLOG and CUSTOMLOG directives can
be used multiple times in each server to cause each request to be logged to multiple files.

Directives

• BufferedLogs

• CustomLog

• LogFormat

• TransferLog

See also

• Apache Log Files (p. 53)

Custom Log Formats

The format argument to the LOGFORMAT and CUSTOMLOGdirectives is a string. This string is used to log each
request to the log file. It can contain literal characters copied into the log files and the C-style control characters "\n"
and "\t" to represent new-lines and tabs. Literal quotes and backslashes should be escaped with backslashes.

The characteristics of the request itself are logged by placing "%" directives in the format string, which are replaced
in the log file by the values as follows:

FormatString Description
%% The percent sign.
%a Client IP address of the request (see the MOD REMOTEIP module).
%{c}a Underlying peer IP address of the connection (see the MOD REMOTEIP module).
%A Local IP-address.
%B Size of response in bytes, excluding HTTP headers.
%b Size of response in bytes, excluding HTTP headers. In CLF format, i.e. a ’-’ rather than a 0 when no

bytes are sent.
%{VARNAME}C The contents of cookie VARNAME in the request sent to the server. Only version 0 cookies are fully

supported.
%D The time taken to serve the request, in microseconds.
%{VARNAME}e The contents of the environment variable VARNAME.
%f Filename.
%h Remote hostname. Will log the IP address if HOSTNAMELOOKUPS is set to Off, which is the default. If

it logs the hostname for only a few hosts, you probably have access control directives mentioning them
by name. See the Require host documentation (p. 504) .

10.65. APACHE MODULE MOD LOG CONFIG 657

%H The request protocol.
%{VARNAME}i The contents of VARNAME: header line(s) in the request sent to the server. Changes made by other

modules (e.g. MOD HEADERS) affect this. If you’re interested in what the request header was prior to
when most modules would have modified it, use MOD SETENVIF to copy the header into an internal
environment variable and log that value with the %{VARNAME}e described above.

%k Number of keepalive requests handled on this connection. Interesting if KEEPALIVE is being used,
so that, for example, a ’1’ means the first keepalive request after the initial one, ’2’ the second, etc...;
otherwise this is always 0 (indicating the initial request).

%l Remote logname (from identd, if supplied). This will return a dash unless MOD IDENT is present and
IDENTITYCHECK is set On.

%L The request log ID from the error log (or ’-’ if nothing has been logged to the error log for this request).
Look for the matching error log line to see what request caused what error.

%m The request method.
%{VARNAME}n The contents of note VARNAME from another module.
%{VARNAME}o The contents of VARNAME: header line(s) in the reply.
%p The canonical port of the server serving the request.
%{format}p The canonical port of the server serving the request, or the server’s actual port, or the client’s actual port.

Valid formats are canonical, local, or remote.
%P The process ID of the child that serviced the request.
%{format}P The process ID or thread ID of the child that serviced the request. Valid formats are pid, tid, and

hextid. hextid requires APR 1.2.0 or higher.
%q The query string (prepended with a ? if a query string exists, otherwise an empty string).
%r First line of request.
%R The handler generating the response (if any).
%s Status. For requests that have been internally redirected, this is the status of the original request. Use

%>s for the final status.
%t Time the request was received, in the format [18/Sep/2011:19:18:28 -0400]. The last number

indicates the timezone offset from GMT
%{format}t The time, in the form given by format, which should be in an extended strftime(3)

format (potentially localized). If the format starts with begin: (default) the time is
taken at the beginning of the request processing. If it starts with end: it is the time
when the log entry gets written, close to the end of the request processing. In addition
to the formats supported by strftime(3), the following format tokens are supported:
sec number of seconds since the Epoch
msec number of milliseconds since the Epoch
usec number of microseconds since the Epoch
msec frac millisecond fraction
usec frac microsecond fraction

These tokens can not be combined with each other or strftime(3) formatting in the same format
string. You can use multiple %{format}t tokens instead.

%T The time taken to serve the request, in seconds.
%{UNIT}T The time taken to serve the request, in a time unit given by UNIT. Valid units are ms for milliseconds,

us for microseconds, and s for seconds. Using s gives the same result as %T without any format; using
us gives the same result as %D. Combining %T with a unit is available in 2.4.13 and later.

%u Remote user if the request was authenticated. May be bogus if return status (%s) is 401 (unauthorized).
%U The URL path requested, not including any query string.
%v The canonical SERVERNAME of the server serving the request.
%V The server name according to the USECANONICALNAME setting.
%X Connection status when response is completed:

X = Connection aborted before the response completed.
+ = Connection may be kept alive after the response is sent.
- = Connection will be closed after the response is sent.

%I Bytes received, including request and headers. Cannot be zero. You need to enable MOD LOGIO to use
this.

%O Bytes sent, including headers. May be zero in rare cases such as when a request is aborted before a
response is sent. You need to enable MOD LOGIO to use this.

658 CHAPTER 10. APACHE MODULES

%S Bytes transferred (received and sent), including request and headers, cannot be zero. This is the combi-
nation of %I and %O. You need to enable MOD LOGIO to use this.

%{VARNAME}ˆti The contents of VARNAME: trailer line(s) in the request sent to the server.
%{VARNAME}ˆto The contents of VARNAME: trailer line(s) in the response sent from the server.

Modifiers

Particular items can be restricted to print only for responses with specific HTTP status codes by placing a comma-
separated list of status codes immediately following the "%". The status code list may be preceded by a "!" to
indicate negation.

Format String Meaning
%400,501{User-agent}iLogs User-agent on 400 errors and 501 errors only. For other status codes, the literal string "-" will

be logged.
%!200,304,302{Referer}iLogs Referer on all requests that do not return one of the three specified codes, "-" otherwise.

The modifiers "<" and ">" can be used for requests that have been internally redirected to choose whether the
original or final (respectively) request should be consulted. By default, the % directives %s, %U, %T, %D, and %r
look at the original request while all others look at the final request. So for example, %>s can be used to record the
final status of the request and %<u can be used to record the original authenticated user on a request that is internally
redirected to an unauthenticated resource.

Format Notes

For security reasons, starting with version 2.0.46, non-printable and other special characters in %r, %i and %o are
escaped using \xhh sequences, where hh stands for the hexadecimal representation of the raw byte. Exceptions from
this rule are " and \, which are escaped by prepending a backslash, and all whitespace characters, which are written
in their C-style notation (\n, \t, etc). In versions prior to 2.0.46, no escaping was performed on these strings so you
had to be quite careful when dealing with raw log files.

Since httpd 2.0, unlike 1.3, the %b and %B format strings do not represent the number of bytes sent to the client, but
simply the size in bytes of the HTTP response (which will differ, for instance, if the connection is aborted, or if SSL
is used). The %O format provided by MOD LOGIO will log the actual number of bytes sent over the network.

=⇒Note: MOD CACHE is implemented as a quick-handler and not as a standard handler. There-
fore, the %R format string will not return any handler information when content caching is
involved.

Examples

Some commonly used log format strings are:

Common Log Format (CLF) "%h %l %u %t \"%r\" %>s %b"

Common Log Format with Virtual Host "%v %h %l %u %t \"%r\" %>s %b"

NCSA extended/combined log format "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\"
\"%{User-agent}i\""

Referer log format "%{Referer}i -> %U"

Agent (Browser) log format "%{User-agent}i"

You can use the %{format}t directive multiple times to build up a time format using the extended format tokens
like msec frac:

10.65. APACHE MODULE MOD LOG CONFIG 659

Timestamp including milliseconds "%{%d/%b/%Y %T}t.%{msec frac}t %{%z}t"

Security Considerations

See the security tips (p. 338) document for details on why your security could be compromised if the directory where
logfiles are stored is writable by anyone other than the user that starts the server.

BufferedLogs Directive

Description: Buffer log entries in memory before writing to disk
Syntax: BufferedLogs On|Off
Default: BufferedLogs Off
Context: server config
Status: Base
Module: mod log config

The BUFFEREDLOGS directive causes MOD LOG CONFIG to store several log entries in memory and write them
together to disk, rather than writing them after each request. On some systems, this may result in more efficient
disk access and hence higher performance. It may be set only once for the entire server; it cannot be configured per
virtual-host.

=⇒This directive should be used with caution as a crash might cause loss of logging data.

CustomLog Directive

Description: Sets filename and format of log file
Syntax: CustomLog file|pipe format|nickname [env=[!]environment-variable|

expr=expression]
Context: server config, virtual host
Status: Base
Module: mod log config

The CUSTOMLOG directive is used to log requests to the server. A log format is specified, and the logging can
optionally be made conditional on request characteristics using environment variables.

The first argument, which specifies the location to which the logs will be written, can take one of the following two
types of values:

file A filename, relative to the SERVERROOT.

pipe The pipe character "|", followed by the path to a program to receive the log information on its standard input.
See the notes on piped logs (p. 53) for more information.

! Security:
If a program is used, then it will be run as the user who started httpd. This will be root if the
server was started by root; be sure that the program is secure.

! Note
When entering a file path on non-Unix platforms, care should be taken to make sure that only
forward slashed are used even though the platform may allow the use of back slashes. In
general it is a good idea to always use forward slashes throughout the configuration files.

660 CHAPTER 10. APACHE MODULES

The second argument specifies what will be written to the log file. It can specify either a nickname defined by a
previous LOGFORMAT directive, or it can be an explicit format string as described in the log formats section.

For example, the following two sets of directives have exactly the same effect:

CustomLog with format nickname
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog "logs/access_log" common

CustomLog with explicit format string
CustomLog "logs/access_log" "%h %l %u %t \"%r\" %>s %b"

The third argument is optional and controls whether or not to log a particular request. The condition can be the
presence or absence (in the case of a ’env=!name’ clause) of a particular variable in the server environment (p. 82) .
Alternatively, the condition can be expressed as arbitrary boolean expression (p. 89) . If the condition is not satisfied,
the request will not be logged. References to HTTP headers in the expression will not cause the header names to be
added to the Vary header.

Environment variables can be set on a per-request basis using the MOD SETENVIF and/or MOD REWRITE modules.
For example, if you want to record requests for all GIF images on your server in a separate logfile but not in your main
log, you can use:

SetEnvIf Request_URI \.gif$ gif-image
CustomLog "gif-requests.log" common env=gif-image
CustomLog "nongif-requests.log" common env=!gif-image

Or, to reproduce the behavior of the old RefererIgnore directive, you might use the following:

SetEnvIf Referer example\.com localreferer
CustomLog "referer.log" referer env=!localreferer

LogFormat Directive

Description: Describes a format for use in a log file
Syntax: LogFormat format|nickname [nickname]
Default: LogFormat "%h %l %u %t \"%r\" %>s %b"
Context: server config, virtual host
Status: Base
Module: mod log config

This directive specifies the format of the access log file.

The LOGFORMAT directive can take one of two forms. In the first form, where only one argument is specified, this
directive sets the log format which will be used by logs specified in subsequent TRANSFERLOG directives. The single
argument can specify an explicit format as discussed in the custom log formats section above. Alternatively, it can use
a nickname to refer to a log format defined in a previous LOGFORMAT directive as described below.

The second form of the LOGFORMAT directive associates an explicit format with a nickname. This nickname can
then be used in subsequent LOGFORMAT or CUSTOMLOG directives rather than repeating the entire format string. A
LOGFORMAT directive that defines a nickname does nothing else – that is, it only defines the nickname, it doesn’t
actually apply the format and make it the default. Therefore, it will not affect subsequent TRANSFERLOG directives.
In addition, LOGFORMAT cannot use one nickname to define another nickname. Note that the nickname should not
contain percent signs (%).

10.65. APACHE MODULE MOD LOG CONFIG 661

Example

LogFormat "%v %h %l %u %t \"%r\" %>s %b" vhost_common

TransferLog Directive

Description: Specify location of a log file
Syntax: TransferLog file|pipe
Context: server config, virtual host
Status: Base
Module: mod log config

This directive has exactly the same arguments and effect as the CUSTOMLOG directive, with the exception that it does
not allow the log format to be specified explicitly or for conditional logging of requests. Instead, the log format is
determined by the most recently specified LOGFORMAT directive which does not define a nickname. Common Log
Format is used if no other format has been specified.

Example

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\""
TransferLog logs/access_log

662 CHAPTER 10. APACHE MODULES

10.66 Apache Module mod log debug

Description: Additional configurable debug logging
Status: Experimental
ModuleIdentifier: log debug module
SourceFile: mod log debug.c
Compatibility: Available in Apache 2.3.14 and later

Directives

• LogMessage

Examples

1. Log message after request to /foo/* is processed:

<Location "/foo/">
LogMessage "/foo/ has been requested"
</Location>

2. Log message if request to /foo/* is processed in a sub-request:

<Location "/foo/">
LogMessage "subrequest to /foo/" hook=type_checker expr=%{IS_SUBREQ}
</Location>

The default log transaction hook is not executed for sub-requests, therefore we have to use a different hook.

3. Log message if an IPv6 client causes a request timeout:

LogMessage "IPv6 timeout from %{REMOTE_ADDR}" "expr=-T %{IPV6} && %{REQUEST_STATUS} = 408"

Note the placing of the double quotes for the expr= argument.

4. Log the value of the "X-Foo" request environment variable in each stage of the request:

<Location "/">
LogMessage "%{reqenv:X-Foo}" hook=all
</Location>

Together with microsecond time stamps in the error log, hook=all also lets you determine the times spent in
the different parts of the request processing.

LogMessage Directive

Description: Log user-defined message to error log
Syntax: LogMessage message [hook=hook] [expr=expression]
Default: Unset
Context: directory
Status: Experimental
Module: mod log debug

10.66. APACHE MODULE MOD LOG DEBUG 663

This directive causes a user defined message to be logged to the error log. The message can use variables and functions
from the ap expr syntax (p. 89) . References to HTTP headers will not cause header names to be added to the Vary
header. The messages are logged at loglevel info.

The hook specifies before which phase of request processing the message will be logged. The following hooks are
supported:

Name
translate name

type checker

quick handler

map to storage

check access

check access ex

insert filter

check authn

check authz

fixups

handler

log transaction

The default is log transaction. The special value all is also supported, causing a message to be logged at each
phase. Not all hooks are executed for every request.

The optional expression allows to restrict the message if a condition is met. The details of the expression syntax are
described in the ap expr documentation (p. 89) . References to HTTP headers will not cause the header names to be
added to the Vary header.

664 CHAPTER 10. APACHE MODULES

10.67 Apache Module mod log forensic

Description: Forensic Logging of the requests made to the server
Status: Extension
ModuleIdentifier: log forensic module
SourceFile: mod log forensic.c
Compatibility: MOD UNIQUE ID is no longer required since version 2.1

Summary

This module provides for forensic logging of client requests. Logging is done before and after processing a request,
so the forensic log contains two log lines for each request. The forensic logger is very strict, which means:

• The format is fixed. You cannot modify the logging format at runtime.

• If it cannot write its data, the child process exits immediately and may dump core (depending on your CORE-
DUMPDIRECTORY configuration).

The check forensic script, which can be found in the distribution’s support directory, may be helpful in evaluating
the forensic log output.

Directives

• ForensicLog

See also

• Apache Log Files (p. 53)

• MOD LOG CONFIG

Forensic Log Format

Each request is logged two times. The first time is before it’s processed further (that is, after receiving the headers).
The second log entry is written after the request processing at the same time where normal logging occurs.

In order to identify each request, a unique request ID is assigned. This forensic ID can be cross logged in the normal
transfer log using the %{forensic-id}n format string. If you’re using MOD UNIQUE ID, its generated ID will be
used.

The first line logs the forensic ID, the request line and all received headers, separated by pipe characters (|). A sample
line looks like the following (all on one line):

+yQtJf8CoAB4AAFNXBIEAAAAA|GET /manual/de/images/down.gif

HTTP/1.1|Host:localhost%3a8080|User-Agent:Mozilla/5.0 (X11; U; Linux

i686; en-US; rv%3a1.6) Gecko/20040216 Firefox/0.8|Accept:image/png,

etc...

The plus character at the beginning indicates that this is the first log line of this request. The second line just contains
a minus character and the ID again:

-yQtJf8CoAB4AAFNXBIEAAAAA

The check forensic script takes as its argument the name of the logfile. It looks for those +/- ID pairs and
complains if a request was not completed.

10.67. APACHE MODULE MOD LOG FORENSIC 665

Security Considerations

See the security tips (p. 338) document for details on why your security could be compromised if the directory where
logfiles are stored is writable by anyone other than the user that starts the server.

The log files may contain sensitive data such as the contents of Authorization: headers (which can contain
passwords), so they should not be readable by anyone except the user that starts the server.

ForensicLog Directive

Description: Sets filename of the forensic log
Syntax: ForensicLog filename|pipe
Context: server config, virtual host
Status: Extension
Module: mod log forensic

The FORENSICLOG directive is used to log requests to the server for forensic analysis. Each log entry is assigned a
unique ID which can be associated with the request using the normal CUSTOMLOG directive. MOD LOG FORENSIC
creates a token called forensic-id, which can be added to the transfer log using the %{forensic-id}n format
string.

The argument, which specifies the location to which the logs will be written, can take one of the following two types
of values:

filename A filename, relative to the SERVERROOT.

pipe The pipe character "|", followed by the path to a program to receive the log information on its standard input.
The program name can be specified relative to the SERVERROOT directive.

! Security:
If a program is used, then it will be run as the user who started httpd. This will be root if the
server was started by root; be sure that the program is secure or switches to a less privileged
user.

=⇒Note
When entering a file path on non-Unix platforms, care should be taken to make sure that only
forward slashes are used even though the platform may allow the use of back slashes. In
general it is a good idea to always use forward slashes throughout the configuration files.

666 CHAPTER 10. APACHE MODULES

10.68 Apache Module mod logio

Description: Logging of input and output bytes per request
Status: Extension
ModuleIdentifier: logio module
SourceFile: mod logio.c

Summary

This module provides the logging of input and output number of bytes received/sent per request. The numbers reflect
the actual bytes as received on the network, which then takes into account the headers and bodies of requests and
responses. The counting is done before SSL/TLS on input and after SSL/TLS on output, so the numbers will correctly
reflect any changes made by encryption.

This module requires MOD LOG CONFIG.

=⇒When KeepAlive connections are used with SSL, the overhead of the SSL handshake is re-
flected in the byte count of the first request on the connection. When per-directory SSL rene-
gotiation occurs, the bytes are associated with the request that triggered the renegotiation.

Directives

• LogIOTrackTTFB

See also

• MOD LOG CONFIG

• Apache Log Files (p. 53)

Custom Log Formats

This module adds three new logging directives. The characteristics of the request itself are logged by placing "%"
directives in the format string, which are replaced in the log file by the values as follows:

FormatString Description
%I Bytes received, including request and headers, cannot be zero.
%O Bytes sent, including headers, cannot be zero.
%S Bytes transferred (received and sent), including request and

headers, cannot be zero. This is the combination of %I and
%O.
Available in Apache 2.4.7 and later

%ˆFB Delay in microseconds between when the request arrived and
the first byte of the response headers are written. Only avail-
able if LOGIOTRACKTTFB is set to ON.
Available in Apache 2.4.13 and later

Usually, the functionality is used like this:

Combined I/O log format: "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\"
\"%{User-agent}i\" %I %O"

10.68. APACHE MODULE MOD LOGIO 667

LogIOTrackTTFB Directive

Description: Enable tracking of time to first byte (TTFB)
Syntax: LogIOTrackTTFB ON|OFF
Default: LogIOTrackTTFB OFF
Context: server config, virtual host, directory, .htaccess
Override: none
Status: Extension
Module: mod logio
Compatibility: Apache HTTP Server 2.4.13 and later

This directive configures whether this module tracks the delay between the request being read and the first byte of the
response headers being written. The resulting value may be logged with the %ˆFB format.

668 CHAPTER 10. APACHE MODULES

10.69 Apache Module mod lua

Description: Provides Lua hooks into various portions of the httpd request processing
Status: Experimental
ModuleIdentifier: lua module
SourceFile: mod lua.c
Compatibility: 2.3 and later

Summary

This module allows the server to be extended with scripts written in the Lua programming language. The extension
points (hooks) available with MOD LUA include many of the hooks available to natively compiled Apache HTTP
Server modules, such as mapping requests to files, generating dynamic responses, access control, authentication, and
authorization

More information on the Lua programming language can be found at the the Lua website45.

=⇒mod lua is still in experimental state. Until it is declared stable, usage and behavior may
change at any time, even between stable releases of the 2.4.x series. Be sure to check the
CHANGES file before upgrading.

! Warning
This module holds a great deal of power over httpd, which is both a strength and a potential
security risk. It is not recommended that you use this module on a server that is shared with
users you do not trust, as it can be abused to change the internal workings of httpd.

Directives

• LuaAuthzProvider

• LuaCodeCache

• LuaHookAccessChecker

• LuaHookAuthChecker

• LuaHookCheckUserID

• LuaHookFixups

• LuaHookInsertFilter

• LuaHookLog

• LuaHookMapToStorage

• LuaHookTranslateName

• LuaHookTypeChecker

• LuaInherit

• LuaInputFilter

• LuaMapHandler

• LuaOutputFilter

• LuaPackageCPath

• LuaPackagePath

• LuaQuickHandler
45http://www.lua.org/

http://www.lua.org/

10.69. APACHE MODULE MOD LUA 669

• LuaRoot

• LuaScope

Basic Configuration

The basic module loading directive is

LoadModule lua_module modules/mod_lua.so

mod lua provides a handler named lua-script, which can be used with a SETHANDLER or ADDHANDLER
directive:

<Files "*.lua">
SetHandler lua-script

</Files>

This will cause mod lua to handle requests for files ending in .lua by invoking that file’s handle function.

For more flexibility, see LUAMAPHANDLER.

Writing Handlers

In the Apache HTTP Server API, the handler is a specific kind of hook responsible for generating the response.
Examples of modules that include a handler are MOD PROXY, MOD CGI, and MOD STATUS.

mod lua always looks to invoke a Lua function for the handler, rather than just evaluating a script body CGI style. A
handler function looks something like this:

example.lua
-- example handler

require "string"

--[[
This is the default method name for Lua handlers, see the optional
function-name in the LuaMapHandler directive to choose a different
entry point.

--]]
function handle(r)

r.content_type = "text/plain"

if r.method == ’GET’ then
r:puts("Hello Lua World!\n")
for k, v in pairs(r:parseargs()) do

r:puts(string.format("%s: %s\n", k, v))
end

elseif r.method == ’POST’ then
r:puts("Hello Lua World!\n")
for k, v in pairs(r:parsebody()) do

r:puts(string.format("%s: %s\n", k, v))
end

elseif r.method == ’PUT’ then

670 CHAPTER 10. APACHE MODULES

-- use our own Error contents
r:puts("Unsupported HTTP method " .. r.method)
r.status = 405
return apache2.ok

else
-- use the ErrorDocument

return 501
end
return apache2.OK

end

This handler function just prints out the uri or form encoded arguments to a plaintext page.

This means (and in fact encourages) that you can have multiple handlers (or hooks, or filters) in the same script.

Writing Authorization Providers

MOD AUTHZ CORE provides a high-level interface to authorization that is much easier to use than using into the
relevant hooks directly. The first argument to the REQUIRE directive gives the name of the responsible authorization
provider. For any REQUIRE line, MOD AUTHZ CORE will call the authorization provider of the given name, passing
the rest of the line as parameters. The provider will then check authorization and pass the result as return value.

The authz provider is normally called before authentication. If it needs to know the authenticated user name (or if the
user will be authenticated at all), the provider must return apache2.AUTHZ DENIED NO USER. This will cause
authentication to proceed and the authz provider to be called a second time.

The following authz provider function takes two arguments, one ip address and one user name. It will allow access
from the given ip address without authentication, or if the authenticated user matches the second argument:

authz_provider.lua

require ’apache2’

function authz_check_foo(r, ip, user)
if r.useragent_ip == ip then

return apache2.AUTHZ_GRANTED
elseif r.user == nil then

return apache2.AUTHZ_DENIED_NO_USER
elseif r.user == user then

return apache2.AUTHZ_GRANTED
else

return apache2.AUTHZ_DENIED
end

end

The following configuration registers this function as provider foo and configures it for URL /:

LuaAuthzProvider foo authz_provider.lua authz_check_foo
<Location "/">

Require foo 10.1.2.3 john_doe
</Location>

10.69. APACHE MODULE MOD LUA 671

Writing Hooks

Hook functions are how modules (and Lua scripts) participate in the processing of requests. Each type of hook exposed
by the server exists for a specific purpose, such as mapping requests to the file system, performing access control, or
setting mime types:

Hook phase mod lua directive Description
Quick handler LUAQUICKHANDLER This is the first hook that will be called

after a request has been mapped to a host
or virtual host

Translate name LUAHOOKTRANSLATENAME This phase translates the requested URI
into a filename on the system. Modules
such as MOD ALIAS and MOD REWRITE

operate in this phase.
Map to storage LUAHOOKMAPTOSTORAGE This phase maps files to their physical,

cached or external/proxied storage. It can
be used by proxy or caching modules

Check Access LUAHOOKACCESSCHECKER This phase checks whether a client has
access to a resource. This phase is run be-
fore the user is authenticated, so beware.

Check User ID LUAHOOKCHECKUSERID This phase it used to check the negotiated
user ID

Check Authorization LUAHOOKAUTHCHECKER or LUAAU-
THZPROVIDER

This phase authorizes a user based on the
negotiated credentials, such as user ID,
client certificate etc.

Check Type LUAHOOKTYPECHECKER This phase checks the requested file and
assigns a content type and a handler to it

Fixups LUAHOOKFIXUPS This is the final "fix anything" phase be-
fore the content handlers are run. Any
last-minute changes to the request should
be made here.

Content handler fx. .lua files or through LUAMAPHAN-
DLER

This is where the content is handled. Files
are read, parsed, some are run, and the
result is sent to the client

Logging LUAHOOKLOG Once a request has been handled, it en-
ters several logging phases, which logs
the request in either the error or access
log. Mod lua is able to hook into the start
of this and control logging output.

Hook functions are passed the request object as their only argument (except for LuaAuthzProvider, which also gets
passed the arguments from the Require directive). They can return any value, depending on the hook, but most com-
monly they’ll return OK, DONE, or DECLINED, which you can write in Lua as apache2.OK, apache2.DONE,
or apache2.DECLINED, or else an HTTP status code.

translate_name.lua
-- example hook that rewrites the URI to a filesystem path.

require ’apache2’

function translate_name(r)
if r.uri == "/translate-name" then

r.filename = r.document_root .. "/find_me.txt"
return apache2.OK

end
-- we don’t care about this URL, give another module a chance
return apache2.DECLINED

end

672 CHAPTER 10. APACHE MODULES

translate_name2.lua
--[[example hook that rewrites one URI to another URI. It returns a

apache2.DECLINED to give other URL mappers a chance to work on the
substitution, including the core translate_name hook which maps based
on the DocumentRoot.

Note: Use the early/late flags in the directive to make it run before
or after mod_alias.

--]]

require ’apache2’

function translate_name(r)
if r.uri == "/translate-name" then

r.uri = "/find_me.txt"
return apache2.DECLINED

end
return apache2.DECLINED

end

Data Structures

request rec The request rec is mapped in as a userdata. It has a metatable which lets you do useful things with it.
For the most part it has the same fields as the request rec struct, many of which are writable as well as readable.
(The table fields’ content can be changed, but the fields themselves cannot be set to different tables.)

Name Lua type Writable Description
allowoverrides string no The AllowOverride options ap-

plied to the current request.
ap auth type string no If an authentication check was

made, this is set to the type of
authentication (f.x. basic)

args string yes The query string arguments
extracted from the request (f.x.
foo=bar&name=johnsmith)

assbackwards boolean no Set to true if this is an
HTTP/0.9 style request (e.g.
GET /foo (with no headers)
)

auth name string no The realm name used for au-
thorization (if applicable).

banner string no The server banner,
f.x. Apache HTTP
Server/2.4.3
openssl/0.9.8c

basic auth pw string no The basic auth password sent
with this request, if any

canonical filename string no The canonical filename of the
request

content encoding string no The content encoding of the
current request

content type string yes The content type of the cur-
rent request, as determined
in the type check phase (f.x.
image/gif or text/html)

10.69. APACHE MODULE MOD LUA 673

context prefix string no
context document root string no
document root string no The document root of the host
err headers out table no MIME header environment for

the response, printed even on
errors and persist across inter-
nal redirects

filename string yes The file name that the
request maps to, f.x.
/www/example.com/foo.txt.
This can be changed in the
translate-name or map-to-
storage phases of a request
to allow the default handler
(or script handlers) to serve a
different file than what was
requested.

handler string yes The name of the handler (p. 98)
that should serve this request,
f.x. lua-script if it is to
be served by mod lua. This is
typically set by the ADDHAN-
DLER or SETHANDLER direc-
tives, but could also be set via
mod lua to allow another han-
dler to serve up a specific re-
quest that would otherwise not
be served by it.

headers in table yes MIME header environment
from the request. This con-
tains headers such as Host,
User-Agent, Referer
and so on.

headers out table yes MIME header environment for
the response.

hostname string no The host name, as set by the
Host: header or by a full
URI.

is https boolean no Whether or not this request is
done via HTTPS

is initial req boolean no Whether this request is the ini-
tial request or a sub-request

limit req body number no The size limit of the request
body for this request, or 0 if no
limit.

log id string no The ID to identify request in
access and error log.

method string no The request method, f.x. GET
or POST.

notes table yes A list of notes that can be
passed on from one module to
another.

options string no The Options directive applied
to the current request.

path info string no The PATH INFO extracted
from this request.

port number no The server port used by the re-
quest.

674 CHAPTER 10. APACHE MODULES

protocol string no The protocol used, f.x.
HTTP/1.1

proxyreq string yes Denotes whether this is a
proxy request or not. This
value is generally set in the
post read request/translate name
phase of a request.

range string no The contents of the Range:
header.

remaining number no The number of bytes remain-
ing to be read from the request
body.

server built string no The time the server executable
was built.

server name string no The server name for this re-
quest.

some auth required boolean no Whether some authorization
is/was required for this request.

subprocess env table yes The environment variables set
for this request.

started number no The time the server was
(re)started, in seconds since
the epoch (Jan 1st, 1970)

status number yes The (current) HTTP return
code for this request, f.x. 200
or 404.

the request string no The request string as sent
by the client, f.x. GET
/foo/bar HTTP/1.1.

unparsed uri string no The unparsed URI of the re-
quest

uri string yes The URI after it has been
parsed by httpd

user string yes If an authentication check has
been made, this is set to the
name of the authenticated user.

useragent ip string no The IP of the user agent mak-
ing the request

Built in functions

The request rec object has (at least) the following methods:

r:flush() -- flushes the output buffer.
-- Returns true if the flush was successful, false otherwise.

while we_have_stuff_to_send do
r:puts("Bla bla bla\n") -- print something to client
r:flush() -- flush the buffer (send to client)
r.usleep(500000) -- fake processing time for 0.5 sec. and repeat

end

r:addoutputfilter(name|function) -- add an output filter:

r:addoutputfilter("fooFilter") -- add the fooFilter to the output stream

10.69. APACHE MODULE MOD LUA 675

r:sendfile(filename) -- sends an entire file to the client, using sendfile if supported by the current platform:

if use_sendfile_thing then
r:sendfile("/var/www/large_file.img")

end

r:parseargs() -- returns two tables; one standard key/value table for regular GET data,
-- and one for multi-value data (fx. foo=1&foo=2&foo=3):

local GET, GETMULTI = r:parseargs()
r:puts("Your name is: " .. GET[’name’] or "Unknown")

r:parsebody([sizeLimit]) -- parse the request body as a POST and return two lua tables,
-- just like r:parseargs().
-- An optional number may be passed to specify the maximum number
-- of bytes to parse. Default is 8192 bytes:

local POST, POSTMULTI = r:parsebody(1024*1024)
r:puts("Your name is: " .. POST[’name’] or "Unknown")

r:puts("hello", " world", "!") -- print to response body, self explanatory

r:write("a single string") -- print to response body, self explanatory

r:escape_html("<html>test</html>") -- Escapes HTML code and returns the escaped result

r:base64_encode(string) -- Encodes a string using the Base64 encoding standard:

local encoded = r:base64_encode("This is a test") -- returns VGhpcyBpcyBhIHRlc3Q=

r:base64_decode(string) -- Decodes a Base64-encoded string:

local decoded = r:base64_decode("VGhpcyBpcyBhIHRlc3Q=") -- returns ’This is a test’

r:md5(string) -- Calculates and returns the MD5 digest of a string (binary safe):

local hash = r:md5("This is a test") -- returns ce114e4501d2f4e2dcea3e17b546f339

r:sha1(string) -- Calculates and returns the SHA1 digest of a string (binary safe):

local hash = r:sha1("This is a test") -- returns a54d88e06612d820bc3be72877c74f257b561b19

r:escape(string) -- URL-Escapes a string:

local url = "http://foo.bar/1 2 3 & 4 + 5"
local escaped = r:escape(url) -- returns ’http%3a%2f%2ffoo.bar%2f1+2+3+%26+4+%2b+5’

r:unescape(string) -- Unescapes an URL-escaped string:

local url = "http%3a%2f%2ffoo.bar%2f1+2+3+%26+4+%2b+5"
local unescaped = r:unescape(url) -- returns ’http://foo.bar/1 2 3 & 4 + 5’

676 CHAPTER 10. APACHE MODULES

r:construct_url(string) -- Constructs an URL from an URI

local url = r:construct_url(r.uri)

r.mpm_query(number) -- Queries the server for MPM information using ap_mpm_query:

local mpm = r.mpm_query(14)
if mpm == 1 then

r:puts("This server uses the Event MPM")
end

r:expr(string) -- Evaluates an expr string.

if r:expr("%{HTTP_HOST} =˜ /ˆwww/") then
r:puts("This host name starts with www")

end

r:scoreboard_process(a) -- Queries the server for information about the process at position a:

local process = r:scoreboard_process(1)
r:puts("Server 1 has PID " .. process.pid)

r:scoreboard_worker(a, b) -- Queries for information about the worker thread, b, in process a:

local thread = r:scoreboard_worker(1, 1)
r:puts("Server 1’s thread 1 has thread ID " .. thread.tid .. " and is in " .. thread.status .. " status")

r:clock() -- Returns the current time with microsecond precision

r:requestbody(filename) -- Reads and returns the request body of a request.
-- If ’filename’ is specified, it instead saves the
-- contents to that file:

local input = r:requestbody()
r:puts("You sent the following request body to me:\n")
r:puts(input)

r:add_input_filter(filter_name) -- Adds ’filter_name’ as an input filter

r.module_info(module_name) -- Queries the server for information about a module

local mod = r.module_info("mod_lua.c")
if mod then

for k, v in pairs(mod.commands) do
r:puts(("%s: %s\n"):format(k,v)) -- print out all directives accepted by this module

end
end

r:loaded_modules() -- Returns a list of modules loaded by httpd:

for k, module in pairs(r:loaded_modules()) do
r:puts("I have loaded module " .. module .. "\n")

end

10.69. APACHE MODULE MOD LUA 677

r:runtime_dir_relative(filename) -- Compute the name of a run-time file (e.g., shared memory "file")
-- relative to the appropriate run-time directory.

r:server_info() -- Returns a table containing server information, such as
-- the name of the httpd executable file, mpm used etc.

r:set_document_root(file_path) -- Sets the document root for the request to file_path

r:set_context_info(prefix, docroot) -- Sets the context prefix and context document root for a request

r:os_escape_path(file_path) -- Converts an OS path to a URL in an OS dependent way

r:escape_logitem(string) -- Escapes a string for logging

r.strcmp_match(string, pattern) -- Checks if ’string’ matches ’pattern’ using strcmp_match (globs).
-- fx. whether ’www.example.com’ matches ’*.example.com’:

local match = r.strcmp_match("foobar.com", "foo*.com")
if match then

r:puts("foobar.com matches foo*.com")
end

r:set_keepalive() -- Sets the keepalive status for a request. Returns true if possible, false otherwise.

r:make_etag() -- Constructs and returns the etag for the current request.

r:send_interim_response(clear) -- Sends an interim (1xx) response to the client.
-- if ’clear’ is true, available headers will be sent and cleared.

r:custom_response(status_code, string) -- Construct and set a custom response for a given status code.
-- This works much like the ErrorDocument directive:

r:custom_response(404, "Baleted!")

r.exists_config_define(string) -- Checks whether a configuration definition exists or not:

if r.exists_config_define("FOO") then
r:puts("httpd was probably run with -DFOO, or it was defined in the configuration")

end

r:state_query(string) -- Queries the server for state information

r:stat(filename [,wanted]) -- Runs stat() on a file, and returns a table with file information:

local info = r:stat("/var/www/foo.txt")
if info then

r:puts("This file exists and was last modified at: " .. info.modified)
end

678 CHAPTER 10. APACHE MODULES

r:regex(string, pattern [,flags]) -- Runs a regular expression match on a string, returning captures if matched:

local matches = r:regex("foo bar baz", [[foo (\w+) (\S*)]])
if matches then

r:puts("The regex matched, and the last word captured ($2) was: " .. matches[2])
end

-- Example ignoring case sensitivity:
local matches = r:regex("FOO bar BAz", [[(foo) bar]], 1)

-- Flags can be a bitwise combination of:
-- 0x01: Ignore case
-- 0x02: Multiline search

r.usleep(number_of_microseconds) -- Puts the script to sleep for a given number of microseconds.

r:dbacquire(dbType[, dbParams]) -- Acquires a connection to a database and returns a database class.
-- See ’Database connectivity’ for details.

r:ivm_set("key", value) -- Set an Inter-VM variable to hold a specific value.
-- These values persist even though the VM is gone or not being used,
-- and so should only be used if MaxConnectionsPerChild is > 0
-- Values can be numbers, strings and booleans, and are stored on a
-- per process basis (so they won’t do much good with a prefork mpm)

r:ivm_get("key") -- Fetches a variable set by ivm_set. Returns the contents of the variable
-- if it exists or nil if no such variable exists.

-- An example getter/setter that saves a global variable outside the VM:
function handle(r)

-- First VM to call this will get no value, and will have to create it
local foo = r:ivm_get("cached_data")
if not foo then

foo = do_some_calcs() -- fake some return value
r:ivm_set("cached_data", foo) -- set it globally

end
r:puts("Cached data is: ", foo)

end

r:htpassword(string [,algorithm [,cost]]) -- Creates a password hash from a string.
-- algorithm: 0 = APMD5 (default), 1 = SHA, 2 = BCRYPT, 3 = CRYPT.
-- cost: only valid with BCRYPT algorithm (default = 5).

r:mkdir(dir [,mode]) -- Creates a directory and sets mode to optional mode paramter.

r:mkrdir(dir [,mode]) -- Creates directories recursive and sets mode to optional mode paramter.

r:rmdir(dir) -- Removes a directory.

r:touch(file [,mtime]) -- Sets the file modification time to current time or to optional mtime msec value.

10.69. APACHE MODULE MOD LUA 679

r:get_direntries(dir) -- Returns a table with all directory entries.

function handle(r)
local dir = r.context_document_root
for _, f in ipairs(r:get_direntries(dir)) do

local info = r:stat(dir .. "/" .. f)
if info then

local mtime = os.date(fmt, info.mtime / 1000000)
local ftype = (info.filetype == 2) and "[dir] " or "[file]"
r:puts(("%s %s %10i %s\n"):format(ftype, mtime, info.size, f))

end
end

end

r.date_parse_rfc(string) -- Parses a date/time string and returns seconds since epoche.

r:getcookie(key) -- Gets a HTTP cookie

r:setcookie{
key = [key],
value = [value],
expires = [expiry],
secure = [boolean],
httponly = [boolean],
path = [path],
domain = [domain]

} -- Sets a HTTP cookie, for instance:

r:setcookie{
key = "cookie1",
value = "HDHfa9eyffh396rt",
expires = os.time() + 86400,
secure = true

}

r:wsupgrade() -- Upgrades a connection to WebSockets if possible (and requested):
if r:wsupgrade() then -- if we can upgrade:

r:wswrite("Welcome to websockets!") -- write something to the client
r:wsclose() -- goodbye!

end

r:wsread() -- Reads a WebSocket frame from a WebSocket upgraded connection (see above):

local line, isFinal = r:wsread() -- isFinal denotes whether this is the final frame.
-- If it isn’t, then more frames can be read

r:wswrite("You wrote: " .. line)

r:wswrite(line) -- Writes a frame to a WebSocket client:
r:wswrite("Hello, world!")

r:wsclose() -- Closes a WebSocket request and terminates it for httpd:

680 CHAPTER 10. APACHE MODULES

if r:wsupgrade() then
r:wswrite("Write something: ")
local line = r:wsread() or "nothing"
r:wswrite("You wrote: " .. line);
r:wswrite("Goodbye!")
r:wsclose()

end

Logging Functions

-- examples of logging messages
r:trace1("This is a trace log message") -- trace1 through trace8 can be used
r:debug("This is a debug log message")
r:info("This is an info log message")
r:notice("This is a notice log message")
r:warn("This is a warn log message")
r:err("This is an err log message")
r:alert("This is an alert log message")
r:crit("This is a crit log message")
r:emerg("This is an emerg log message")

apache2 Package

A package named apache2 is available with (at least) the following contents.

apache2.OK internal constant OK. Handlers should return this if they’ve handled the request.

apache2.DECLINED internal constant DECLINED. Handlers should return this if they are not going to handle the
request.

apache2.DONE internal constant DONE.

apache2.version Apache HTTP server version string

apache2.HTTP MOVED TEMPORARILY HTTP status code

apache2.PROXYREQ NONE, apache2.PROXYREQ PROXY, apache2.PROXYREQ REVERSE, apache2.PROXYREQ RESPONSE
internal constants used by MOD PROXY

apache2.AUTHZ DENIED, apache2.AUTHZ GRANTED, apache2.AUTHZ NEUTRAL, apache2.AUTHZ GENERAL ERROR, apache2.AUTHZ DENIED NO USER
internal constants used by MOD AUTHZ CORE

(Other HTTP status codes are not yet implemented.)

Modifying contents with Lua filters

Filter functions implemented via LUAINPUTFILTER or LUAOUTPUTFILTER are designed as three-stage non-blocking
functions using coroutines to suspend and resume a function as buckets are sent down the filter chain. The core
structure of such a function is:

function filter(r)
-- Our first yield is to signal that we are ready to receive buckets.

10.69. APACHE MODULE MOD LUA 681

-- Before this yield, we can set up our environment, check for conditions,
-- and, if we deem it necessary, decline filtering a request alltogether:
if something_bad then

return -- This would skip this filter.
end
-- Regardless of whether we have data to prepend, a yield MUST be called here.
-- Note that only output filters can prepend data. Input filters must use the
-- final stage to append data to the content.
coroutine.yield([optional header to be prepended to the content])

-- After we have yielded, buckets will be sent to us, one by one, and we can
-- do whatever we want with them and then pass on the result.
-- Buckets are stored in the global variable ’bucket’, so we create a loop
-- that checks if ’bucket’ is not nil:
while bucket ˜= nil do

local output = mangle(bucket) -- Do some stuff to the content
coroutine.yield(output) -- Return our new content to the filter chain

end

-- Once the buckets are gone, ’bucket’ is set to nil, which will exit the
-- loop and land us here. Anything extra we want to append to the content
-- can be done by doing a final yield here. Both input and output filters
-- can append data to the content in this phase.
coroutine.yield([optional footer to be appended to the content])

end

Database connectivity

Mod lua implements a simple database feature for querying and running commands on the most popular database
engines (mySQL, PostgreSQL, FreeTDS, ODBC, SQLite, Oracle) as well as mod dbd.

The example below shows how to acquire a database handle and return information from a table:

function handle(r)
-- Acquire a database handle
local database, err = r:dbacquire("mysql", "server=localhost,user=someuser,pass=somepass,dbname=mydb")
if not err then

-- Select some information from it
local results, err = database:select(r, "SELECT ‘name‘, ‘age‘ FROM ‘people‘ WHERE 1")
if not err then

local rows = results(0) -- fetch all rows synchronously
for k, row in pairs(rows) do

r:puts(string.format("Name: %s, Age: %s
", row[1], row[2]))
end

else
r:puts("Database query error: " .. err)

end
database:close()

else
r:puts("Could not connect to the database: " .. err)

end
end

682 CHAPTER 10. APACHE MODULES

To utilize MOD DBD, specify mod dbd as the database type, or leave the field blank:

local database = r:dbacquire("mod_dbd")

Database object and contained functions

The database object returned by dbacquire has the following methods:

Normal select and query from a database:

-- Run a statement and return the number of rows affected:
local affected, errmsg = database:query(r, "DELETE FROM ‘tbl‘ WHERE 1")

-- Run a statement and return a result set that can be used synchronously or async:
local result, errmsg = database:select(r, "SELECT * FROM ‘people‘ WHERE 1")

Using prepared statements (recommended):

-- Create and run a prepared statement:
local statement, errmsg = database:prepare(r, "DELETE FROM ‘tbl‘ WHERE ‘age‘ > %u")
if not errmsg then

local result, errmsg = statement:query(20) -- run the statement with age > 20
end

-- Fetch a prepared statement from a DBDPrepareSQL directive:
local statement, errmsg = database:prepared(r, "someTag")
if not errmsg then

local result, errmsg = statement:select("John Doe", 123) -- inject the values "John Doe" and 123 into the statement
end

Escaping values, closing databases etc:

-- Escape a value for use in a statement:
local escaped = database:escape(r, [["’|blabla]])

-- Close a database connection and free up handles:
database:close()

-- Check whether a database connection is up and running:
local connected = database:active()

Working with result sets

The result set returned by db:select or by the prepared statement functions created through db:prepare can be
used to fetch rows synchronously or asynchronously, depending on the row number specified:
result(0) fetches all rows in a synchronous manner, returning a table of rows.
result(-1) fetches the next available row in the set, asynchronously.
result(N) fetches row number N, asynchronously:

-- fetch a result set using a regular query:
local result, err = db:select(r, "SELECT * FROM ‘tbl‘ WHERE 1")

10.69. APACHE MODULE MOD LUA 683

local rows = result(0) -- Fetch ALL rows synchronously
local row = result(-1) -- Fetch the next available row, asynchronously
local row = result(1234) -- Fetch row number 1234, asynchronously
local row = result(-1, true) -- Fetch the next available row, using row names as key indexes.

One can construct a function that returns an iterative function to iterate over all rows in a synchronous or asynchronous
way, depending on the async argument:

function rows(resultset, async)
local a = 0
local function getnext()

a = a + 1
local row = resultset(-1)
return row and a or nil, row

end
if not async then

return pairs(resultset(0))
else

return getnext, self
end

end

local statement, err = db:prepare(r, "SELECT * FROM ‘tbl‘ WHERE ‘age‘ > %u")
if not err then

-- fetch rows asynchronously:
local result, err = statement:select(20)
if not err then

for index, row in rows(result, true) do
....

end
end

-- fetch rows synchronously:
local result, err = statement:select(20)
if not err then

for index, row in rows(result, false) do
....

end
end

end

Closing a database connection

Database handles should be closed using database:close() when they are no longer needed. If you do not close
them manually, they will eventually be garbage collected and closed by mod lua, but you may end up having too many
unused connections to the database if you leave the closing up to mod lua. Essentially, the following two measures
are the same:

-- Method 1: Manually close a handle
local database = r:dbacquire("mod_dbd")
database:close() -- All done

684 CHAPTER 10. APACHE MODULES

-- Method 2: Letting the garbage collector close it
local database = r:dbacquire("mod_dbd")
database = nil -- throw away the reference
collectgarbage() -- close the handle via GC

Precautions when working with databases

Although the standard query and run functions are freely available, it is recommended that you use prepared state-
ments whenever possible, to both optimize performance (if your db handle lives on for a long time) and to minimize
the risk of SQL injection attacks. run and query should only be used when there are no variables inserted into a
statement (a static statement). When using dynamic statements, use db:prepare or db:prepared.

LuaAuthzProvider Directive

Description: Plug an authorization provider function into MOD AUTHZ CORE
Syntax: LuaAuthzProvider provider name /path/to/lua/script.lua

function name
Context: server config
Status: Experimental
Module: mod lua
Compatibility: 2.4.3 and later

After a lua function has been registered as authorization provider, it can be used with the REQUIRE directive:

LuaRoot "/usr/local/apache2/lua"
LuaAuthzProvider foo authz.lua authz_check_foo
<Location "/">

Require foo johndoe
</Location>

require "apache2"
function authz_check_foo(r, who)

if r.user ˜= who then return apache2.AUTHZ_DENIED
return apache2.AUTHZ_GRANTED

end

LuaCodeCache Directive

Description: Configure the compiled code cache.
Syntax: LuaCodeCache stat|forever|never
Default: LuaCodeCache stat
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua

Specify the behavior of the in-memory code cache. The default is stat, which stats the top level script (not any included
ones) each time that file is needed, and reloads it if the modified time indicates it is newer than the one it has already
loaded. The other values cause it to keep the file cached forever (don’t stat and replace) or to never cache the file.

In general stat or forever is good for production, and stat or never for development.

10.69. APACHE MODULE MOD LUA 685

Examples:

LuaCodeCache stat
LuaCodeCache forever
LuaCodeCache never

LuaHookAccessChecker Directive

Description: Provide a hook for the access checker phase of request processing
Syntax: LuaHookAccessChecker /path/to/lua/script.lua hook function name

[early|late]
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua
Compatibility: The optional third argument is supported in 2.3.15 and later

Add your hook to the access checker phase. An access checker hook function usually returns OK, DECLINED, or
HTTP FORBIDDEN.

=⇒Ordering
The optional arguments "early" or "late" control when this script runs relative to other mod-
ules.

LuaHookAuthChecker Directive

Description: Provide a hook for the auth checker phase of request processing
Syntax: LuaHookAuthChecker /path/to/lua/script.lua hook function name

[early|late]
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua
Compatibility: The optional third argument is supported in 2.3.15 and later

Invoke a lua function in the auth checker phase of processing a request. This can be used to implement arbitrary
authentication and authorization checking. A very simple example:

require ’apache2’

-- fake authcheck hook
-- If request has no auth info, set the response header and
-- return a 401 to ask the browser for basic auth info.
-- If request has auth info, don’t actually look at it, just
-- pretend we got userid ’foo’ and validated it.
-- Then check if the userid is ’foo’ and accept the request.
function authcheck_hook(r)

-- look for auth info
auth = r.headers_in[’Authorization’]
if auth ˜= nil then

-- fake the user
r.user = ’foo’

end

686 CHAPTER 10. APACHE MODULES

if r.user == nil then
r:debug("authcheck: user is nil, returning 401")
r.err_headers_out[’WWW-Authenticate’] = ’Basic realm="WallyWorld"’
return 401

elseif r.user == "foo" then
r:debug(’user foo: OK’)

else
r:debug("authcheck: user=’" .. r.user .. "’")
r.err_headers_out[’WWW-Authenticate’] = ’Basic realm="WallyWorld"’
return 401

end
return apache2.OK

end

=⇒Ordering
The optional arguments "early" or "late" control when this script runs relative to other mod-
ules.

LuaHookCheckUserID Directive

Description: Provide a hook for the check user id phase of request processing
Syntax: LuaHookCheckUserID /path/to/lua/script.lua hook function name

[early|late]
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua
Compatibility: The optional third argument is supported in 2.3.15 and later

...

=⇒Ordering
The optional arguments "early" or "late" control when this script runs relative to other mod-
ules.

LuaHookFixups Directive

Description: Provide a hook for the fixups phase of a request processing
Syntax: LuaHookFixups /path/to/lua/script.lua hook function name
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua

Just like LuaHookTranslateName, but executed at the fixups phase

10.69. APACHE MODULE MOD LUA 687

LuaHookInsertFilter Directive

Description: Provide a hook for the insert filter phase of request processing
Syntax: LuaHookInsertFilter /path/to/lua/script.lua hook function name
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua

Not Yet Implemented

LuaHookLog Directive

Description: Provide a hook for the access log phase of a request processing
Syntax: LuaHookLog /path/to/lua/script.lua log function name
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua

This simple logging hook allows you to run a function when httpd enters the logging phase of a request. With it,
you can append data to your own logs, manipulate data before the regular log is written, or prevent a log entry from
being created. To prevent the usual logging from happening, simply return apache2.DONE in your logging handler,
otherwise return apache2.OK to tell httpd to log as normal.

Example:

LuaHookLog "/path/to/script.lua" logger

-- /path/to/script.lua --
function logger(r)

-- flip a coin:
-- If 1, then we write to our own Lua log and tell httpd not to log
-- in the main log.
-- If 2, then we just sanitize the output a bit and tell httpd to
-- log the sanitized bits.

if math.random(1,2) == 1 then
-- Log stuff ourselves and don’t log in the regular log
local f = io.open("/foo/secret.log", "a")
if f then

f:write("Something secret happened at " .. r.uri .. "\n")
f:close()

end
return apache2.DONE -- Tell httpd not to use the regular logging functions

else
r.uri = r.uri:gsub("somesecretstuff", "") -- sanitize the URI
return apache2.OK -- tell httpd to log it.

end
end

688 CHAPTER 10. APACHE MODULES

LuaHookMapToStorage Directive

Description: Provide a hook for the map to storage phase of request processing
Syntax: LuaHookMapToStorage /path/to/lua/script.lua hook function name
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua

Like LUAHOOKTRANSLATENAME but executed at the map-to-storage phase of a request. Modules like mod cache
run at this phase, which makes for an interesting example on what to do here:

LuaHookMapToStorage "/path/to/lua/script.lua" check_cache

require"apache2"
cached_files = {}

function read_file(filename)
local input = io.open(filename, "r")
if input then

local data = input:read("*a")
cached_files[filename] = data
file = cached_files[filename]
input:close()

end
return cached_files[filename]

end

function check_cache(r)
if r.filename:match("%.png$") then -- Only match PNG files

local file = cached_files[r.filename] -- Check cache entries
if not file then

file = read_file(r.filename) -- Read file into cache
end
if file then -- If file exists, write it out

r.status = 200
r:write(file)
r:info(("Sent %s to client from cache"):format(r.filename))
return apache2.DONE -- skip default handler for PNG files

end
end
return apache2.DECLINED -- If we had nothing to do, let others serve this.

end

LuaHookTranslateName Directive

Description: Provide a hook for the translate name phase of request processing
Syntax: LuaHookTranslateName /path/to/lua/script.lua hook function name

[early|late]
Context: server config, virtual host
Override: All
Status: Experimental
Module: mod lua
Compatibility: The optional third argument is supported in 2.3.15 and later

10.69. APACHE MODULE MOD LUA 689

Add a hook (at APR HOOK MIDDLE) to the translate name phase of request processing. The hook function receives
a single argument, the request rec, and should return a status code, which is either an HTTP error code, or the constants
defined in the apache2 module: apache2.OK, apache2.DECLINED, or apache2.DONE.

For those new to hooks, basically each hook will be invoked until one of them returns apache2.OK. If your hook
doesn’t want to do the translation it should just return apache2.DECLINED. If the request should stop processing,
then return apache2.DONE.

Example:

httpd.conf
LuaHookTranslateName "/scripts/conf/hooks.lua" silly_mapper

-- /scripts/conf/hooks.lua --
require "apache2"
function silly_mapper(r)

if r.uri == "/" then
r.filename = "/var/www/home.lua"
return apache2.OK

else
return apache2.DECLINED

end
end

=⇒Context
This directive is not valid in <DIRECTORY>, <FILES>, or htaccess context.

=⇒Ordering
The optional arguments "early" or "late" control when this script runs relative to other mod-
ules.

LuaHookTypeChecker Directive

Description: Provide a hook for the type checker phase of request processing
Syntax: LuaHookTypeChecker /path/to/lua/script.lua hook function name
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua

This directive provides a hook for the type checker phase of the request processing. This phase is where requests are
assigned a content type and a handler, and thus can be used to modify the type and handler based on input:

LuaHookTypeChecker "/path/to/lua/script.lua" type_checker

function type_checker(r)
if r.uri:match("%.to_gif$") then -- match foo.png.to_gif

r.content_type = "image/gif" -- assign it the image/gif type
r.handler = "gifWizard" -- tell the gifWizard module to handle this
r.filename = r.uri:gsub("%.to_gif$", "") -- fix the filename requested
return apache2.OK

end

return apache2.DECLINED
end

690 CHAPTER 10. APACHE MODULES

LuaInherit Directive

Description: Controls how parent configuration sections are merged into children
Syntax: LuaInherit none|parent-first|parent-last
Default: LuaInherit parent-first
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua
Compatibility: 2.4.0 and later

By default, if LuaHook* directives are used in overlapping Directory or Location configuration sections, the scripts
defined in the more specific section are run after those defined in the more generic section (LuaInherit parent-first).
You can reverse this order, or make the parent context not apply at all.

In previous 2.3.x releases, the default was effectively to ignore LuaHook* directives from parent configuration sec-
tions.

LuaInputFilter Directive

Description: Provide a Lua function for content input filtering
Syntax: LuaInputFilter filter name /path/to/lua/script.lua

function name
Context: server config
Status: Experimental
Module: mod lua
Compatibility: 2.4.5 and later

Provides a means of adding a Lua function as an input filter. As with output filters, input filters work as coroutines,
first yielding before buffers are sent, then yielding whenever a bucket needs to be passed down the chain, and finally
(optionally) yielding anything that needs to be appended to the input data. The global variable bucket holds the
buckets as they are passed onto the Lua script:

LuaInputFilter myInputFilter "/www/filter.lua" input_filter
<Files "*.lua">

SetInputFilter myInputFilter
</Files>

--[[
Example input filter that converts all POST data to uppercase.

]]--
function input_filter(r)

print("luaInputFilter called") -- debug print
coroutine.yield() -- Yield and wait for buckets
while bucket do -- For each bucket, do...

local output = string.upper(bucket) -- Convert all POST data to uppercase
coroutine.yield(output) -- Send converted data down the chain

end
-- No more buckets available.
coroutine.yield("&filterSignature=1234") -- Append signature at the end

end

The input filter supports denying/skipping a filter if it is deemed unwanted:

10.69. APACHE MODULE MOD LUA 691

function input_filter(r)
if not good then

return -- Simply deny filtering, passing on the original content instead
end
coroutine.yield() -- wait for buckets
... -- insert filter stuff here

end

See "Modifying contents with Lua filters" for more information.

LuaMapHandler Directive

Description: Map a path to a lua handler
Syntax: LuaMapHandler uri-pattern /path/to/lua/script.lua

[function-name]
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua

This directive matches a uri pattern to invoke a specific handler function in a specific file. It uses PCRE regular
expressions to match the uri, and supports interpolating match groups into both the file path and the function name.
Be careful writing your regular expressions to avoid security issues.

Examples:

LuaMapHandler "/(\w+)/(\w+)" "/scripts/$1.lua" "handle_$2"

This would match uri’s such as /photos/show?id=9 to the file /scripts/photos.lua and invoke the handler function
handle show on the lua vm after loading that file.

LuaMapHandler "/bingo" "/scripts/wombat.lua"

This would invoke the "handle" function, which is the default if no specific function name is provided.

LuaOutputFilter Directive

Description: Provide a Lua function for content output filtering
Syntax: LuaOutputFilter filter name /path/to/lua/script.lua

function name
Context: server config
Status: Experimental
Module: mod lua
Compatibility: 2.4.5 and later

Provides a means of adding a Lua function as an output filter. As with input filters, output filters work as coroutines,
first yielding before buffers are sent, then yielding whenever a bucket needs to be passed down the chain, and finally
(optionally) yielding anything that needs to be appended to the input data. The global variable bucket holds the
buckets as they are passed onto the Lua script:

LuaOutputFilter myOutputFilter "/www/filter.lua" output_filter
<Files "*.lua">

SetOutputFilter myOutputFilter
</Files>

692 CHAPTER 10. APACHE MODULES

--[[
Example output filter that escapes all HTML entities in the output

]]--
function output_filter(r)

coroutine.yield("(Handled by myOutputFilter)
\n") -- Prepend some data to the output,
-- yield and wait for buckets.

while bucket do -- For each bucket, do...
local output = r:escape_html(bucket) -- Escape all output
coroutine.yield(output) -- Send converted data down the chain

end
-- No more buckets available.

end

As with the input filter, the output filter supports denying/skipping a filter if it is deemed unwanted:

function output_filter(r)
if not r.content_type:match("text/html") then

return -- Simply deny filtering, passing on the original content instead
end
coroutine.yield() -- wait for buckets
... -- insert filter stuff here

end

=⇒Lua filters with MOD FILTER
When a Lua filter is used as the underlying provider via the FILTERPROVIDER directive, filter-
ing will only work when the filter-name is identical to the provider-name.

See "Modifying contents with Lua filters" for more information.

LuaPackageCPath Directive

Description: Add a directory to lua’s package.cpath
Syntax: LuaPackageCPath /path/to/include/?.soa
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua

Add a path to lua’s shared library search path. Follows the same conventions as lua. This just munges the package.cpath
in the lua vms.

LuaPackagePath Directive

Description: Add a directory to lua’s package.path
Syntax: LuaPackagePath /path/to/include/?.lua
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua

Add a path to lua’s module search path. Follows the same conventions as lua. This just munges the package.path in
the lua vms.

10.69. APACHE MODULE MOD LUA 693

Examples:

LuaPackagePath "/scripts/lib/?.lua"
LuaPackagePath "/scripts/lib/?/init.lua"

LuaQuickHandler Directive

Description: Provide a hook for the quick handler of request processing
Syntax: LuaQuickHandler /path/to/script.lua hook function name
Context: server config, virtual host
Override: All
Status: Experimental
Module: mod lua

This phase is run immediately after the request has been mapped to a virtal host, and can be used to either do some
request processing before the other phases kick in, or to serve a request without the need to translate, map to storage
et cetera. As this phase is run before anything else, directives such as <LOCATION> or <DIRECTORY> are void in
this phase, just as URIs have not been properly parsed yet.

=⇒Context
This directive is not valid in <DIRECTORY>, <FILES>, or htaccess context.

LuaRoot Directive

Description: Specify the base path for resolving relative paths for mod lua directives
Syntax: LuaRoot /path/to/a/directory
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua

Specify the base path which will be used to evaluate all relative paths within mod lua. If not specified they will be
resolved relative to the current working directory, which may not always work well for a server.

LuaScope Directive

Description: One of once, request, conn, thread – default is once
Syntax: LuaScope once|request|conn|thread|server [min] [max]
Default: LuaScope once
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Experimental
Module: mod lua

Specify the life cycle scope of the Lua interpreter which will be used by handlers in this "Directory." The default is
"once"

once: use the interpreter once and throw it away.

request: use the interpreter to handle anything based on the same file within this request, which is also request scoped.

conn: Same as request but attached to the connection rec

thread: Use the interpreter for the lifetime of the thread handling the request (only available with threaded MPMs).

694 CHAPTER 10. APACHE MODULES

server: This one is different than others because the server scope is quite long lived, and multiple threads will have
the same server rec. To accommodate this, server scoped Lua states are stored in an apr resource list. The min
and max arguments specify the minimum and maximum number of Lua states to keep in the pool.

Generally speaking, the thread and server scopes execute roughly 2-3 times faster than the rest, because they
don’t have to spawn new Lua states on every request (especially with the event MPM, as even keepalive requests will
use a new thread for each request). If you are satisfied that your scripts will not have problems reusing a state, then the
thread or server scopes should be used for maximum performance. While the thread scope will provide the
fastest responses, the server scope will use less memory, as states are pooled, allowing f.x. 1000 threads to share
only 100 Lua states, thus using only 10% of the memory required by the thread scope.

10.70. APACHE MODULE MOD MACRO 695

10.70 Apache Module mod macro

Description: Provides macros within apache httpd runtime configuration files
Status: Base
ModuleIdentifier: macro module
SourceFile: mod macro.c

Summary

Provides macros within Apache httpd runtime configuration files, to ease the process of creating numerous similar
configuration blocks. When the server starts up, the macros are expanded using the provided parameters, and the
result is processed as along with the rest of the configuration file.

Directives

• <Macro>
• UndefMacro
• Use

Usage

Macros are defined using <MACRO> blocks, which contain the portion of your configuration that needs to be repeated,
complete with variables for those parts that will need to be substituted.

For example, you might use a macro to define a <VIRTUALHOST> block, in order to define multiple similar virtual
hosts:

<Macro VHost $name $domain>
<VirtualHost *:80>

ServerName $domain
ServerAlias www.$domain

DocumentRoot "/var/www/vhosts/$name"
ErrorLog "/var/log/httpd/$name.error_log"
CustomLog "/var/log/httpd/$name.access_log" combined

</VirtualHost>
</Macro>

Macro names are case-insensitive, like httpd configuration directives. However, variable names are case sensitive.

You would then invoke this macro several times to create virtual hosts:

Use VHost example example.com
Use VHost myhost hostname.org
Use VHost apache apache.org

UndefMacro VHost

At server startup time, each of these USE invocations would be expanded into a full virtualhost, as described by the
MACRO definition.

The UNDEFMACRO directive is used so that later macros using the same variable names don’t result in conflicting
definitions.

A more elaborate version of this example may be seen below in the Examples section.

696 CHAPTER 10. APACHE MODULES

Tips

Parameter names should begin with a sigil such as $, %, or @, so that they are clearly identifiable, and also in order to
help deal with interactions with other directives, such as the core DEFINE directive. Failure to do so will result in a
warning. Nevertheless, you are encouraged to have a good knowledge of your entire server configuration in order to
avoid reusing the same variables in different scopes, which can cause confusion.

Parameters prefixed with either $ or % are not escaped. Parameters prefixes with @ are escaped in quotes.

Avoid using a parameter which contains another parameter as a prefix, (For example, $win and $winter) as this
may cause confusion at expression evaluation time. In the event of such confusion, the longest possible parameter
name is used.

If you want to use a value within another string, it is useful to surround the parameter in braces, to avoid confusion:

<Macro DocRoot ${docroot}>
DocumentRoot "/var/www/${docroot}/htdocs"

</Macro>

Examples

Virtual Host Definition

A common usage of MOD MACRO is for the creation of dynamically-generated virtual hosts.

Define a VHost Macro for repetitive configurations

<Macro VHost $host $port $dir>
Listen $port
<VirtualHost *:$port>

ServerName $host
DocumentRoot "$dir"

Public document root
<Directory "$dir">

Require all granted
</Directory>

limit access to intranet subdir.
<Directory "$dir/intranet">

Require ip 10.0.0.0/8
</Directory>

</VirtualHost>
</Macro>

Use of VHost with different arguments.

Use VHost www.apache.org 80 /vhosts/apache/htdocs
Use VHost example.org 8080 /vhosts/example/htdocs
Use VHost www.example.fr 1234 /vhosts/example.fr/htdocs

10.70. APACHE MODULE MOD MACRO 697

Removal of a macro definition

It’s recommended that you undefine a macro once you’ve used it. This avoids confusion in a complex configuration
file where there may be conflicts in variable names.

<Macro DirGroup $dir $group>
<Directory "$dir">

Require group $group
</Directory>

</Macro>

Use DirGroup /www/apache/private private
Use DirGroup /www/apache/server admin

UndefMacro DirGroup

Macro Directive

Description: Define a configuration file macro
Syntax: <Macro name [par1 .. parN]> ... </Macro>
Context: server config, virtual host, directory
Status: Base
Module: mod macro

The MACRO directive controls the definition of a macro within the server runtime configuration files. The first argu-
ment is the name of the macro. Other arguments are parameters to the macro. It is good practice to prefix parameter
names with any of ’$%@’, and not macro names with such characters.

<Macro LocalAccessPolicy>
Require ip 10.2.16.0/24

</Macro>

<Macro RestrictedAccessPolicy $ipnumbers>
Require ip $ipnumbers

</Macro>

UndefMacro Directive

Description: Undefine a macro
Syntax: UndefMacro name
Context: server config, virtual host, directory
Status: Base
Module: mod macro

The UNDEFMACRO directive undefines a macro which has been defined before hand.

UndefMacro LocalAccessPolicy
UndefMacro RestrictedAccessPolicy

698 CHAPTER 10. APACHE MODULES

Use Directive

Description: Use a macro
Syntax: Use name [value1 ... valueN]
Context: server config, virtual host, directory
Status: Base
Module: mod macro

The USE directive controls the use of a macro. The specified macro is expanded. It must be given the same number of
arguments as in the macro definition. The provided values are associated to their corresponding initial parameters and
are substituted before processing.

Use LocalAccessPolicy
...
Use RestrictedAccessPolicy "192.54.172.0/24 192.54.148.0/24"

is equivalent, with the macros defined above, to:

Require ip 10.2.16.0/24
...
Require ip 192.54.172.0/24 192.54.148.0/24

10.71. APACHE MODULE MOD MIME 699

10.71 Apache Module mod mime

Description: Associates the requested filename’s extensions with the file’s behavior (handlers and
filters) and content (mime-type, language, character set and encoding)

Status: Base
ModuleIdentifier: mime module
SourceFile: mod mime.c

Summary

This module is used to assign content metadata to the content selected for an HTTP response by mapping patterns
in the URI or filenames to the metadata values. For example, the filename extensions of content files often define
the content’s Internet media type, language, character set, and content-encoding. This information is sent in HTTP
messages containing that content and used in content negotiation when selecting alternatives, such that the user’s
preferences are respected when choosing one of several possible contents to serve. See MOD NEGOTIATION for more
information about content negotiation (p. 68) .

The directives ADDCHARSET, ADDENCODING, ADDLANGUAGE and ADDTYPE are all used to map file extensions
onto the metadata for that file. Respectively they set the character set, content-encoding, content-language, and media-
type (content-type) of documents. The directive TYPESCONFIG is used to specify a file which also maps extensions
onto media types.

In addition, MOD MIME may define the handler (p. 98) and filters (p. 100) that originate and process content. The
directives ADDHANDLER, ADDOUTPUTFILTER, and ADDINPUTFILTER control the modules or scripts that serve
the document. The MULTIVIEWSMATCH directive allows MOD NEGOTIATION to consider these file extensions to be
included when testing Multiviews matches.

While MOD MIME associates metadata with filename extensions, the CORE server provides directives that are used
to associate all the files in a given container (e.g., <LOCATION>, <DIRECTORY>, or <FILES>) with particular
metadata. These directives include FORCETYPE, SETHANDLER, SETINPUTFILTER, and SETOUTPUTFILTER. The
core directives override any filename extension mappings defined in MOD MIME.

Note that changing the metadata for a file does not change the value of the Last-Modified header. Thus, previously
cached copies may still be used by a client or proxy, with the previous headers. If you change the metadata (language,
content type, character set or encoding) you may need to ’touch’ affected files (updating their last modified date) to
ensure that all visitors are receive the corrected content headers.

Directives

• AddCharset

• AddEncoding

• AddHandler

• AddInputFilter

• AddLanguage

• AddOutputFilter

• AddType

• DefaultLanguage

• ModMimeUsePathInfo

• MultiviewsMatch

• RemoveCharset

• RemoveEncoding

700 CHAPTER 10. APACHE MODULES

• RemoveHandler

• RemoveInputFilter

• RemoveLanguage

• RemoveOutputFilter

• RemoveType

• TypesConfig

See also

• MIMEMAGICFILE

• ADDDEFAULTCHARSET

• FORCETYPE

• SETHANDLER

• SETINPUTFILTER

• SETOUTPUTFILTER

Files with Multiple Extensions

Files can have more than one extension; the order of the extensions is normally irrelevant. For example, if the file
welcome.html.fr maps onto content type text/html and language French then the file welcome.fr.html
will map onto exactly the same information. If more than one extension is given that maps onto the same type of meta-
data, then the one to the right will be used, except for languages and content encodings. For example, if .gif maps to
the media-type image/gif and .html maps to the media-type text/html, then the file welcome.gif.html
will be associated with the media-type text/html.

Languages and content encodings are treated accumulative, because one can assign more than one language
or encoding to a particular resource. For example, the file welcome.html.en.de will be delivered with
Content-Language: en, de and Content-Type: text/html.

Care should be taken when a file with multiple extensions gets associated with both a media-type and a handler. This
will usually result in the request being handled by the module associated with the handler. For example, if the .imap
extension is mapped to the handler imap-file (from MOD IMAGEMAP) and the .html extension is mapped to the
media-type text/html, then the file world.imap.html will be associated with both the imap-file handler
and text/html media-type. When it is processed, the imap-file handler will be used, and so it will be treated
as a MOD IMAGEMAP imagemap file.

If you would prefer only the last dot-separated part of the filename to be mapped to a particular piece of meta-data,
then do not use the Add* directives. For example, if you wish to have the file foo.html.cgi processed as a CGI
script, but not the file bar.cgi.html, then instead of using AddHandler cgi-script .cgi, use

Configure handler based on final extension only

<FilesMatch "[ˆ.]+\.cgi$">
SetHandler cgi-script

</FilesMatch>

10.71. APACHE MODULE MOD MIME 701

Content encoding

A file of a particular media-type can additionally be encoded a particular way to simplify transmission over the Internet.
While this usually will refer to compression, such as gzip, it can also refer to encryption, such a pgp or to an encoding
such as UUencoding, which is designed for transmitting a binary file in an ASCII (text) format.

The HTTP/1.1 RFC46, section 14.11 puts it this way:

The Content-Encoding entity-header field is used as a modifier to the media-type. When present,
its value indicates what additional content codings have been applied to the entity-body, and thus what
decoding mechanisms must be applied in order to obtain the media-type referenced by the Content-Type
header field. Content-Encoding is primarily used to allow a document to be compressed without losing
the identity of its underlying media type.

By using more than one file extension (see section above about multiple file extensions), you can indicate that a file is
of a particular type, and also has a particular encoding.

For example, you may have a file which is a Microsoft Word document, which is pkzipped to reduce its size. If the
.doc extension is associated with the Microsoft Word file type, and the .zip extension is associated with the pkzip
file encoding, then the file Resume.doc.zip would be known to be a pkzip’ed Word document.

Apache sends a Content-encoding header with the resource, in order to tell the client browser about the encoding
method.

Content-encoding: pkzip

Character sets and languages

In addition to file type and the file encoding, another important piece of information is what language a particular
document is in, and in what character set the file should be displayed. For example, the document might be written
in the Vietnamese alphabet, or in Cyrillic, and should be displayed as such. This information, also, is transmitted in
HTTP headers.

The character set, language, encoding and mime type are all used in the process of content negotiation (See
MOD NEGOTIATION) to determine which document to give to the client, when there are alternative documents in
more than one character set, language, encoding or mime type. All filename extensions associations created with AD-
DCHARSET, ADDENCODING, ADDLANGUAGE and ADDTYPE directives (and extensions listed in the MIMEMAG-
ICFILE) participate in this select process. Filename extensions that are only associated using the ADDHANDLER,
ADDINPUTFILTER or ADDOUTPUTFILTER directives may be included or excluded from matching by using the MUL-
TIVIEWSMATCH directive.

Charset

To convey this further information, Apache optionally sends a Content-Language header, to specify the language
that the document is in, and can append additional information onto the Content-Type header to indicate the
particular character set that should be used to correctly render the information.

Content-Language: en, fr Content-Type: text/plain;

charset=ISO-8859-1

The language specification is the two-letter abbreviation for the language. The charset is the name of the particular
character set which should be used.

46http://www.ietf.org/rfc/rfc2616.txt

http://www.ietf.org/rfc/rfc2616.txt

702 CHAPTER 10. APACHE MODULES

AddCharset Directive

Description: Maps the given filename extensions to the specified content charset
Syntax: AddCharset charset extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

The ADDCHARSET directive maps the given filename extensions to the specified content charset (the Internet reg-
istered name for a given character encoding). charset is the media type’s charset parameter47 for resources with
filenames containing extension. This mapping is added to any already in force, overriding any mappings that already
exist for the same extension.

Example

AddLanguage ja .ja
AddCharset EUC-JP .euc
AddCharset ISO-2022-JP .jis
AddCharset SHIFT_JIS .sjis

Then the document xxxx.ja.jis will be treated as being a Japanese document whose charset is ISO-2022-JP
(as will the document xxxx.jis.ja). The ADDCHARSET directive is useful for both to inform the client about
the character encoding of the document so that the document can be interpreted and displayed appropriately, and
for content negotiation (p. 68) , where the server returns one from several documents based on the client’s charset
preference.

The extension argument is case-insensitive and can be specified with or without a leading dot. Filenames may have
multiple extensions and the extension argument will be compared against each of them.

See also

• MOD NEGOTIATION

• ADDDEFAULTCHARSET

AddEncoding Directive

Description: Maps the given filename extensions to the specified encoding type
Syntax: AddEncoding encoding extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

The ADDENCODING directive maps the given filename extensions to the specified HTTP content-encoding. encoding
is the HTTP content coding to append to the value of the Content-Encoding header field for documents named with
the extension. This mapping is added to any already in force, overriding any mappings that already exist for the same
extension.

Example

AddEncoding x-gzip .gz
AddEncoding x-compress .Z

47http://www.iana.org/assignments/character-sets

http://www.iana.org/assignments/character-sets

10.71. APACHE MODULE MOD MIME 703

This will cause filenames containing the .gz extension to be marked as encoded using the x-gzip encoding, and
filenames containing the .Z extension to be marked as encoded with x-compress.

Old clients expect x-gzip and x-compress, however the standard dictates that they’re equivalent to gzip and
compress respectively. Apache does content encoding comparisons by ignoring any leading x-. When responding
with an encoding Apache will use whatever form (i.e., x-foo or foo) the client requested. If the client didn’t
specifically request a particular form Apache will use the form given by the AddEncoding directive. To make this
long story short, you should always use x-gzip and x-compress for these two specific encodings. More recent
encodings, such as deflate, should be specified without the x-.

The extension argument is case-insensitive and can be specified with or without a leading dot. Filenames may have
multiple extensions and the extension argument will be compared against each of them.

AddHandler Directive

Description: Maps the filename extensions to the specified handler
Syntax: AddHandler handler-name extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

Files having the name extension will be served by the specified handler-name (p. 98) . This mapping is added to any
already in force, overriding any mappings that already exist for the same extension. For example, to activate CGI
scripts with the file extension .cgi, you might use:

AddHandler cgi-script .cgi

Once that has been put into your httpd.conf file, any file containing the .cgi extension will be treated as a CGI
program.

The extension argument is case-insensitive and can be specified with or without a leading dot. Filenames may have
multiple extensions and the extension argument will be compared against each of them.

See also

• SETHANDLER

AddInputFilter Directive

Description: Maps filename extensions to the filters that will process client requests
Syntax: AddInputFilter filter[;filter...] extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

ADDINPUTFILTER maps the filename extension extension to the filters (p. 100) which will process client requests and
POST input when they are received by the server. This is in addition to any filters defined elsewhere, including the
SETINPUTFILTER directive. This mapping is merged over any already in force, overriding any mappings that already
exist for the same extension.

If more than one filter is specified, they must be separated by semicolons in the order in which they should process the
content. The filter is case-insensitive.

The extension argument is case-insensitive and can be specified with or without a leading dot. Filenames may have
multiple extensions and the extension argument will be compared against each of them.

704 CHAPTER 10. APACHE MODULES

See also

• REMOVEINPUTFILTER

• SETINPUTFILTER

AddLanguage Directive

Description: Maps the given filename extension to the specified content language
Syntax: AddLanguage language-tag extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

The ADDLANGUAGE directive maps the given filename extension to the specified content language. Files with the
filename extension are assigned an HTTP Content-Language value of language-tag corresponding to the language
identifiers defined by RFC 3066. This directive overrides any mappings that already exist for the same extension.

Example

AddEncoding x-compress .Z
AddLanguage en .en
AddLanguage fr .fr

Then the document xxxx.en.Z will be treated as being a compressed English document (as will the document
xxxx.Z.en). Although the content language is reported to the client, the browser is unlikely to use this information.
The ADDLANGUAGE directive is more useful for content negotiation (p. 68) , where the server returns one from
several documents based on the client’s language preference.

If multiple language assignments are made for the same extension, the last one encountered is the one that is used.
That is, for the case of:

AddLanguage en .en
AddLanguage en-gb .en
AddLanguage en-us .en

documents with the extension .en would be treated as being en-us.

The extension argument is case-insensitive and can be specified with or without a leading dot. Filenames may have
multiple extensions and the extension argument will be compared against each of them.

See also

• MOD NEGOTIATION

AddOutputFilter Directive

Description: Maps filename extensions to the filters that will process responses from the server
Syntax: AddOutputFilter filter[;filter...] extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

10.71. APACHE MODULE MOD MIME 705

The ADDOUTPUTFILTER directive maps the filename extension extension to the filters (p. 100) which will process
responses from the server before they are sent to the client. This is in addition to any filters defined elsewhere, including
SETOUTPUTFILTER and ADDOUTPUTFILTERBYTYPE directive. This mapping is merged over any already in force,
overriding any mappings that already exist for the same extension.

For example, the following configuration will process all .shtml files for server-side includes and will then compress
the output using MOD DEFLATE.

AddOutputFilter INCLUDES;DEFLATE shtml

If more than one filter is specified, they must be separated by semicolons in the order in which they should process the
content. The filter argument is case-insensitive.

The extension argument is case-insensitive and can be specified with or without a leading dot. Filenames may have
multiple extensions and the extension argument will be compared against each of them.

Note that when defining a set of filters using the ADDOUTPUTFILTER directive, any definition made will replace any
previous definition made by the ADDOUTPUTFILTER directive.

Effective filter "DEFLATE"
AddOutputFilter DEFLATE shtml
<Location "/foo">

Effective filter "INCLUDES", replacing "DEFLATE"
AddOutputFilter INCLUDES shtml

</Location>
<Location "/bar">

Effective filter "INCLUDES;DEFLATE", replacing "DEFLATE"
AddOutputFilter INCLUDES;DEFLATE shtml

</Location>
<Location "/bar/baz">

Effective filter "BUFFER", replacing "INCLUDES;DEFLATE"
AddOutputFilter BUFFER shtml

</Location>
<Location "/bar/baz/buz">

No effective filter, replacing "BUFFER"
RemoveOutputFilter shtml

</Location>

See also

• REMOVEOUTPUTFILTER

• SETOUTPUTFILTER

AddType Directive

Description: Maps the given filename extensions onto the specified content type
Syntax: AddType media-type extension [extension] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

The ADDTYPE directive maps the given filename extensions onto the specified content type. media-type is the media
type to use for filenames containing extension. This mapping is added to any already in force, overriding any mappings
that already exist for the same extension.

706 CHAPTER 10. APACHE MODULES

=⇒It is recommended that new media types be added using the ADDTYPE directive rather than
changing the TYPESCONFIG file.

Example

AddType image/gif .gif

Or, to specify multiple file extensions in one directive:

Example

AddType image/jpeg jpeg jpg jpe

The extension argument is case-insensitive and can be specified with or without a leading dot. Filenames may have
multiple extensions and the extension argument will be compared against each of them.

A simmilar effect to MOD NEGOTIATION’s LANGUAGEPRIORITY can be achieved by qualifying a media-type with
qs:

Example

AddType application/rss+xml;qs=0.8 .xml

This is useful in situations, e.g. when a client requesting Accept: */* can not actually processes the content
returned by the server.

This directive primarily configures the content types generated for static files served out of the filesystem. For resources
other than static files, where the generator of the response typically specifies a Content-Type, this directive has no
effect.

=⇒Note
If no handler is explicitly set for a request, the specified content type will also be used as the
handler name.
When explicit directives such as SETHANDLER or ADDHANDLER do not apply to the current
request, the internal handler name normally set by those directives is instead set to the content
type specified by this directive.
This is a historical behavior that may be used by some third-party modules (such as mod php)
for taking responsibility for the matching request.
Configurations that rely on such "synthetic" types should be avoided. Additionally, configu-
rations that restrict access to SETHANDLER or ADDHANDLER should restrict access to this
directive as well.

See also

• FORCETYPE

• MOD NEGOTIATION

DefaultLanguage Directive

Description: Defines a default language-tag to be sent in the Content-Language header field for all resources
in the current context that have not been assigned a language-tag by some other means.

Syntax: DefaultLanguage language-tag
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

10.71. APACHE MODULE MOD MIME 707

The DEFAULTLANGUAGE directive tells Apache that all resources in the directive’s scope (e.g., all resources covered
by the current <DIRECTORY> container) that don’t have an explicit language extension (such as .fr or .de as
configured by ADDLANGUAGE) should be assigned a Content-Language of language-tag. This allows entire directory
trees to be marked as containing Dutch content, for instance, without having to rename each file. Note that unlike using
extensions to specify languages, DEFAULTLANGUAGE can only specify a single language.

If no DEFAULTLANGUAGE directive is in force and a file does not have any language extensions as configured by
ADDLANGUAGE, then no Content-Language header field will be generated.

Example

DefaultLanguage en

See also

• MOD NEGOTIATION

ModMimeUsePathInfo Directive

Description: Tells MOD MIME to treat path info components as part of the filename
Syntax: ModMimeUsePathInfo On|Off
Default: ModMimeUsePathInfo Off
Context: directory
Status: Base
Module: mod mime

The MODMIMEUSEPATHINFO directive is used to combine the filename with the path info URL component to
apply MOD MIME’s directives to the request. The default value is Off - therefore, the path info component is
ignored.

This directive is recommended when you have a virtual filesystem.

Example

ModMimeUsePathInfo On

If you have a request for /index.php/foo.shtml MOD MIME will now treat the incoming request
as /index.php/foo.shtml and directives like AddOutputFilter INCLUDES .shtml will add the
INCLUDES filter to the request. If MODMIMEUSEPATHINFO is not set, the INCLUDES filter will not be added.
This will work analogously for virtual paths, such as those defined by <LOCATION>

See also

• ACCEPTPATHINFO

MultiviewsMatch Directive

Description: The types of files that will be included when searching for a matching file with MultiViews
Syntax: MultiviewsMatch Any|NegotiatedOnly|Filters|Handlers

[Handlers|Filters]
Default: MultiviewsMatch NegotiatedOnly
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

708 CHAPTER 10. APACHE MODULES

MULTIVIEWSMATCH permits three different behaviors for mod negotiation (p. 716) ’s Multiviews feature. Multiviews
allows a request for a file, e.g. index.html, to match any negotiated extensions following the base request, e.g.
index.html.en, index.html.fr, or index.html.gz.

The NegotiatedOnly option provides that every extension following the base name must correlate to a recognized
MOD MIME extension for content negotiation, e.g. Charset, Content-Type, Language, or Encoding. This is the strictest
implementation with the fewest unexpected side effects, and is the default behavior.

To include extensions associated with Handlers and/or Filters, set the MULTIVIEWSMATCH directive to either
Handlers, Filters, or both option keywords. If all other factors are equal, the smallest file will be served, e.g. in
deciding between index.html.cgi of 500 bytes and index.html.pl of 1000 bytes, the .cgi file would win
in this example. Users of .asis files might prefer to use the Handler option, if .asis files are associated with the
asis-handler.

You may finally allow Any extensions to match, even if MOD MIME doesn’t recognize the extension. This can cause
unpredictable results, such as serving .old or .bak files the webmaster never expected to be served.

For example, the following configuration will allow handlers and filters to participate in Multviews, but will exclude
unknown files:

MultiviewsMatch Handlers Filters

MULTIVIEWSMATCH is not allowed in a <LOCATION> or <LOCATIONMATCH> section.

See also

• OPTIONS

• MOD NEGOTIATION

RemoveCharset Directive

Description: Removes any character set associations for a set of file extensions
Syntax: RemoveCharset extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

The REMOVECHARSET directive removes any character set associations for files with the given extensions. This
allows .htaccess files in subdirectories to undo any associations inherited from parent directories or the server
config files.

The extension argument is case-insensitive and can be specified with or without a leading dot.

Example

RemoveCharset .html .shtml

RemoveEncoding Directive

Description: Removes any content encoding associations for a set of file extensions
Syntax: RemoveEncoding extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

10.71. APACHE MODULE MOD MIME 709

The REMOVEENCODING directive removes any encoding associations for files with the given extensions. This allows
.htaccess files in subdirectories to undo any associations inherited from parent directories or the server config files.
An example of its use might be:

/foo/.htaccess:

AddEncoding x-gzip .gz
AddType text/plain .asc
<Files "*.gz.asc">

RemoveEncoding .gz
</Files>

This will cause foo.gz to be marked as being encoded with the gzip method, but foo.gz.asc as an unencoded
plaintext file.

=⇒Note
REMOVEENCODING directives are processed after any ADDENCODING directives, so it is
possible they may undo the effects of the latter if both occur within the same directory config-
uration.

The extension argument is case-insensitive and can be specified with or without a leading dot.

RemoveHandler Directive

Description: Removes any handler associations for a set of file extensions
Syntax: RemoveHandler extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

The REMOVEHANDLER directive removes any handler associations for files with the given extensions. This allows
.htaccess files in subdirectories to undo any associations inherited from parent directories or the server config files.
An example of its use might be:

/foo/.htaccess:

AddHandler server-parsed .html

/foo/bar/.htaccess:

RemoveHandler .html

This has the effect of returning .html files in the /foo/bar directory to being treated as normal files, rather than
as candidates for parsing (see the MOD INCLUDE module).

The extension argument is case-insensitive and can be specified with or without a leading dot.

RemoveInputFilter Directive

Description: Removes any input filter associations for a set of file extensions
Syntax: RemoveInputFilter extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

710 CHAPTER 10. APACHE MODULES

The REMOVEINPUTFILTER directive removes any input filter (p. 100) associations for files with the given extensions.
This allows .htaccess files in subdirectories to undo any associations inherited from parent directories or the server
config files.

The extension argument is case-insensitive and can be specified with or without a leading dot.

See also

• ADDINPUTFILTER

• SETINPUTFILTER

RemoveLanguage Directive

Description: Removes any language associations for a set of file extensions
Syntax: RemoveLanguage extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

The REMOVELANGUAGE directive removes any language associations for files with the given extensions. This allows
.htaccess files in subdirectories to undo any associations inherited from parent directories or the server config files.

The extension argument is case-insensitive and can be specified with or without a leading dot.

RemoveOutputFilter Directive

Description: Removes any output filter associations for a set of file extensions
Syntax: RemoveOutputFilter extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

The REMOVEOUTPUTFILTER directive removes any output filter (p. 100) associations for files with the given exten-
sions. This allows .htaccess files in subdirectories to undo any associations inherited from parent directories or
the server config files.

The extension argument is case-insensitive and can be specified with or without a leading dot.

Example

RemoveOutputFilter shtml

See also

• ADDOUTPUTFILTER

RemoveType Directive

Description: Removes any content type associations for a set of file extensions
Syntax: RemoveType extension [extension] ...
Context: virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod mime

10.71. APACHE MODULE MOD MIME 711

The REMOVETYPE directive removes any media type associations for files with the given extensions. This allows
.htaccess files in subdirectories to undo any associations inherited from parent directories or the server config
files. An example of its use might be:

/foo/.htaccess:

RemoveType .cgi

This will remove any special handling of .cgi files in the /foo/ directory and any beneath it, causing responses
containing those files to omit the HTTP Content-Type header field.

=⇒Note
REMOVETYPE directives are processed after any ADDTYPE directives, so it is possible they
may undo the effects of the latter if both occur within the same directory configuration.

The extension argument is case-insensitive and can be specified with or without a leading dot.

TypesConfig Directive

Description: The location of the mime.types file
Syntax: TypesConfig file-path
Default: TypesConfig conf/mime.types
Context: server config
Status: Base
Module: mod mime

The TYPESCONFIG directive sets the location of the media types configuration file. File-path is relative to the
SERVERROOT. This file sets the default list of mappings from filename extensions to content types. Most admin-
istrators use the mime.types file provided by their OS, which associates common filename extensions with the
official list of IANA registered media types maintained at http://www.iana.org/assignments/media-types/index.html as
well as a large number of unofficial types. This simplifies the httpd.conf file by providing the majority of media-
type definitions, and may be overridden by ADDTYPE directives as needed. You should not edit the mime.types
file, because it may be replaced when you upgrade your server.

The file contains lines in the format of the arguments to an ADDTYPE directive:

media-type [extension] ...

The case of the extension does not matter. Blank lines, and lines beginning with a hash character (#) are ignored.
Empty lines are there for completeness (of the mime.types file). Apache httpd can still determine these types with
MOD MIME MAGIC.

=⇒Please do not send requests to the Apache HTTP Server Project to add any new entries
in the distributed mime.types file unless (1) they are already registered with IANA,
and (2) they use widely accepted, non-conflicting filename extensions across platforms.
category/x-subtype requests will be automatically rejected, as will any new two-letter
extensions as they will likely conflict later with the already crowded language and character
set namespace.

See also

• MOD MIME MAGIC

712 CHAPTER 10. APACHE MODULES

10.72 Apache Module mod mime magic

Description: Determines the MIME type of a file by looking at a few bytes of its contents
Status: Extension
ModuleIdentifier: mime magic module
SourceFile: mod mime magic.c

Summary

This module determines the MIME type of files in the same way the Unix file(1) command works: it looks at the
first few bytes of the file. It is intended as a "second line of defense" for cases that MOD MIME can’t resolve.

This module is derived from a free version of the file(1) command for Unix, which uses "magic numbers" and
other hints from a file’s contents to figure out what the contents are. This module is active only if the magic file is
specified by the MIMEMAGICFILE directive.

Directives

• MimeMagicFile

Format of the Magic File

The contents of the file are plain ASCII text in 4-5 columns. Blank lines are allowed but ignored. Commented lines
use a hash mark (#). The remaining lines are parsed for the following columns:

Column Description
1 byte number to begin checking from

">" indicates a dependency upon the previous non-">" line
2 type of data to match

byte single character
short machine-order 16-bit integer
long machine-order 32-bit integer
string arbitrary-length string
date long integer date (seconds since Unix epoch/1970)
beshort big-endian 16-bit integer
belong big-endian 32-bit integer
bedate big-endian 32-bit integer date
leshort little-endian 16-bit integer
lelong little-endian 32-bit integer
ledate little-endian 32-bit integer date

3 contents of data to match
4 MIME type if matched
5 MIME encoding if matched (optional)

For example, the following magic file lines would recognize some audio formats:

10.72. APACHE MODULE MOD MIME MAGIC 713

Sun/NeXT audio data
0 string .snd
>12 belong 1 audio/basic
>12 belong 2 audio/basic
>12 belong 3 audio/basic
>12 belong 4 audio/basic
>12 belong 5 audio/basic
>12 belong 6 audio/basic
>12 belong 7 audio/basic
>12 belong 23 audio/x-adpcm

Or these would recognize the difference between *.doc files containing Microsoft Word or FrameMaker documents.
(These are incompatible file formats which use the same file suffix.)

Frame
0 string \<MakerFile application/x-frame
0 string \<MIFFile application/x-frame
0 string \<MakerDictionary application/x-frame
0 string \<MakerScreenFon application/x-frame
0 string \<MML application/x-frame
0 string \<Book application/x-frame
0 string \<Maker application/x-frame

MS-Word
0 string \376\067\0\043 application/msword
0 string \320\317\021\340\241\261 application/msword
0 string \333\245-\0\0\0 application/msword

An optional MIME encoding can be included as a fifth column. For example, this can recognize gzipped files and set
the encoding for them.

gzip (GNU zip, not to be confused with
[Info-ZIP/PKWARE] zip archiver)

0 string \037\213 application/octet-stream x-gzip

Performance Issues

This module is not for every system. If your system is barely keeping up with its load or if you’re performing a web
server benchmark, you may not want to enable this because the processing is not free.

However, an effort was made to improve the performance of the original file(1) code to make it fit in a busy web
server. It was designed for a server where there are thousands of users who publish their own documents. This is
probably very common on intranets. Many times, it’s helpful if the server can make more intelligent decisions about
a file’s contents than the file name allows ...even if just to reduce the "why doesn’t my page work" calls when users
improperly name their own files. You have to decide if the extra work suits your environment.

Notes

The following notes apply to the MOD MIME MAGIC module and are included here for compliance with contributors’
copyright restrictions that require their acknowledgment.

714 CHAPTER 10. APACHE MODULES

=⇒mod mime magic: MIME type lookup via file magic numbers
Copyright (c) 1996-1997 Cisco Systems, Inc.
This software was submitted by Cisco Systems to the Apache Group in July 1997. Future
revisions and derivatives of this source code must acknowledge Cisco Systems as the original
contributor of this module. All other licensing and usage conditions are those of the Apache
Group.
Some of this code is derived from the free version of the file command originally posted to
comp.sources.unix. Copyright info for that program is included below as required.

=⇒- Copyright (c) Ian F. Darwin, 1987. Written by Ian F. Darwin.
This software is not subject to any license of the American Telephone and Telegraph Company
or of the Regents of the University of California.
Permission is granted to anyone to use this software for any purpose on any computer system,
and to alter it and redistribute it freely, subject to the following restrictions:

1. The author is not responsible for the consequences of use of this software, no matter how
awful, even if they arise from flaws in it.

2. The origin of this software must not be misrepresented, either by explicit claim or by
omission. Since few users ever read sources, credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be misrepresented as
being the original software. Since few users ever read sources, credits must appear in
the documentation.

4. This notice may not be removed or altered.

=⇒For compliance with Mr Darwin’s terms: this has been very significantly modified from the
free "file" command.

• all-in-one file for compilation convenience when moving from one version of Apache to
the next.

• Memory allocation is done through the Apache API’s pool structure.

• All functions have had necessary Apache API request or server structures passed to them
where necessary to call other Apache API routines. (i.e., usually for logging, files, or
memory allocation in itself or a called function.)

• struct magic has been converted from an array to a single-ended linked list because it
only grows one record at a time, it’s only accessed sequentially, and the Apache API has
no equivalent of realloc().

• Functions have been changed to get their parameters from the server configuration in-
stead of globals. (It should be reentrant now but has not been tested in a threaded envi-
ronment.)

• Places where it used to print results to stdout now saves them in a list where they’re used
to set the MIME type in the Apache request record.

• Command-line flags have been removed since they will never be used here.

10.72. APACHE MODULE MOD MIME MAGIC 715

MimeMagicFile Directive

Description: Enable MIME-type determination based on file contents using the specified magic file
Syntax: MimeMagicFile file-path
Context: server config, virtual host
Status: Extension
Module: mod mime magic

The MIMEMAGICFILE directive can be used to enable this module, the default file is distributed at conf/magic.
Non-rooted paths are relative to the SERVERROOT. Virtual hosts will use the same file as the main server unless a
more specific setting is used, in which case the more specific setting overrides the main server’s file.

Example

MimeMagicFile conf/magic

716 CHAPTER 10. APACHE MODULES

10.73 Apache Module mod negotiation

Description: Provides for content negotiation (p. 68)
Status: Base
ModuleIdentifier: negotiation module
SourceFile: mod negotiation.c

Summary

Content negotiation, or more accurately content selection, is the selection of the document that best matches the clients
capabilities, from one of several available documents. There are two implementations of this.

• A type map (a file with the handler type-map) which explicitly lists the files containing the variants.

• A Multiviews search (enabled by the Multiviews OPTIONS), where the server does an implicit filename
pattern match, and choose from amongst the results.

Directives

• CacheNegotiatedDocs

• ForceLanguagePriority

• LanguagePriority

See also

• OPTIONS

• MOD MIME

• Content Negotiation (p. 68)

• Environment Variables (p. 82)

Type maps

A type map has a format similar to RFC822 mail headers. It contains document descriptions separated by blank lines,
with lines beginning with a hash character (’#’) treated as comments. A document description consists of several
header records; records may be continued on multiple lines if the continuation lines start with spaces. The leading
space will be deleted and the lines concatenated. A header record consists of a keyword name, which always ends in
a colon, followed by a value. Whitespace is allowed between the header name and value, and between the tokens of
value. The headers allowed are:

Content-Encoding: The encoding of the file. Apache only recognizes encodings that are defined by an AD-
DENCODING directive. This normally includes the encodings x-compress for compress’d files, and x-gzip
for gzip’d files. The x- prefix is ignored for encoding comparisons.

Content-Language: The language(s) of the variant, as an Internet standard language tag (RFC 176648). An
example is en, meaning English. If the variant contains more than one language, they are separated by a
comma.

Content-Length: The length of the file, in bytes. If this header is not present, then the actual length of the file is
used.

48http://www.ietf.org/rfc/rfc1766.txt

http://www.ietf.org/rfc/rfc1766.txt

10.73. APACHE MODULE MOD NEGOTIATION 717

Content-Type: The MIME media type of the document, with optional parameters. Parameters are separated from
the media type and from one another by a semi-colon, with a syntax of name=value. Common parameters
include:

level an integer specifying the version of the media type. For text/html this defaults to 2, otherwise 0.

qs a floating-point number with a value in the range 0[.000] to 1[.000], indicating the relative ’quality’ of this
variant compared to the other available variants, independent of the client’s capabilities. For example, a
jpeg file is usually of higher source quality than an ascii file if it is attempting to represent a photograph.
However, if the resource being represented is ascii art, then an ascii file would have a higher source quality
than a jpeg file. All qs values are therefore specific to a given resource.

Example
Content-Type: image/jpeg; qs=0.8

URI: uri of the file containing the variant (of the given media type, encoded with the given content encoding). These
are interpreted as URLs relative to the map file; they must be on the same server, and they must refer to files to
which the client would be granted access if they were to be requested directly.

Body: The actual content of the resource may be included in the type-map file using the Body header. This header
must contain a string that designates a delimiter for the body content. Then all following lines in the type map
file will be considered part of the resource body until the delimiter string is found.

Example:
Body:----xyz----
<html>
<body>
<p>Content of the page.</p>
</body>
</html>

----xyz----

Consider, for example, a resource called document.html which is available in English, French, and German.
The files for each of these are called document.html.en, document.html.fr, and document.html.de,
respectively. The type map file will be called document.html.var, and will contain the following:

URI: document.html

Content-language: en
Content-type: text/html
URI: document.html.en

Content-language: fr
Content-type: text/html
URI: document.html.fr

Content-language: de
Content-type: text/html
URI: document.html.de

All four of these files should be placed in the same directory, and the .var file should be associated with the
type-map handler with an ADDHANDLER directive:

AddHandler type-map .var

718 CHAPTER 10. APACHE MODULES

A request for document.html.var in this directory will result in choosing the variant which most closely matches
the language preference specified in the user’s Accept-Language request header.

If Multiviews is enabled, and MULTIVIEWSMATCH is set to "handlers" or "any", a request to document.html
will discover document.html.var and continue negotiating with the explicit type map.

Other configuration directives, such as ALIAS can be used to map document.html to document.html.var.

Multiviews

A Multiviews search is enabled by the Multiviews OPTIONS. If the server receives a request for /some/dir/foo
and /some/dir/foo does not exist, then the server reads the directory looking for all files named foo.*, and effec-
tively fakes up a type map which names all those files, assigning them the same media types and content-encodings it
would have if the client had asked for one of them by name. It then chooses the best match to the client’s requirements,
and returns that document.

The MULTIVIEWSMATCH directive configures whether Apache will consider files that do not have content negotiation
meta-information assigned to them when choosing files.

CacheNegotiatedDocs Directive

Description: Allows content-negotiated documents to be cached by proxy servers
Syntax: CacheNegotiatedDocs On|Off
Default: CacheNegotiatedDocs Off
Context: server config, virtual host
Status: Base
Module: mod negotiation

If set, this directive allows content-negotiated documents to be cached by proxy servers. This could mean that clients
behind those proxys could retrieve versions of the documents that are not the best match for their abilities, but it will
make caching more efficient.

This directive only applies to requests which come from HTTP/1.0 browsers. HTTP/1.1 provides much better control
over the caching of negotiated documents, and this directive has no effect in responses to HTTP/1.1 requests.

ForceLanguagePriority Directive

Description: Action to take if a single acceptable document is not found
Syntax: ForceLanguagePriority None|Prefer|Fallback [Prefer|Fallback]
Default: ForceLanguagePriority Prefer
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod negotiation

The FORCELANGUAGEPRIORITY directive uses the given LANGUAGEPRIORITY to satisfy negotiation where the
server could otherwise not return a single matching document.

ForceLanguagePriority Prefer uses LanguagePriority to serve a one valid result, rather than return-
ing an HTTP result 300 (MULTIPLE CHOICES) when there are several equally valid choices. If the directives below
were given, and the user’s Accept-Language header assigned en and de each as quality .500 (equally accept-
able) then the first matching variant, en, will be served.

LanguagePriority en fr de
ForceLanguagePriority Prefer

10.73. APACHE MODULE MOD NEGOTIATION 719

ForceLanguagePriority Fallback uses LANGUAGEPRIORITY to serve a valid result, rather than returning
an HTTP result 406 (NOT ACCEPTABLE). If the directives below were given, and the user’s Accept-Language
only permitted an es language response, but such a variant isn’t found, then the first variant from the LANGUAGEPRI-
ORITY list below will be served.

LanguagePriority en fr de
ForceLanguagePriority Fallback

Both options, Prefer and Fallback, may be specified, so either the first matching variant from LANGUAGEPRI-
ORITY will be served if more than one variant is acceptable, or first available document will be served if none of the
variants matched the client’s acceptable list of languages.

See also

• ADDLANGUAGE

LanguagePriority Directive

Description: The precendence of language variants for cases where the client does not express a preference
Syntax: LanguagePriority MIME-lang [MIME-lang] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod negotiation

The LANGUAGEPRIORITY sets the precedence of language variants for the case where the client does not express a
preference, when handling a Multiviews request. The list of MIME-lang are in order of decreasing preference.

LanguagePriority en fr de

For a request for foo.html, where foo.html.fr and foo.html.de both existed, but the browser did not
express a language preference, then foo.html.fr would be returned.

Note that this directive only has an effect if a ’best’ language cannot be determined by any other means or the FORCE-
LANGUAGEPRIORITY directive is not None. In general, the client determines the language preference, not the server.

See also

• ADDLANGUAGE

720 CHAPTER 10. APACHE MODULES

10.74 Apache Module mod nw ssl

Description: Enable SSL encryption for NetWare
Status: Base
ModuleIdentifier: nwssl module
SourceFile: mod nw ssl.c
Compatibility: NetWare only

Summary

This module enables SSL encryption for a specified port. It takes advantage of the SSL encryption functionality that
is built into the NetWare operating system.

Directives

• NWSSLTrustedCerts

• NWSSLUpgradeable

• SecureListen

NWSSLTrustedCerts Directive

Description: List of additional client certificates
Syntax: NWSSLTrustedCerts filename [filename] ...
Context: server config
Status: Base
Module: mod nw ssl

Specifies a list of client certificate files (DER format) that are used when creating a proxied SSL connection. Each
client certificate used by a server must be listed separately in its own .der file.

NWSSLUpgradeable Directive

Description: Allows a connection to be upgraded to an SSL connection upon request
Syntax: NWSSLUpgradeable [IP-address:]portnumber
Context: server config
Status: Base
Module: mod nw ssl

Allow a connection that was created on the specified address and/or port to be upgraded to an SSL connection upon
request from the client. The address and/or port must have already be defined previously with a LISTEN directive.

SecureListen Directive

Description: Enables SSL encryption for the specified port
Syntax: SecureListen [IP-address:]portnumber Certificate-Name [MUTUAL]
Context: server config
Status: Base
Module: mod nw ssl

Specifies the port and the eDirectory based certificate name that will be used to enable SSL encryption. An optional
third parameter also enables mutual authentication.

10.75. APACHE MODULE MOD PRIVILEGES 721

10.75 Apache Module mod privileges

Description: Support for Solaris privileges and for running virtual hosts under different user IDs.
Status: Experimental
ModuleIdentifier: privileges module
SourceFile: mod privileges.c
Compatibility: Available in Apache 2.3 and up, on Solaris 10 and OpenSolaris platforms

Summary

This module enables different Virtual Hosts to run with different Unix User and Group IDs, and with different Solaris
Privileges49. In particular, it offers a solution to the problem of privilege separation between different Virtual Hosts,
first promised by the abandoned perchild MPM. It also offers other security enhancements.

Unlike perchild, MOD PRIVILEGES is not itself an MPM. It works within a processing model to set privileges and
User/Group per request in a running process. It is therefore not compatible with a threaded MPM, and will refuse to
run under one.

MOD PRIVILEGES raises security issues similar to those of suexec (p. 105) . But unlike suexec, it applies not only
to CGI programs but to the entire request processing cycle, including in-process applications and subprocesses. It
is ideally suited to running PHP applications under mod php, which is also incompatible with threaded MPMs. It
is also well-suited to other in-process scripting applications such as mod perl, mod python, and mod ruby, and to
applications implemented in C as apache modules where privilege separation is an issue.

Directives

• DTracePrivileges

• PrivilegesMode

• VHostCGIMode

• VHostCGIPrivs

• VHostGroup

• VHostPrivs

• VHostSecure

• VHostUser

Security Considerations

MOD PRIVILEGES introduces new security concerns in situations where untrusted code may be run within the web-
server process. This applies to untrusted modules, and scripts running under modules such as mod php or mod perl.
Scripts running externally (e.g. as CGI or in an appserver behind mod proxy or mod jk) are NOT affected.

The basic security concerns with mod privileges are:

• Running as a system user introduces the same security issues as mod suexec, and near-equivalents such as
cgiwrap and suphp.

• A privileges-aware malicious user extension (module or script) could escalate its privileges to anything available
to the httpd process in any virtual host. This introduces new risks if (and only if) mod privileges is compiled
with the BIG SECURITY HOLE option.

49http://sosc-dr.sun.com/bigadmin/features/articles/least privilege.jsp

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

722 CHAPTER 10. APACHE MODULES

• A privileges-aware malicious user extension (module or script) could escalate privileges to set its user ID to
another system user (and/or group).

The PRIVILEGESMODE directive allows you to select either FAST or SECURE mode. You can mix modes, using
FAST mode for trusted users and fully-audited code paths, while imposing SECURE mode where an untrusted user
has scope to introduce code.

Before describing the modes, we should also introduce the target use cases: Benign vs Hostile. In a benign situation,
you want to separate users for their convenience, and protect them and the server against the risks posed by honest mis-
takes, but you trust your users are not deliberately subverting system security. In a hostile situation - e.g. commercial
hosting - you may have users deliberately attacking the system or each other.

FAST mode In FAST mode, requests are run in-process with the selected uid/gid and privileges, so the overhead is
negligible. This is suitable for benign situations, but is not secure against an attacker escalating privileges with
an in-process module or script.

SECURE mode A request in SECURE mode forks a subprocess, which then drops privileges. This is a very similar
case to running CGI with suexec, but for the entire request cycle, and with the benefit of fine-grained control of
privileges.

You can select different PRIVILEGESMODEs for each virtual host, and even in a directory context within a virtual host.
FAST mode is appropriate where the user(s) are trusted and/or have no privilege to load in-process code. SECURE
mode is appropriate to cases where untrusted code might be run in-process. However, even in SECURE mode, there
is no protection against a malicious user who is able to introduce privileges-aware code running before the start of the
request-processing cycle.

DTracePrivileges Directive

Description: Determines whether the privileges required by dtrace are enabled.
Syntax: DTracePrivileges On|Off
Default: DTracePrivileges Off
Context: server config
Status: Experimental
Module: mod privileges
Compatibility: Available on Solaris 10 and OpenSolaris with non-threaded MPMs (PREFORK or custom

MPM).

This server-wide directive determines whether Apache will run with the privileges50 required to run dtrace51. Note
that DTracePrivileges On will not in itself activate DTrace, but DTracePrivileges Off will prevent it working.

PrivilegesMode Directive

Description: Trade off processing speed and efficiency vs security against malicious privileges-aware code.
Syntax: PrivilegesMode FAST|SECURE|SELECTIVE
Default: PrivilegesMode FAST
Context: server config, virtual host, directory
Status: Experimental
Module: mod privileges
Compatibility: Available on Solaris 10 and OpenSolaris with non-threaded MPMs (PREFORK or custom

MPM).

50http://sosc-dr.sun.com/bigadmin/features/articles/least privilege.jsp
51http://sosc-dr.sun.com/bigadmin/content/dtrace/

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp
http://sosc-dr.sun.com/bigadmin/content/dtrace/

10.75. APACHE MODULE MOD PRIVILEGES 723

This directive trades off performance vs security against malicious, privileges-aware code. In SECURE mode, each
request runs in a secure subprocess, incurring a substantial performance penalty. In FAST mode, the server is not
protected against escalation of privileges as discussed above.

This directive differs slightly between a <Directory> context (including equivalents such as Location/Files/If)
and a top-level or <VirtualHost>.

At top-level, it sets a default that will be inherited by virtualhosts. In a virtual host, FAST or SECURE mode acts
on the entire HTTP request, and any settings in a <Directory> context will be ignored. A third pseudo-mode
SELECTIVE defers the choice of FAST vs SECURE to directives in a <Directory> context.

In a <Directory> context, it is applicable only where SELECTIVE mode was set for the VirtualHost. Only FAST
or SECURE can be set in this context (SELECTIVE would be meaningless).

! Warning
Where SELECTIVE mode is selected for a virtual host, the activation of privileges must
be deferred until after the mapping phase of request processing has determined what
<Directory> context applies to the request. This might give an attacker opportunities to
introduce code through a REWRITEMAP running at top-level or <VirtualHost> context
before privileges have been dropped and userid/gid set.

VHostCGIMode Directive

Description: Determines whether the virtualhost can run subprocesses, and the privileges available to sub-
processes.

Syntax: VHostCGIMode On|Off|Secure
Default: VHostCGIMode On
Context: virtual host
Status: Experimental
Module: mod privileges
Compatibility: Available on Solaris 10 and OpenSolaris with non-threaded MPMs (PREFORK or custom

MPM).

Determines whether the virtual host is allowed to run fork and exec, the privileges52 required to run subprocesses.
If this is set to Off the virtualhost is denied the privileges and will not be able to run traditional CGI programs or
scripts under the traditional MOD CGI, nor similar external programs such as those created by MOD EXT FILTER or
REWRITEMAP prog. Note that it does not prevent CGI programs running under alternative process and security
models such as mod fcgid53, which is a recommended solution in Solaris.

If set to On or Secure, the virtual host is permitted to run external programs and scripts as above. Setting VHOSTCGI-
MODE Secure has the effect of denying privileges to the subprocesses, as described for VHOSTSECURE.

52http://sosc-dr.sun.com/bigadmin/features/articles/least privilege.jsp
53http://fastcgi.coremail.cn

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp
http://fastcgi.coremail.cn

724 CHAPTER 10. APACHE MODULES

VHostCGIPrivs Directive

Description: Assign arbitrary privileges to subprocesses created by a virtual host.
Syntax: VHostPrivs [+-]?privilege-name [[+-]?privilege-name] ...
Default: None
Context: virtual host
Status: Experimental
Module: mod privileges
Compatibility: Available on Solaris 10 and OpenSolaris with non-threaded MPMs (PREFORK or custom

MPM) and when MOD PRIVILEGES is compiled with the BIG SECURITY HOLE compile-
time option.

VHOSTCGIPRIVS can be used to assign arbitrary privileges54 to subprocesses created by a virtual host, as discussed
under VHOSTCGIMODE. Each privilege-name is the name of a Solaris privilege, such as file setid or sys nfs.

A privilege-name may optionally be prefixed by + or -, which will respectively allow or deny a privilege. If used with
neither + nor -, all privileges otherwise assigned to the virtualhost will be denied. You can use this to override any of
the default sets and construct your own privilege set.

! Security
This directive can open huge security holes in apache subprocesses, up to and including run-
ning them with root-level powers. Do not use it unless you fully understand what you are
doing!

VHostGroup Directive

Description: Sets the Group ID under which a virtual host runs.
Syntax: VHostGroup unix-groupid
Default: Inherits the group id specified in GROUP
Context: virtual host
Status: Experimental
Module: mod privileges
Compatibility: Available on Solaris 10 and OpenSolaris with non-threaded MPMs (PREFORK or custom

MPM).

The VHOSTGROUP directive sets the Unix group under which the server will process requests to a virtualhost. The
group is set before the request is processed and reset afterwards using Solaris Privileges55. Since the setting applies to
the process, this is not compatible with threaded MPMs.

Unix-group is one of:

A group name Refers to the given group by name.

followed by a group number. Refers to a group by its number.

! Security
This directive cannot be used to run apache as root! Nevertheless, it opens potential security
issues similar to those discussed in the suexec (p. 105) documentation.

See also

• GROUP

54http://sosc-dr.sun.com/bigadmin/features/articles/least privilege.jsp
55http://sosc-dr.sun.com/bigadmin/features/articles/least privilege.jsp

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp
http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

10.75. APACHE MODULE MOD PRIVILEGES 725

• SUEXECUSERGROUP

VHostPrivs Directive

Description: Assign arbitrary privileges to a virtual host.
Syntax: VHostPrivs [+-]?privilege-name [[+-]?privilege-name] ...
Default: None
Context: virtual host
Status: Experimental
Module: mod privileges
Compatibility: Available on Solaris 10 and OpenSolaris with non-threaded MPMs (PREFORK or custom

MPM) and when MOD PRIVILEGES is compiled with the BIG SECURITY HOLE compile-
time option.

VHOSTPRIVS can be used to assign arbitrary privileges56 to a virtual host. Each privilege-name is the name of a
Solaris privilege, such as file setid or sys nfs.

A privilege-name may optionally be prefixed by + or -, which will respectively allow or deny a privilege. If used with
neither + nor -, all privileges otherwise assigned to the virtualhost will be denied. You can use this to override any of
the default sets and construct your own privilege set.

! Security
This directive can open huge security holes in apache, up to and including running requests
with root-level powers. Do not use it unless you fully understand what you are doing!

VHostSecure Directive

Description: Determines whether the server runs with enhanced security for the virtualhost.
Syntax: VHostSecure On|Off
Default: VHostSecure On
Context: virtual host
Status: Experimental
Module: mod privileges
Compatibility: Available on Solaris 10 and OpenSolaris with non-threaded MPMs (PREFORK or custom

MPM).

Determines whether the virtual host processes requests with security enhanced by removal of Privileges57 that are
rarely needed in a webserver, but which are available by default to a normal Unix user and may therefore be required
by modules and applications. It is recommended that you retain the default (On) unless it prevents an application
running. Since the setting applies to the process, this is not compatible with threaded MPMs.

=⇒Note
If VHOSTSECURE prevents an application running, this may be a warning sign that the appli-
cation should be reviewed for security.

56http://sosc-dr.sun.com/bigadmin/features/articles/least privilege.jsp
57http://sosc-dr.sun.com/bigadmin/features/articles/least privilege.jsp

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp
http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

726 CHAPTER 10. APACHE MODULES

VHostUser Directive

Description: Sets the User ID under which a virtual host runs.
Syntax: VHostUser unix-userid
Default: Inherits the userid specified in USER
Context: virtual host
Status: Experimental
Module: mod privileges
Compatibility: Available on Solaris 10 and OpenSolaris with non-threaded MPMs (PREFORK or custom

MPM).

The VHOSTUSER directive sets the Unix userid under which the server will process requests to a virtualhost. The
userid is set before the request is processed and reset afterwards using Solaris Privileges58. Since the setting applies to
the process, this is not compatible with threaded MPMs.

Unix-userid is one of:

A username Refers to the given user by name.

followed by a user number. Refers to a user by its number.

! Security
This directive cannot be used to run apache as root! Nevertheless, it opens potential security
issues similar to those discussed in the suexec (p. 105) documentation.

See also

• USER

• SUEXECUSERGROUP

58http://sosc-dr.sun.com/bigadmin/features/articles/least privilege.jsp

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

10.76. APACHE MODULE MOD PROXY 727

10.76 Apache Module mod proxy

Description: Multi-protocol proxy/gateway server
Status: Extension
ModuleIdentifier: proxy module
SourceFile: mod proxy.c

Summary

! Warning
Do not enable proxying with PROXYREQUESTS until you have secured your server. Open
proxy servers are dangerous both to your network and to the Internet at large.

MOD PROXY and related modules implement a proxy/gateway for Apache HTTP Server, supporting a number of
popular protocols as well as several different load balancing algorithms. Third-party modules can add support for
additional protocols and load balancing algorithms.

A set of modules must be loaded into the server to provide the necessary features. These modules can be included
statically at build time or dynamically via the LOADMODULE directive). The set must include:

• MOD PROXY, which provides basic proxy capabilities

• MOD PROXY BALANCER and one or more balancer modules, if load balancing is required. (See
MOD PROXY BALANCER for more information.)

• one or more proxy scheme, or protocol, modules:

Protocol Module
AJP13 (Apache JServe Protocol version 1.3) MOD PROXY AJP

CONNECT (for SSL) MOD PROXY CONNECT

FastCGI MOD PROXY FCGI

ftp MOD PROXY FTP

HTTP/0.9, HTTP/1.0, and HTTP/1.1 MOD PROXY HTTP

SCGI MOD PROXY SCGI

WS and WSS (Web-sockets) MOD PROXY WSTUNNEL

In addition, extended features are provided by other modules. Caching is provided by MOD CACHE and related
modules. The ability to contact remote servers using the SSL/TLS protocol is provided by the SSLProxy* directives
of MOD SSL. These additional modules will need to be loaded and configured to take advantage of these features.

Directives

• BalancerGrowth

• BalancerInherit

• BalancerMember

• BalancerPersist

• NoProxy

• <Proxy>

• ProxyAddHeaders

• ProxyBadHeader

• ProxyBlock

728 CHAPTER 10. APACHE MODULES

• ProxyDomain

• ProxyErrorOverride

• ProxyIOBufferSize

• <ProxyMatch>

• ProxyMaxForwards

• ProxyPass

• ProxyPassInherit

• ProxyPassInterpolateEnv

• ProxyPassMatch

• ProxyPassReverse

• ProxyPassReverseCookieDomain

• ProxyPassReverseCookiePath

• ProxyPreserveHost

• ProxyReceiveBufferSize

• ProxyRemote

• ProxyRemoteMatch

• ProxyRequests

• ProxySet

• ProxySourceAddress

• ProxyStatus

• ProxyTimeout

• ProxyVia

See also

• MOD CACHE

• MOD PROXY AJP

• MOD PROXY CONNECT

• MOD PROXY FCGI

• MOD PROXY FTP

• MOD PROXY HTTP

• MOD PROXY SCGI

• MOD PROXY WSTUNNEL

• MOD PROXY BALANCER

• MOD SSL

Forward Proxies and Reverse Proxies/Gateways

Apache HTTP Server can be configured in both a forward and reverse proxy (also known as gateway) mode.

An ordinary forward proxy is an intermediate server that sits between the client and the origin server. In order to
get content from the origin server, the client sends a request to the proxy naming the origin server as the target and
the proxy then requests the content from the origin server and returns it to the client. The client must be specially
configured to use the forward proxy to access other sites.

10.76. APACHE MODULE MOD PROXY 729

A typical usage of a forward proxy is to provide Internet access to internal clients that are otherwise restricted by a
firewall. The forward proxy can also use caching (as provided by MOD CACHE) to reduce network usage.

The forward proxy is activated using the PROXYREQUESTS directive. Because forward proxies allow clients to access
arbitrary sites through your server and to hide their true origin, it is essential that you secure your server so that only
authorized clients can access the proxy before activating a forward proxy.

A reverse proxy (or gateway), by contrast, appears to the client just like an ordinary web server. No special configura-
tion on the client is necessary. The client makes ordinary requests for content in the name-space of the reverse proxy.
The reverse proxy then decides where to send those requests, and returns the content as if it was itself the origin.

A typical usage of a reverse proxy is to provide Internet users access to a server that is behind a firewall. Reverse
proxies can also be used to balance load among several back-end servers, or to provide caching for a slower back-end
server. In addition, reverse proxies can be used simply to bring several servers into the same URL space.

A reverse proxy is activated using the PROXYPASS directive or the [P] flag to the REWRITERULE directive. It is not
necessary to turn PROXYREQUESTS on in order to configure a reverse proxy.

Basic Examples

The examples below are only a very basic idea to help you get started. Please read the documentation on the individual
directives.

In addition, if you wish to have caching enabled, consult the documentation from MOD CACHE.

Reverse Proxy

ProxyPass "/foo" "http://foo.example.com/bar"
ProxyPassReverse "/foo" "http://foo.example.com/bar"

Forward Proxy

ProxyRequests On
ProxyVia On

<Proxy "*">
Require host internal.example.com

</Proxy>

Access via Handler

You can also force a request to be handled as a reverse-proxy request, by creating a suitable Handler pass-through.
The example configuration below will pass all requests for PHP scripts to the specified FastCGI server using reverse
proxy:

Reverse Proxy PHP scripts

<FilesMatch "\.php$">
Unix sockets require 2.4.7 or later
SetHandler "proxy:unix:/path/to/app.sock|fcgi://localhost/"

</FilesMatch>

This feature is available in Apache HTTP Server 2.4.10 and later.

730 CHAPTER 10. APACHE MODULES

Workers

The proxy manages the configuration of origin servers and their communication parameters in objects called workers.
There are two built-in workers, the default forward proxy worker and the default reverse proxy worker. Additional
workers can be configured explicitly.

The two default workers have a fixed configuration and will be used if no other worker matches the request. They do
not use HTTP Keep-Alive or connection pooling. The TCP connections to the origin server will instead be opened
and closed for each request.

Explicitly configured workers are identified by their URL. They are usually created and configured using PROXYPASS
or PROXYPASSMATCH when used for a reverse proxy:

ProxyPass "/example" "http://backend.example.com" connectiontimeout=5 timeout=30

This will create a worker associated with the origin server URL http://backend.example.com and using the
given timeout values. When used in a forward proxy, workers are usually defined via the PROXYSET directive:

ProxySet "http://backend.example.com" connectiontimeout=5 timeout=30

or alternatively using PROXY and PROXYSET:

<Proxy "http://backend.example.com">
ProxySet connectiontimeout=5 timeout=30

</Proxy>

Using explicitly configured workers in the forward mode is not very common, because forward proxies usually com-
municate with many different origin servers. Creating explicit workers for some of the origin servers can still be
useful, if they are used very often. Explicitly configured workers have no concept of forward or reverse proxying by
themselves. They encapsulate a common concept of communication with origin servers. A worker created by PROX-
YPASS for use in a reverse proxy will be also used for forward proxy requests whenever the URL to the origin server
matches the worker URL and vice versa.

The URL identifying a direct worker is the URL of its origin server including any path components given:

ProxyPass "/examples" "http://backend.example.com/examples"
ProxyPass "/docs" "http://backend.example.com/docs"

This example defines two different workers, each using a separate connection pool and configuration.

! Worker Sharing
Worker sharing happens if the worker URLs overlap, which occurs when the URL of some
worker is a leading substring of the URL of another worker defined later in the configuration
file. In the following example

ProxyPass "/apps" "http://backend.example.com/" timeout=60
ProxyPass "/examples" "http://backend.example.com/examples" timeout=10

the second worker isn’t actually created. Instead the first worker is used. The benefit is,
that there is only one connection pool, so connections are more often reused. Note that all
configuration attributes given explicitly for the later worker will be ignored. This will be logged
as a warning. In the above example the resulting timeout value for the URL /examples will
be 60 instead of 10!
If you want to avoid worker sharing, sort your worker definitions by URL length, starting with
the longest worker URLs. If you want to maximize worker sharing use the reverse sort order.
See also the related warning about ordering PROXYPASS directives.

10.76. APACHE MODULE MOD PROXY 731

Explicitly configured workers come in two flavors: direct workers and (load) balancer workers. They support many
important configuration attributes which are described below in the PROXYPASS directive. The same attributes can
also be set using PROXYSET.

The set of options available for a direct worker depends on the protocol, which is specified in the origin server URL.
Available protocols include ajp, fcgi, ftp, http and scgi.

Balancer workers are virtual workers that use direct workers known as their members to actually handle the requests.
Each balancer can have multiple members. When it handles a request, it chooses a member based on the configured
load balancing algorithm.

A balancer worker is created if its worker URL uses balancer as the protocol scheme. The balancer URL uniquely
identifies the balancer worker. Members are added to a balancer using BALANCERMEMBER.

Controlling access to your proxy

You can control who can access your proxy via the <PROXY> control block as in the following example:

<Proxy "*">
Require ip 192.168.0

</Proxy>

For more information on access control directives, see MOD AUTHZ HOST.

Strictly limiting access is essential if you are using a forward proxy (using the PROXYREQUESTS directive). Oth-
erwise, your server can be used by any client to access arbitrary hosts while hiding his or her true identity. This is
dangerous both for your network and for the Internet at large. When using a reverse proxy (using the PROXYPASS
directive with ProxyRequests Off), access control is less critical because clients can only contact the hosts that
you have specifically configured.

See Also the Proxy-Chain-Auth (p. 783) environment variable.

Slow Startup

If you’re using the PROXYBLOCK directive, hostnames’ IP addresses are looked up and cached during startup for later
match test. This may take a few seconds (or more) depending on the speed with which the hostname lookups occur.

Intranet Proxy

An Apache httpd proxy server situated in an intranet needs to forward external requests through the company’s firewall
(for this, configure the PROXYREMOTE directive to forward the respective scheme to the firewall proxy). However,
when it has to access resources within the intranet, it can bypass the firewall when accessing hosts. The NOPROXY
directive is useful for specifying which hosts belong to the intranet and should be accessed directly.

Users within an intranet tend to omit the local domain name from their WWW requests, thus requesting
"http://somehost/" instead of http://somehost.example.com/. Some commercial proxy servers let them
get away with this and simply serve the request, implying a configured local domain. When the PROXYDOMAIN
directive is used and the server is configured for proxy service, Apache httpd can return a redirect response and send
the client to the correct, fully qualified, server address. This is the preferred method since the user’s bookmark files
will then contain fully qualified hosts.

732 CHAPTER 10. APACHE MODULES

Protocol Adjustments

For circumstances where MOD PROXY is sending requests to an origin server that doesn’t properly implement
keepalives or HTTP/1.1, there are two environment variables (p. 82) that can force the request to use HTTP/1.0 with
no keepalive. These are set via the SETENV directive.

These are the force-proxy-request-1.0 and proxy-nokeepalive notes.

<Location "/buggyappserver/">
ProxyPass "http://buggyappserver:7001/foo/"
SetEnv force-proxy-request-1.0 1
SetEnv proxy-nokeepalive 1

</Location>

Request Bodies

Some request methods such as POST include a request body. The HTTP protocol requires that requests which include
a body either use chunked transfer encoding or send a Content-Length request header. When passing these
requests on to the origin server, MOD PROXY HTTP will always attempt to send the Content-Length. But if
the body is large and the original request used chunked encoding, then chunked encoding may also be used in the
upstream request. You can control this selection using environment variables (p. 82) . Setting proxy-sendcl
ensures maximum compatibility with upstream servers by always sending the Content-Length, while setting
proxy-sendchunked minimizes resource usage by using chunked encoding.

Under some circumstances, the server must spool request bodies to disk to satisfy the requested handling of request
bodies. For example, this spooling will occur if the original body was sent with chunked encoding (and is large), but
the administrator has asked for backend requests to be sent with Content-Length or as HTTP/1.0. This spooling can
also occur if the request body already has a Content-Length header, but the server is configured to filter incoming
request bodies.

LIMITREQUESTBODY only applies to request bodies that the server will spool to disk

Reverse Proxy Request Headers

When acting in a reverse-proxy mode (using the PROXYPASS directive, for example), MOD PROXY HTTP adds several
request headers in order to pass information to the origin server. These headers are:

X-Forwarded-For The IP address of the client.

X-Forwarded-Host The original host requested by the client in the Host HTTP request header.

X-Forwarded-Server The hostname of the proxy server.

Be careful when using these headers on the origin server, since they will contain more than one (comma-
separated) value if the original request already contained one of these headers. For example, you can use
%{X-Forwarded-For}i in the log format string of the origin server to log the original clients IP address, but
you may get more than one address if the request passes through several proxies.

See also the PROXYPRESERVEHOST and PROXYVIA directives, which control other request headers.

Note: If you need to specify custom request headers to be added to the forwarded request, use the REQUESTHEADER
directive.

10.76. APACHE MODULE MOD PROXY 733

BalancerGrowth Directive

Description: Number of additional Balancers that can be added Post-configuration
Syntax: BalancerGrowth #
Default: BalancerGrowth 5
Context: server config, virtual host
Status: Extension
Module: mod proxy
Compatibility: BalancerGrowth is only available in Apache HTTP Server 2.3.13 and later.

This directive allows for growth potential in the number of Balancers available for a virtualhost in addition to the
number pre-configured. It only takes effect if there is at least 1 pre-configured Balancer.

BalancerInherit Directive

Description: Inherit ProxyPassed Balancers/Workers from the main server
Syntax: BalancerInherit On|Off
Default: BalancerInherit On
Context: server config, virtual host
Status: Extension
Module: mod proxy
Compatibility: BalancerInherit is only available in Apache HTTP Server 2.4.5 and later.

This directive will cause the current server/vhost to "inherit" ProxyPass Balancers and Workers defined in the main
server. This can cause issues and inconsistent behavior if using the Balancer Manager and so should be disabled if
using that feature.

The setting in the global server defines the default for all vhosts.

BalancerMember Directive

Description: Add a member to a load balancing group
Syntax: BalancerMember [balancerurl] url [key=value [key=value ...]]
Context: directory
Status: Extension
Module: mod proxy
Compatibility: BalancerMember is only available in Apache HTTP Server 2.2 and later.

This directive adds a member to a load balancing group. It could be used within a <Proxy balancer://...>
container directive, and can take any of the key value pair parameters available to PROXYPASS directives.

One additional parameter is available only to BALANCERMEMBER directives: loadfactor. This is the member load
factor - a number between 1 (default) and 100, which defines the weighted load to be applied to the member in question.

The balancerurl is only needed when not in <Proxy balancer://...> container directive. It corresponds to
the url of a balancer defined in PROXYPASS directive.

The path component of the balancer URL in any <Proxy balancer://...> container directive is ignored.

Trailing slashes should typically be removed from the URL of a BALANCERMEMBER.

734 CHAPTER 10. APACHE MODULES

BalancerPersist Directive

Description: Attempt to persist changes made by the Balancer Manager across restarts.
Syntax: BalancerPersist On|Off
Default: BalancerPersist Off
Context: server config, virtual host
Status: Extension
Module: mod proxy
Compatibility: BalancerPersist is only available in Apache HTTP Server 2.4.4 and later.

This directive will cause the shared memory storage associated with the balancers and balancer members to be persisted
across restarts. This allows these local changes to not be lost during the normal restart/graceful state transitions.

NoProxy Directive

Description: Hosts, domains, or networks that will be connected to directly
Syntax: NoProxy host [host] ...
Context: server config, virtual host
Status: Extension
Module: mod proxy

This directive is only useful for Apache httpd proxy servers within intranets. The NOPROXY directive specifies a list
of subnets, IP addresses, hosts and/or domains, separated by spaces. A request to a host which matches one or more
of these is always served directly, without forwarding to the configured PROXYREMOTE proxy server(s).

Example

ProxyRemote "*" "http://firewall.example.com:81"
NoProxy ".example.com" "192.168.112.0/21"

The host arguments to the NOPROXY directive are one of the following type list:

Domain A Domain is a partially qualified DNS domain name, preceded by a period. It represents a list of hosts which
logically belong to the same DNS domain or zone (i.e., the suffixes of the hostnames are all ending in Domain).

Examples
.com .example.org.

To distinguish Domains from Hostnames (both syntactically and semantically; a DNS domain can have a DNS
A record, too!), Domains are always written with a leading period.

=⇒Note
Domain name comparisons are done without regard to the case, and Domains are always as-
sumed to be anchored in the root of the DNS tree, therefore two domains .ExAmple.com and
.example.com. (note the trailing period) are considered equal. Since a domain comparison
does not involve a DNS lookup, it is much more efficient than subnet comparison.

SubNet A SubNet is a partially qualified internet address in numeric (dotted quad) form, optionally followed by a
slash and the netmask, specified as the number of significant bits in the SubNet. It is used to represent a subnet
of hosts which can be reached over a common network interface. In the absence of the explicit net mask it is
assumed that omitted (or zero valued) trailing digits specify the mask. (In this case, the netmask can only be
multiples of 8 bits wide.) Examples:

192.168 or 192.168.0.0 the subnet 192.168.0.0 with an implied netmask of 16 valid bits (sometimes
used in the netmask form 255.255.0.0)

10.76. APACHE MODULE MOD PROXY 735

192.168.112.0/21 the subnet 192.168.112.0/21 with a netmask of 21 valid bits (also used in the
form 255.255.248.0)

As a degenerate case, a SubNet with 32 valid bits is the equivalent to an IPAddr, while a SubNet with zero valid
bits (e.g., 0.0.0.0/0) is the same as the constant Default , matching any IP address.

IPAddr A IPAddr represents a fully qualified internet address in numeric (dotted quad) form. Usually, this address
represents a host, but there need not necessarily be a DNS domain name connected with the address.

Example
192.168.123.7

=⇒Note
An IPAddr does not need to be resolved by the DNS system, so it can result in more effective
apache performance.

Hostname A Hostname is a fully qualified DNS domain name which can be resolved to one or more IPAddrs via
the DNS domain name service. It represents a logical host (in contrast to Domains, see above) and must be
resolvable to at least one IPAddr (or often to a list of hosts with different IPAddrs).

Examples
prep.ai.example.edu

www.example.org

=⇒Note
In many situations, it is more effective to specify an IPAddr in place of a Hostname since a
DNS lookup can be avoided. Name resolution in Apache httpd can take a remarkable deal of
time when the connection to the name server uses a slow PPP link.
Hostname comparisons are done without regard to the case, and Hostnames are always as-
sumed to be anchored in the root of the DNS tree, therefore two hosts WWW.ExAmple.com
and www.example.com. (note the trailing period) are considered equal.

See also

• DNS Issues (p. 111)

Proxy Directive

Description: Container for directives applied to proxied resources
Syntax: <Proxy wildcard-url> ...</Proxy>
Context: server config, virtual host
Status: Extension
Module: mod proxy

Directives placed in <PROXY> sections apply only to matching proxied content. Shell-style wildcards are allowed.

For example, the following will allow only hosts in yournetwork.example.com to access content via your proxy
server:

<Proxy "*">
Require host yournetwork.example.com

</Proxy>

736 CHAPTER 10. APACHE MODULES

The following example will process all files in the foo directory of example.com through the INCLUDES filter
when they are sent through the proxy server:

<Proxy "http://example.com/foo/*">
SetOutputFilter INCLUDES

</Proxy>

=⇒Differences from the Location configuration section
A backend URL matches the configuration section if it begins with the the wildcard-url string,
even if the last path segment in the directive only matches a prefix of the backend URL.
For example, <Proxy "http://example.com/foo"> matches all of http://example.com/foo,
http://example.com/foo/bar, and http://example.com/foobar. The matching of the final URL
differs from the behavior of the <LOCATION> section, which for purposes of this note treats
the final path component as if it ended in a slash.
For more control over the matching, see <PROXYMATCH>.

See also

• <PROXYMATCH>

ProxyAddHeaders Directive

Description: Add proxy information in X-Forwarded-* headers
Syntax: ProxyAddHeaders Off|On
Default: ProxyAddHeaders On
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy
Compatibility: Available in version 2.3.10 and later

This directive determines whether or not proxy related information should be passed to the backend server through
X-Forwarded-For, X-Forwarded-Host and X-Forwarded-Server HTTP headers.

=⇒Effectiveness
This option is of use only for HTTP proxying, as handled by MOD PROXY HTTP.

ProxyBadHeader Directive

Description: Determines how to handle bad header lines in a response
Syntax: ProxyBadHeader IsError|Ignore|StartBody
Default: ProxyBadHeader IsError
Context: server config, virtual host
Status: Extension
Module: mod proxy

The PROXYBADHEADER directive determines the behaviour of MOD PROXY if it receives syntactically invalid re-
sponse header lines (i.e. containing no colon) from the origin server. The following arguments are possible:

IsError Abort the request and end up with a 502 (Bad Gateway) response. This is the default behaviour.

Ignore Treat bad header lines as if they weren’t sent.

StartBody When receiving the first bad header line, finish reading the headers and treat the remainder as body.
This helps to work around buggy backend servers which forget to insert an empty line between the headers and
the body.

10.76. APACHE MODULE MOD PROXY 737

ProxyBlock Directive

Description: Words, hosts, or domains that are banned from being proxied
Syntax: ProxyBlock *|word|host|domain [word|host|domain] ...
Context: server config, virtual host
Status: Extension
Module: mod proxy

The PROXYBLOCK directive specifies a list of words, hosts and/or domains, separated by spaces. HTTP, HTTPS,
and FTP document requests to sites whose names contain matched words, hosts or domains are blocked by the proxy
server. The proxy module will also attempt to determine IP addresses of list items which may be hostnames during
startup, and cache them for match test as well. That may slow down the startup time of the server.

Example

ProxyBlock "news.example.com" "auctions.example.com" "friends.example.com"

Note that example would also be sufficient to match any of these sites.

Hosts would also be matched if referenced by IP address.

Note also that

ProxyBlock "*"

blocks connections to all sites.

ProxyDomain Directive

Description: Default domain name for proxied requests
Syntax: ProxyDomain Domain
Context: server config, virtual host
Status: Extension
Module: mod proxy

This directive is only useful for Apache httpd proxy servers within intranets. The PROXYDOMAIN directive specifies
the default domain which the apache proxy server will belong to. If a request to a host without a domain name is
encountered, a redirection response to the same host with the configured Domain appended will be generated.

Example

ProxyRemote "*" "http://firewall.example.com:81"
NoProxy ".example.com" "192.168.112.0/21"
ProxyDomain ".example.com"

ProxyErrorOverride Directive

Description: Override error pages for proxied content
Syntax: ProxyErrorOverride On|Off
Default: ProxyErrorOverride Off
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy

738 CHAPTER 10. APACHE MODULES

This directive is useful for reverse-proxy setups, where you want to have a common look and feel on the error pages
seen by the end user. This also allows for included files (via MOD INCLUDE’s SSI) to get the error code and act
accordingly (default behavior would display the error page of the proxied server, turning this on shows the SSI Error
message).

This directive does not affect the processing of informational (1xx), normal success (2xx), or redirect (3xx) responses.

ProxyIOBufferSize Directive

Description: Determine size of internal data throughput buffer
Syntax: ProxyIOBufferSize bytes
Default: ProxyIOBufferSize 8192
Context: server config, virtual host
Status: Extension
Module: mod proxy

The PROXYIOBUFFERSIZE directive adjusts the size of the internal buffer, which is used as a scratchpad for the data
between input and output. The size must be at least 512.

In almost every case there’s no reason to change that value.

If used with AJP this directive sets the maximum AJP packet size in bytes. Values larger than 65536 are set to 65536.
If you change it from the default, you must also change the packetSize attribute of your AJP connector on the
Tomcat side! The attribute packetSize is only available in Tomcat 5.5.20+ and 6.0.2+

Normally it is not necessary to change the maximum packet size. Problems with the default value have been reported
when sending certificates or certificate chains.

ProxyMatch Directive

Description: Container for directives applied to regular-expression-matched proxied resources
Syntax: <ProxyMatch regex> ...</ProxyMatch>
Context: server config, virtual host
Status: Extension
Module: mod proxy

The <PROXYMATCH> directive is identical to the <PROXY> directive, except it matches URLs using regular ex-
pressions.

From 2.4.8 onwards, named groups and backreferences are captured and written to the environment with the corre-
sponding name prefixed with "MATCH " and in upper case. This allows elements of URLs to be referenced from
within expressions (p. 89) and modules like MOD REWRITE. In order to prevent confusion, numbered (unnamed)
backreferences are ignored. Use named groups instead.

<ProxyMatch "ˆhttp://(?<sitename>[ˆ/]+)">
Require ldap-group cn=%{env:MATCH_SITENAME},ou=combined,o=Example

</ProxyMatch>

See also

• <PROXY>

10.76. APACHE MODULE MOD PROXY 739

ProxyMaxForwards Directive

Description: Maximium number of proxies that a request can be forwarded through
Syntax: ProxyMaxForwards number
Default: ProxyMaxForwards -1
Context: server config, virtual host
Status: Extension
Module: mod proxy
Compatibility: Default behaviour changed in 2.2.7

The PROXYMAXFORWARDS directive specifies the maximum number of proxies through which a request may pass,
if there’s no Max-Forwards header supplied with the request. This may be set to prevent infinite proxy loops, or a
DoS attack.

Example

ProxyMaxForwards 15

Note that setting PROXYMAXFORWARDS is a violation of the HTTP/1.1 protocol (RFC2616), which forbids a Proxy
setting Max-Forwards if the Client didn’t set it. Earlier Apache httpd versions would always set it. A negative
PROXYMAXFORWARDS value, including the default -1, gives you protocol-compliant behaviour, but may leave you
open to loops.

ProxyPass Directive

Description: Maps remote servers into the local server URL-space
Syntax: ProxyPass [path] !|url [key=value [key=value ...]] [nocanon]

[interpolate] [noquery]
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy
Compatibility: Unix Domain Socket (UDS) support added in 2.4.7

This directive allows remote servers to be mapped into the space of the local server; the local server does not act as
a proxy in the conventional sense, but appears to be a mirror of the remote server. The local server is often called a
reverse proxy or gateway. The path is the name of a local virtual path; url is a partial URL for the remote server and
cannot include a query string.

=⇒Note: This directive cannot be used within a <Directory> context.

! The PROXYREQUESTS directive should usually be set off when using PROXYPASS.

In 2.4.7 and later, support for using a Unix Domain Socket is available by using a target which prepends
unix:/path/lis.sock|. For example, to proxy HTTP and target the UDS at /home/www/socket you would
use unix:/home/www.socket|http://localhost/whatever/.

=⇒Note: The path associated with the unix: URL is DEFAULTRUNTIMEDIR aware.

Suppose the local server has address http://example.com/; then

<Location "/mirror/foo/">
ProxyPass "http://backend.example.com/"

</Location>

740 CHAPTER 10. APACHE MODULES

will cause a local request for http://example.com/mirror/foo/bar to be internally converted into a proxy
request to http://backend.example.com/bar.

The following alternative syntax is possible, however it can carry a performance penalty when present in very large
numbers. The advantage of the below syntax is that it allows for dynamic control via the Balancer Manager (p. 762)
interface:

ProxyPass "/mirror/foo/" "http://backend.example.com/"

! If the first argument ends with a trailing /, the second argument should also end with a trailing /
and vice versa. Otherwise the resulting requests to the backend may miss some needed slashes
and do not deliver the expected results.

The ! directive is useful in situations where you don’t want to reverse-proxy a subdirectory, e.g.

<Location "/mirror/foo/">
ProxyPass "http://backend.example.com/"

</Location>
<Location "/mirror/foo/i">

ProxyPass "!"
</Location>

ProxyPass "/mirror/foo/i" "!"
ProxyPass "/mirror/foo" "http://backend.example.com"

will proxy all requests to /mirror/foo to backend.example.com except requests made to /mirror/foo/i.

! Ordering ProxyPass Directives
The configured PROXYPASS and PROXYPASSMATCH rules are checked in the order of config-
uration. The first rule that matches wins. So usually you should sort conflicting PROXYPASS
rules starting with the longest URLs first. Otherwise later rules for longer URLS will be hidden
by any earlier rule which uses a leading substring of the URL. Note that there is some relation
with worker sharing. In contrast, only one PROXYPASS directive can be placed in a LOCATION
block, and the most specific location will take precedence.
For the same reasons exclusions must come before the general PROXYPASS directives.

In Apache HTTP Server 2.1 and later, mod proxy supports pooled connections to a backend server. Connections
created on demand can be retained in a pool for future use. Limits on the pool size and other settings can be coded on
the PROXYPASS directive using key=value parameters, described in the table below.

By default, mod proxy will allow and retain the maximum number of connections that could be used simultaneously by
that web server child process. Use the max parameter to reduce the number from the default. Use the ttl parameter
to set an optional time to live; connections which have been unused for at least ttl seconds will be closed. ttl can
be used to avoid using a connection which is subject to closing because of the backend server’s keep-alive timeout.

The pool of connections is maintained per web server child process, and max and other settings are not coordinated
among all child processes, except when only one child process is allowed by configuration or MPM design.

Example

ProxyPass "/example" "http://backend.example.com" max=20 ttl=120 retry=300

BalancerMember parameters

10.76. APACHE MODULE MOD PROXY 741

Parameter Default Description
min 0 Minimum number of connection pool en-

tries, unrelated to the actual number of
connections. This only needs to be modi-
fied from the default for special circum-
stances where heap memory associated
with the backend connections should be
preallocated or retained.

max 1...n Maximum number of connections that
will be allowed to the backend server.
The default for this limit is the number of
threads per process in the active MPM. In
the Prefork MPM, this is always 1, while
with other MPMs it is controlled by the
THREADSPERCHILD directive.

smax max Retained connection pool entries above
this limit are freed during certain opera-
tions if they have been unused for longer
than the time to live, controlled by the
ttl parameter. If the connection pool
entry has an associated connection, it will
be closed. This only needs to be modified
from the default for special circumstances
where connection pool entries and any
associated connections which have ex-
ceeded the time to live need to be freed
or closed more aggressively.

acquire - If set this will be the maximum time to
wait for a free connection in the connec-
tion pool, in milliseconds. If there are no
free connections in the pool the Apache
httpd will return SERVER BUSY status to
the client.

connectiontimeout timeout Connect timeout in seconds. The num-
ber of seconds Apache httpd waits for the
creation of a connection to the backend to
complete. By adding a postfix of ms the
timeout can be also set in milliseconds.

disablereuse Off This parameter should be used when you
want to force mod proxy to immediately
close a connection to the backend after
being used, and thus, disable its persis-
tent connection and pool for that back-
end. This helps in various situations
where a firewall between Apache httpd
and the backend server (regardless of pro-
tocol) tends to silently drop connections
or when backends themselves may be un-
der round- robin DNS. To disable connec-
tion pooling reuse, set this property value
to On.

enablereuse On This is the inverse of ’disablereuse’
above, provided as a convenience
for scheme handlers that require
opt-in for connection reuse (such as
MOD PROXY FCGI). 2.4.11 and later
only.

742 CHAPTER 10. APACHE MODULES

flushpackets off Determines whether the proxy module
will auto-flush the output brigade after
each "chunk" of data. ’off’ means that it
will flush only when needed, ’on’ means
after each chunk is sent and ’auto’ means
poll/wait for a period of time and flush if
no input has been received for ’flushwait’
milliseconds. Currently this is in effect
only for AJP.

flushwait 10 The time to wait for additional input, in
milliseconds, before flushing the output
brigade if ’flushpackets’ is ’auto’.

iobuffersize 8192 Adjusts the size of the internal scratch-
pad IO buffer. This allows you to override
the PROXYIOBUFFERSIZE for a specific
worker. This must be at least 512 or set to
0 for the system default of 8192.

keepalive Off This parameter should be used when you
have a firewall between your Apache
httpd and the backend server, who tend
to drop inactive connections. This flag
will tell the Operating System to send
KEEP ALIVE messages on inactive con-
nections and thus prevent the firewall to
drop the connection. To enable keepalive
set this property value to On.
The frequency of initial and subsequent
TCP keepalive probes depends on global
OS settings, and may be as high as 2
hours. To be useful, the frequency con-
figured in the OS must be smaller than the
threshold used by the firewall.

lbset 0 Sets the load balancer cluster set that the
worker is a member of. The load balancer
will try all members of a lower numbered
lbset before trying higher numbered ones.

ping 0 Ping property tells the webserver to
"test" the connection to the backend
before forwarding the request. For
AJP, it causes MOD PROXY AJPto send
a CPING request on the ajp13 connec-
tion (implemented on Tomcat 3.3.2+,
4.1.28+ and 5.0.13+). For HTTP, it
causes MOD PROXY HTTP to send a
100-Continue to the backend (only
valid for HTTP/1.1 - for non HTTP/1.1
backends, this property has no effect). In
both cases the parameter is the delay in
seconds to wait for the reply. This feature
has been added to avoid problems with
hung and busy backends. This will in-
crease the network traffic during the nor-
mal operation which could be an issue,
but it will lower the traffic in case some
of the cluster nodes are down or busy. By
adding a postfix of ms the delay can be
also set in milliseconds.

10.76. APACHE MODULE MOD PROXY 743

receivebuffersize 0 Adjusts the size of the explicit (TCP/IP)
network buffer size for proxied connec-
tions. This allows you to override the
PROXYRECEIVEBUFFERSIZE for a spe-
cific worker. This must be at least 512 or
set to 0 for the system default.

redirect - Redirection Route of the worker. This
value is usually set dynamically to enable
safe removal of the node from the cluster.
If set all requests without session id will
be redirected to the BalancerMember that
has route parameter equal as this value.

retry 60 Connection pool worker retry timeout in
seconds. If the connection pool worker
to the backend server is in the error state,
Apache httpd will not forward any re-
quests to that server until the timeout ex-
pires. This enables to shut down the back-
end server for maintenance, and bring it
back online later. A value of 0 means al-
ways retry workers in an error state with
no timeout.

route - Route of the worker when used inside
load balancer. The route is a value ap-
pended to session id.

status - Single letter value defining the
initial status of this worker.

D: Worker is disabled and will not ac-
cept any requests.
S: Worker is administratively stopped.
I: Worker is in ignore-errors mode, and
will always be considered available.
H: Worker is in hot-standby mode and
will only be used if no other viable
workers are available.
E: Worker is in an error state.
N: Worker is in drain mode, and will
only accept existing sticky sessions
destined for itself and ignore all other
requests.

Status can be set (which is the default)
by prepending with ’+’ or cleared by
prepending with ’-’. Thus, a setting of
’S-E’ sets this worker to Stopped and
clears the in-error flag.

timeout PROXYTIMEOUT Connection timeout in seconds. The
number of seconds Apache httpd waits
for data sent by / to the backend.

ttl - Time to live for inactive connections and
associated connection pool entries, in
seconds. Once reaching this limit, a con-
nection will not be used again; it will be
closed at some later time.

If the Proxy directive scheme starts with the balancer:// (eg: balancer://cluster, any path information is
ignored) then a virtual worker that does not really communicate with the backend server will be created. Instead it is
responsible for the management of several "real" workers. In that case the special set of parameters can be add to this
virtual worker. See MOD PROXY BALANCER for more information about how the balancer works.

Balancer parameters

744 CHAPTER 10. APACHE MODULES

Parameter Default Description
lbmethod byrequests Balancer load-balance method. Se-

lect the load-balancing scheduler
method to use. Either byrequests,
to perform weighted request counting,
bytraffic, to perform weighted traffic
byte count balancing, or bybusyness,
to perform pending request balancing.
Default is byrequests.

maxattempts One less than the number of workers, or
1 with a single worker.

Maximum number of failover attempts
before giving up.

nofailover Off If set to On the session will break if the
worker is in error state or disabled. Set
this value to On if backend servers do not
support session replication.

stickysession - Balancer sticky session name. The
value is usually set to something like
JSESSIONID or PHPSESSIONID, and
it depends on the backend application
server that support sessions. If the
backend application server uses different
name for cookies and url encoded id (like
servlet containers) use — to to separate
them. The first part is for the cookie the
second for the path.
Available in Apache HTTP Server 2.4.4
and later.

stickysessionsep "." Sets the separation symbol in the ses-
sion cookie. Some backend application
servers do not use the ’.’ as the symbol.
For example the Oracle Weblogic server
uses ’!’. The correct symbol can be set
using this option. The setting of ’Off’ sig-
nifies that no symbol is used.

scolonpathdelim Off If set to On the semi-colon character
’;’ will be used as an additional sticky
session path delimiter/separator. This
is mainly used to emulate mod jk’s
behavior when dealing with paths such as
JSESSIONID=6736bcf34;foo=aabfa

timeout 0 Balancer timeout in seconds. If set this
will be the maximum time to wait for a
free worker. Default is not to wait.

failonstatus - A single or comma-separated list of
HTTP status codes. If set this will force
the worker into error state when the back-
end returns any status code in the list.
Worker recovery behaves the same as
other worker errors.

failontimeout Off If set, an IO read timeout after a request is
sent to the backend will force the worker
into error state. Worker recovery behaves
the same as other worker errors.
Available in Apache HTTP Server 2.4.5
and later.

nonce <auto> The protective nonce used in the
balancer-manager application
page. The default is to use an automat-
ically determined UUID-based nonce,
to provide for further protection for the
page. If set, then the nonce is set to that
value. A setting of None disables all
nonce checking.

=⇒Note
In addition to the nonce, the
balancer-manager page
should be protected via an ACL.

growth 0 Number of additional BalancerMembers
to allow to be added to this balancer in
addition to those defined at configuration.

forcerecovery On Force the immediate recovery of all work-
ers without considering the retry parame-
ter of the workers if all workers of a bal-
ancer are in error state. There might be
cases where an already overloaded back-
end can get into deeper trouble if the re-
covery of all workers is enforced without
considering the retry parameter of each
worker. In this case set to Off.
Available in Apache HTTP Server 2.4.2
and later.

10.76. APACHE MODULE MOD PROXY 745

A sample balancer setup

ProxyPass "/special-area" "http://special.example.com" smax=5 max=10
ProxyPass "/" "balancer://mycluster/" stickysession=JSESSIONID|jsessionid nofailover=On
<Proxy "balancer://mycluster">

BalancerMember "ajp://1.2.3.4:8009"
BalancerMember "ajp://1.2.3.5:8009" loadfactor=20
Less powerful server, don’t send as many requests there,
BalancerMember "ajp://1.2.3.6:8009" loadfactor=5

</Proxy>

Setting up a hot-standby, that will only be used if no other members are available

ProxyPass "/" "balancer://hotcluster/"
<Proxy "balancer://hotcluster">

BalancerMember "ajp://1.2.3.4:8009" loadfactor=1
BalancerMember "ajp://1.2.3.5:8009" loadfactor=2
The server below is on hot standby
BalancerMember "ajp://1.2.3.6:8009" status=+H
ProxySet lbmethod=bytraffic

</Proxy>

Normally, mod proxy will canonicalise ProxyPassed URLs. But this may be incompatible with some backends, par-
ticularly those that make use of PATH INFO. The optional nocanon keyword suppresses this, and passes the URL path
"raw" to the backend. Note that may affect the security of your backend, as it removes the normal limited protection
against URL-based attacks provided by the proxy.

Normally, mod proxy will include the query string when generating the SCRIPT FILENAME environment variable.
The optional noquery keyword (available in httpd 2.4.1 and later) prevents this.

When used inside a <LOCATION> section, the first argument is omitted and the local directory is obtained from the
<LOCATION>. The same will occur inside a <LOCATIONMATCH> section, however ProxyPass does not interpret
the regexp as such, so it is necessary to use PROXYPASSMATCH in this situation instead.

This directive is not supported in <DIRECTORY> or <FILES> sections.

If you require a more flexible reverse-proxy configuration, see the REWRITERULE directive with the [P] flag.

The optional interpolate keyword, in combination with PROXYPASSINTERPOLATEENV causes the ProxyPass to in-
terpolate environment variables, using the syntax ${VARNAME}. Note that many of the standard CGI-derived envi-
ronment variables will not exist when this interpolation happens, so you may still have to resort to MOD REWRITE for
complex rules. Also note that interpolation is not supported within the scheme portion of a URL. Dynamic determi-
nation of the scheme can be accomplished with MOD REWRITE as in the following example.

RewriteEngine On

RewriteCond "%{HTTPS}" =off
RewriteRule "." "-" [E=protocol:http]
RewriteCond "%{HTTPS}" =on
RewriteRule "." "-" [E=protocol:https]

RewriteRule "ˆ/mirror/foo/(.*)" "%{ENV:protocol}://backend.example.com/$1" [P]
ProxyPassReverse "/mirror/foo/" "http://backend.example.com/"
ProxyPassReverse "/mirror/foo/" "https://backend.example.com/"

746 CHAPTER 10. APACHE MODULES

ProxyPassInherit Directive

Description: Inherit ProxyPass directives defined from the main server
Syntax: ProxyPassInherit On|Off
Default: ProxyPassInherit On
Context: server config, virtual host
Status: Extension
Module: mod proxy
Compatibility: ProxyPassInherit is only available in Apache HTTP Server 2.4.5 and later. and later.

This directive will cause the current server/vhost to "inherit" PROXYPASS directives defined in the main server. This
can cause issues and inconsistent behavior if using the Balancer Manager for dynamic changes and so should be
disabled if using that feature.

The setting in the global server defines the default for all vhosts.

Disabling ProxyPassInherit also disables BALANCERINHERIT.

ProxyPassInterpolateEnv Directive

Description: Enable Environment Variable interpolation in Reverse Proxy configurations
Syntax: ProxyPassInterpolateEnv On|Off
Default: ProxyPassInterpolateEnv Off
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy
Compatibility: Available in httpd 2.2.9 and later

This directive, together with the interpolate argument to PROXYPASS, PROXYPASSREVERSE, PROXYPASSREVER-
SECOOKIEDOMAIN and PROXYPASSREVERSECOOKIEPATH enables reverse proxies to be dynamically configured
using environment variables, which may be set by another module such as MOD REWRITE. It affects the PROX-
YPASS, PROXYPASSREVERSE, PROXYPASSREVERSECOOKIEDOMAIN, and PROXYPASSREVERSECOOKIEPATH
directives, and causes them to substitute the value of an environment variable varname for the string ${varname}
in configuration directives (if the interpolate option is set).

Keep this turned off (for server performance) unless you need it!

ProxyPassMatch Directive

Description: Maps remote servers into the local server URL-space using regular expressions
Syntax: ProxyPassMatch [regex] !|url [key=value [key=value ...]]
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy

This directive is equivalent to PROXYPASS, but makes use of regular expressions, instead of simple prefix matching.
The supplied regular expression is matched against the url, and if it matches, the server will substitute any parenthe-
sized matches into the given string and use it as a new url.

=⇒Note: This directive cannot be used within a <Directory> context.

Suppose the local server has address http://example.com/; then

ProxyPassMatch "ˆ/(.*\.gif)$" "http://backend.example.com/$1"

10.76. APACHE MODULE MOD PROXY 747

will cause a local request for http://example.com/foo/bar.gif to be internally converted into a proxy
request to http://backend.example.com/foo/bar.gif.

=⇒Note
The URL argument must be parsable as a URL before regexp substitutions (as well as after).
This limits the matches you can use. For instance, if we had used

ProxyPassMatch "ˆ(/.*\.gif)$" "http://backend.example.com:8000$1"

in our previous example, it would fail with a syntax error at server startup. This is a bug (PR
46665 in the ASF bugzilla), and the workaround is to reformulate the match:

ProxyPassMatch "ˆ/(.*\.gif)$" "http://backend.example.com:8000/$1"

The ! directive is useful in situations where you don’t want to reverse-proxy a subdirectory.

When used inside a <LOCATIONMATCH> section, the first argument is omitted and the regexp is obtained from the
<LOCATIONMATCH>.

If you require a more flexible reverse-proxy configuration, see the REWRITERULE directive with the [P] flag.

=⇒Default Substitution

When the URL parameter doesn’t use any backreferences into the regular expression, the orig-
inal URL will be appended to the URL parameter.

! Security Warning

Take care when constructing the target URL of the rule, considering the security impact from
allowing the client influence over the set of URLs to which your server will act as a proxy.
Ensure that the scheme and hostname part of the URL is either fixed, or does not allow the
client undue influence.

ProxyPassReverse Directive

Description: Adjusts the URL in HTTP response headers sent from a reverse proxied server
Syntax: ProxyPassReverse [path] url [interpolate]
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy

This directive lets Apache httpd adjust the URL in the Location, Content-Location and URI headers on HTTP
redirect responses. This is essential when Apache httpd is used as a reverse proxy (or gateway) to avoid by-passing
the reverse proxy because of HTTP redirects on the backend servers which stay behind the reverse proxy.

Only the HTTP response headers specifically mentioned above will be rewritten. Apache httpd will not rewrite other
response headers, nor will it by default rewrite URL references inside HTML pages. This means that if the proxied
content contains absolute URL references, they will by-pass the proxy. To rewrite HTML content to match the proxy,
you must load and enable MOD PROXY HTML.

path is the name of a local virtual path. url is a partial URL for the remote server - the same way they are used for the
PROXYPASS directive.

For example, suppose the local server has address http://example.com/; then

ProxyPass "/mirror/foo/" "http://backend.example.com/"
ProxyPassReverse "/mirror/foo/" "http://backend.example.com/"

748 CHAPTER 10. APACHE MODULES

ProxyPassReverseCookieDomain "backend.example.com" "public.example.com"
ProxyPassReverseCookiePath "/" "/mirror/foo/"

will not only cause a local request for the http://example.com/mirror/foo/bar to be internally
converted into a proxy request to http://backend.example.com/bar (the functionality ProxyPass
provides here). It also takes care of redirects the server backend.example.com sends: when
http://backend.example.com/bar is redirected by him to http://backend.example.com/quux
Apache httpd adjusts this to http://example.com/mirror/foo/quux before forwarding the HTTP redirect
response to the client. Note that the hostname used for constructing the URL is chosen in respect to the setting of the
USECANONICALNAME directive.

Note that this PROXYPASSREVERSE directive can also be used in conjunction with the proxy pass-through feature
(RewriteRule ... [P]) from MOD REWRITE because it doesn’t depend on a corresponding PROXYPASS di-
rective.

The optional interpolate keyword, used together with PROXYPASSINTERPOLATEENV, enables interpolation of en-
vironment variables specified using the format ${VARNAME}. Note that interpolation is not supported within the
scheme portion of a URL.

When used inside a <LOCATION> section, the first argument is omitted and the local directory is obtained from the
<LOCATION>. The same occurs inside a <LOCATIONMATCH> section, but will probably not work as intended, as
ProxyPassReverse will interpret the regexp literally as a path; if needed in this situation, specify the ProxyPassReverse
outside the section, or in a separate <LOCATION> section.

This directive is not supported in <DIRECTORY> or <FILES> sections.

ProxyPassReverseCookieDomain Directive

Description: Adjusts the Domain string in Set-Cookie headers from a reverse- proxied server
Syntax: ProxyPassReverseCookieDomain internal-domain public-domain

[interpolate]
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy

Usage is basically similar to PROXYPASSREVERSE, but instead of rewriting headers that are a URL, this rewrites the
domain string in Set-Cookie headers.

ProxyPassReverseCookiePath Directive

Description: Adjusts the Path string in Set-Cookie headers from a reverse- proxied server
Syntax: ProxyPassReverseCookiePath internal-path public-path

[interpolate]
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy

Useful in conjunction with PROXYPASSREVERSE in situations where backend URL paths are mapped to public paths
on the reverse proxy. This directive rewrites the path string in Set-Cookie headers. If the beginning of the cookie
path matches internal-path, the cookie path will be replaced with public-path.

In the example given with PROXYPASSREVERSE, the directive:

ProxyPassReverseCookiePath "/" "/mirror/foo/"

will rewrite a cookie with backend path / (or /example or, in fact, anything) to /mirror/foo/.

10.76. APACHE MODULE MOD PROXY 749

ProxyPreserveHost Directive

Description: Use incoming Host HTTP request header for proxy request
Syntax: ProxyPreserveHost On|Off
Default: ProxyPreserveHost Off
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy
Compatibility: Usable in directory context in 2.3.3 and later.

When enabled, this option will pass the Host: line from the incoming request to the proxied host, instead of the
hostname specified in the PROXYPASS line.

This option should normally be turned Off. It is mostly useful in special configurations like proxied mass name-based
virtual hosting, where the original Host header needs to be evaluated by the backend server.

ProxyReceiveBufferSize Directive

Description: Network buffer size for proxied HTTP and FTP connections
Syntax: ProxyReceiveBufferSize bytes
Default: ProxyReceiveBufferSize 0
Context: server config, virtual host
Status: Extension
Module: mod proxy

The PROXYRECEIVEBUFFERSIZE directive specifies an explicit (TCP/IP) network buffer size for proxied HTTP and
FTP connections, for increased throughput. It has to be greater than 512 or set to 0 to indicate that the system’s
default buffer size should be used.

Example

ProxyReceiveBufferSize 2048

ProxyRemote Directive

Description: Remote proxy used to handle certain requests
Syntax: ProxyRemote match remote-server
Context: server config, virtual host
Status: Extension
Module: mod proxy

This defines remote proxies to this proxy. match is either the name of a URL-scheme that the remote server supports,
or a partial URL for which the remote server should be used, or * to indicate the server should be contacted for all
requests. remote-server is a partial URL for the remote server. Syntax:

remote-server = scheme://hostname[:port]

scheme is effectively the protocol that should be used to communicate with the remote server; only http and https
are supported by this module. When using https, the requests are forwarded through the remote proxy using the
HTTP CONNECT method.

750 CHAPTER 10. APACHE MODULES

Example

ProxyRemote "http://goodguys.example.com/" "http://mirrorguys.example.com:8000"
ProxyRemote "*" "http://cleverproxy.localdomain"
ProxyRemote "ftp" "http://ftpproxy.mydomain:8080"

In the last example, the proxy will forward FTP requests, encapsulated as yet another HTTP proxy request, to another
proxy which can handle them.

This option also supports reverse proxy configuration - a backend webserver can be embedded within a virtualhost
URL space even if that server is hidden by another forward proxy.

ProxyRemoteMatch Directive

Description: Remote proxy used to handle requests matched by regular expressions
Syntax: ProxyRemoteMatch regex remote-server
Context: server config, virtual host
Status: Extension
Module: mod proxy

The PROXYREMOTEMATCH is identical to the PROXYREMOTE directive, except the first argument is a regular ex-
pression match against the requested URL.

ProxyRequests Directive

Description: Enables forward (standard) proxy requests
Syntax: ProxyRequests On|Off
Default: ProxyRequests Off
Context: server config, virtual host
Status: Extension
Module: mod proxy

This allows or prevents Apache httpd from functioning as a forward proxy server. (Setting ProxyRequests to Off does
not disable use of the PROXYPASS directive.)

In a typical reverse proxy or gateway configuration, this option should be set to Off.

In order to get the functionality of proxying HTTP or FTP sites, you need also MOD PROXY HTTP or MOD PROXY FTP
(or both) present in the server.

In order to get the functionality of (forward) proxying HTTPS sites, you need MOD PROXY CONNECT enabled in the
server.

! Warning
Do not enable proxying with PROXYREQUESTS until you have secured your server. Open
proxy servers are dangerous both to your network and to the Internet at large.

See also

• Forward and Reverse Proxies/Gateways

10.76. APACHE MODULE MOD PROXY 751

ProxySet Directive

Description: Set various Proxy balancer or member parameters
Syntax: ProxySet url key=value [key=value ...]
Context: directory
Status: Extension
Module: mod proxy
Compatibility: ProxySet is only available in Apache HTTP Server 2.2 and later.

This directive is used as an alternate method of setting any of the parameters available to Proxy balancers and workers
normally done via the PROXYPASS directive. If used within a <Proxy balancer url|worker url> con-
tainer directive, the url argument is not required. As a side effect the respective balancer or worker gets created. This
can be useful when doing reverse proxying via a REWRITERULE instead of a PROXYPASS directive.

<Proxy "balancer://hotcluster">
BalancerMember "http://www2.example.com:8080" loadfactor=1
BalancerMember "http://www3.example.com:8080" loadfactor=2
ProxySet lbmethod=bytraffic

</Proxy>

<Proxy "http://backend">
ProxySet keepalive=On

</Proxy>

ProxySet "balancer://foo" lbmethod=bytraffic timeout=15

ProxySet "ajp://backend:7001" timeout=15

! Warning
Keep in mind that the same parameter key can have a different meaning depending whether it
is applied to a balancer or a worker as shown by the two examples above regarding timeout.

ProxySourceAddress Directive

Description: Set local IP address for outgoing proxy connections
Syntax: ProxySourceAddress address
Context: server config, virtual host
Status: Extension
Module: mod proxy
Compatibility: Available in version 2.3.9 and later

This directive allows to set a specific local address to bind to when connecting to a backend server.

ProxyStatus Directive

Description: Show Proxy LoadBalancer status in mod status
Syntax: ProxyStatus Off|On|Full
Default: ProxyStatus Off
Context: server config, virtual host
Status: Extension
Module: mod proxy
Compatibility: Available in version 2.2 and later

752 CHAPTER 10. APACHE MODULES

This directive determines whether or not proxy loadbalancer status data is displayed via the MOD STATUS server-status
page.

=⇒Note
Full is synonymous with On

ProxyTimeout Directive

Description: Network timeout for proxied requests
Syntax: ProxyTimeout seconds
Default: Value of TIMEOUT
Context: server config, virtual host
Status: Extension
Module: mod proxy

This directive allows a user to specifiy a timeout on proxy requests. This is useful when you have a slow/buggy
appserver which hangs, and you would rather just return a timeout and fail gracefully instead of waiting however long
it takes the server to return.

ProxyVia Directive

Description: Information provided in the Via HTTP response header for proxied requests
Syntax: ProxyVia On|Off|Full|Block
Default: ProxyVia Off
Context: server config, virtual host
Status: Extension
Module: mod proxy

This directive controls the use of the Via: HTTP header by the proxy. Its intended use is to control the flow of
proxy requests along a chain of proxy servers. See RFC 261659 (HTTP/1.1), section 14.45 for an explanation of Via:
header lines.

• If set to Off, which is the default, no special processing is performed. If a request or reply contains a Via:
header, it is passed through unchanged.

• If set to On, each request and reply will get a Via: header line added for the current host.

• If set to Full, each generated Via: header line will additionally have the Apache httpd server version shown
as a Via: comment field.

• If set to Block, every proxy request will have all its Via: header lines removed. No new Via: header will
be generated.

59http://www.ietf.org/rfc/rfc2616.txt

http://www.ietf.org/rfc/rfc2616.txt

10.77. APACHE MODULE MOD PROXY AJP 753

10.77 Apache Module mod proxy ajp

Description: AJP support module for MOD PROXY
Status: Extension
ModuleIdentifier: proxy ajp module
SourceFile: mod proxy ajp.c
Compatibility: Available in version 2.1 and later

Summary

This module requires the service of MOD PROXY. It provides support for the Apache JServ Protocol
version 1.3 (hereafter AJP13).

Thus, in order to get the ability of handling AJP13 protocol, MOD PROXY and MOD PROXY AJP have to be present
in the server.

! Warning
Do not enable proxying until you have secured your server (p. 727) . Open proxy servers are
dangerous both to your network and to the Internet at large.

Directives This module provides no directives.

See also

• MOD PROXY

• Environment Variable documentation (p. 82)

Usage

This module is used to reverse proxy to a backend application server (e.g. Apache Tomcat) using the AJP13 protocol.
The usage is similar to an HTTP reverse proxy, but uses the ajp:// prefix:

Simple Reverse Proxy

ProxyPass "/app" "ajp://backend.example.com:8009/app"

Balancers may also be used:

Balancer Reverse Proxy

<Proxy "balancer://cluster">
BalancerMember "ajp://app1.example.com:8009" loadfactor=1
BalancerMember "ajp://app2.example.com:8009" loadfactor=2
ProxySet lbmethod=bytraffic

</Proxy>
ProxyPass "/app" "balancer://cluster/app"

Note that usually no PROXYPASSREVERSE directive is necessary. The AJP request includes the original host header
given to the proxy, and the application server can be expected to generate self-referential headers relative to this host,
so no rewriting is necessary.

The main exception is when the URL path on the proxy differs from that on the backend. In this case, a redirect header
can be rewritten relative to the original host URL (not the backend ajp:// URL), for example:

754 CHAPTER 10. APACHE MODULES

Rewriting Proxied Path

ProxyPass "/apps/foo" "ajp://backend.example.com:8009/foo"
ProxyPassReverse "/apps/foo" "http://www.example.com/foo"

However, it is usually better to deploy the application on the backend server at the same path as the proxy rather than
to take this approach.

Environment Variables

Environment variables whose names have the prefix AJP are forwarded to the origin server as AJP request attributes
(with the AJP prefix removed from the name of the key).

Overview of the protocol

The AJP13 protocol is packet-oriented. A binary format was presumably chosen over the more readable plain text for
reasons of performance. The web server communicates with the servlet container over TCP connections. To cut down
on the expensive process of socket creation, the web server will attempt to maintain persistent TCP connections to the
servlet container, and to reuse a connection for multiple request/response cycles.

Once a connection is assigned to a particular request, it will not be used for any others until the request-handling cycle
has terminated. In other words, requests are not multiplexed over connections. This makes for much simpler code at
either end of the connection, although it does cause more connections to be open at once.

Once the web server has opened a connection to the servlet container, the connection can be in one of the following
states:

• Idle
No request is being handled over this connection.

• Assigned
The connection is handling a specific request.

Once a connection is assigned to handle a particular request, the basic request information (e.g. HTTP headers, etc)
is sent over the connection in a highly condensed form (e.g. common strings are encoded as integers). Details of that
format are below in Request Packet Structure. If there is a body to the request (content-length > 0), that is
sent in a separate packet immediately after.

At this point, the servlet container is presumably ready to start processing the request. As it does so, it can send the
following messages back to the web server:

• SEND HEADERS
Send a set of headers back to the browser.

• SEND BODY CHUNK
Send a chunk of body data back to the browser.

• GET BODY CHUNK
Get further data from the request if it hasn’t all been transferred yet. This is necessary because the packets have
a fixed maximum size and arbitrary amounts of data can be included the body of a request (for uploaded files,
for example). (Note: this is unrelated to HTTP chunked transfer).

• END RESPONSE
Finish the request-handling cycle.

Each message is accompanied by a differently formatted packet of data. See Response Packet Structures below for
details.

10.77. APACHE MODULE MOD PROXY AJP 755

Basic Packet Structure

There is a bit of an XDR heritage to this protocol, but it differs in lots of ways (no 4 byte alignment, for example).

AJP13 uses network byte order for all data types.

There are four data types in the protocol: bytes, booleans, integers and strings.

Byte A single byte.

Boolean A single byte, 1 = true, 0 = false. Using other non-zero values as true (i.e. C-style) may work in
some places, but it won’t in others.

Integer A number in the range of 0 to 2ˆ16 (32768). Stored in 2 bytes with the high-order byte first.

String A variable-sized string (length bounded by 2ˆ16). Encoded with the length packed into two bytes first, followed
by the string (including the terminating ’\0’). Note that the encoded length doesnotinclude the trailing ’\0’ – it
is likestrlen. This is a touch confusing on the Java side, which is littered with odd autoincrement statements
to skip over these terminators. I believe the reason this was done was to allow the C code to be extra efficient
when reading strings which the servlet container is sending back – with the terminating \0 character, the C code
can pass around references into a single buffer, without copying. if the \0 was missing, the C code would have
to copy things out in order to get its notion of a string.

Packet Size

According to much of the code, the max packet size is 8 * 1024 bytes (8K). The actual length of the packet
is encoded in the header.

Packet Headers

Packets sent from the server to the container begin with 0x1234. Packets sent from the container to the server begin
with AB (that’s the ASCII code for A followed by the ASCII code for B). After those first two bytes, there is an integer
(encoded as above) with the length of the payload. Although this might suggest that the maximum payload could be
as large as 2ˆ16, in fact, the code sets the maximum to be 8K.

Packet Format
(Server->Container)
Byte 0 1 2 3 4...(n+3)
Contents 0x12 0x34 Data Length (n) Data

Packet Format
(Container->Server)
Byte 0 1 2 3 4...(n+3)
Contents A B Data Length (n) Data

For most packets, the first byte of the payload encodes the type of message. The exception is for request body packets
sent from the server to the container – they are sent with a standard packet header (0x1234 and then length of the
packet), but without any prefix code after that.

The web server can send the following messages to the servlet container:

756 CHAPTER 10. APACHE MODULES

Code Type of Packet Meaning
2 Forward Request Begin the request-processing cycle with the following data
7 Shutdown The web server asks the container to shut itself down.
8 Ping The web server asks the container to take control (secure login

phase).
10 CPing The web server asks the container to respond quickly with a

CPong.
none Data Size (2 bytes) and corresponding body data.

To ensure some basic security, the container will only actually do the Shutdown if the request comes from the same
machine on which it’s hosted.

The first Data packet is send immediately after the Forward Request by the web server.

The servlet container can send the following types of messages to the webserver:

Code Type of Packet Meaning
3 Send Body Chunk Send a chunk of the body from the servlet container to the web

server (and presumably, onto the browser).
4 Send Headers Send the response headers from the servlet container to the web

server (and presumably, onto the browser).
5 End Response Marks the end of the response (and thus the request-handling cy-

cle).
6 Get Body Chunk Get further data from the request if it hasn’t all been transferred

yet.
9 CPong Reply The reply to a CPing request

Each of the above messages has a different internal structure, detailed below.

Request Packet Structure

For messages from the server to the container of type Forward Request:

AJP13_FORWARD_REQUEST :=
prefix_code (byte) 0x02 = JK_AJP13_FORWARD_REQUEST
method (byte)
protocol (string)
req_uri (string)
remote_addr (string)
remote_host (string)
server_name (string)
server_port (integer)
is_ssl (boolean)
num_headers (integer)
request_headers *(req_header_name req_header_value)
attributes *(attribut_name attribute_value)
request_terminator (byte) OxFF

The request headers have the following structure:

req_header_name :=
sc_req_header_name | (string) [see below for how this is parsed]

sc_req_header_name := 0xA0xx (integer)

req_header_value := (string)

10.77. APACHE MODULE MOD PROXY AJP 757

The attributes are optional and have the following structure:

attribute_name := sc_a_name | (sc_a_req_attribute string)

attribute_value := (string)

Not that the all-important header is content-length, because it determines whether or not the container looks for
another packet immediately.

Detailed description of the elements of Forward Request

Request prefix

For all requests, this will be 2. See above for details on other Prefix codes.

Method

The HTTP method, encoded as a single byte:

Command Name Code
OPTIONS 1
GET 2
HEAD 3
POST 4
PUT 5
DELETE 6
TRACE 7
PROPFIND 8
PROPPATCH 9
MKCOL 10
COPY 11
MOVE 12
LOCK 13
UNLOCK 14
ACL 15
REPORT 16
VERSION-CONTROL 17
CHECKIN 18
CHECKOUT 19
UNCHECKOUT 20
SEARCH 21
MKWORKSPACE 22
UPDATE 23
LABEL 24
MERGE 25
BASELINE CONTROL 26
MKACTIVITY 27

Later version of ajp13, will transport additional methods, even if they are not in this list.

758 CHAPTER 10. APACHE MODULES

protocol, req uri, remote addr, remote host, server name, server port, is ssl

These are all fairly self-explanatory. Each of these is required, and will be sent for every request.

Headers

The structure of request headers is the following: First, the number of headers num headers is encoded.
Then, a series of header name req header name / value req header value pairs follows. Common header
names are encoded as integers, to save space. If the header name is not in the list of basic headers, it is encoded
normally (as a string, with prefixed length). The list of common headers sc req header nameand their codes is as
follows (all are case-sensitive):

Name Code value Code name
accept 0xA001 SC REQ ACCEPT
accept-charset 0xA002 SC REQ ACCEPT CHARSET
accept-encoding 0xA003 SC REQ ACCEPT ENCODING
accept-language 0xA004 SC REQ ACCEPT LANGUAGE
authorization 0xA005 SC REQ AUTHORIZATION
connection 0xA006 SC REQ CONNECTION
content-type 0xA007 SC REQ CONTENT TYPE
content-length 0xA008 SC REQ CONTENT LENGTH
cookie 0xA009 SC REQ COOKIE
cookie2 0xA00A SC REQ COOKIE2
host 0xA00B SC REQ HOST
pragma 0xA00C SC REQ PRAGMA
referer 0xA00D SC REQ REFERER
user-agent 0xA00E SC REQ USER AGENT

The Java code that reads this grabs the first two-byte integer and if it sees an ’0xA0’ in the most significant byte, it
uses the integer in the second byte as an index into an array of header names. If the first byte is not 0xA0, it assumes
that the two-byte integer is the length of a string, which is then read in.

This works on the assumption that no header names will have length greater than 0x9FFF (==0xA000 - 1),
which is perfectly reasonable, though somewhat arbitrary.

=⇒Note:
The content-length header is extremely important. If it is present and non-zero, the
container assumes that the request has a body (a POST request, for example), and immediately
reads a separate packet off the input stream to get that body.

Attributes

The attributes prefixed with a ? (e.g. ?context) are all optional. For each, there is a single byte code to indicate the
type of attribute, and then its value (string or integer). They can be sent in any order (though the C code always sends
them in the order listed below). A special terminating code is sent to signal the end of the list of optional attributes.
The list of byte codes is:

10.77. APACHE MODULE MOD PROXY AJP 759

Information Code Value Type Of Value Note
?context 0x01 - Not currently implemented
?servlet path 0x02 - Not currently implemented
?remote user 0x03 String
?auth type 0x04 String
?query string 0x05 String
?jvm route 0x06 String
?ssl cert 0x07 String
?ssl cipher 0x08 String
?ssl session 0x09 String
?req attribute 0x0A String Name (the name of the at-

tribute follows)
?ssl key size 0x0B Integer
are done 0xFF - request terminator

The context and servlet path are not currently set by the C code, and most of the Java code completely ignores
whatever is sent over for those fields (and some of it will actually break if a string is sent along after one of those codes).
I don’t know if this is a bug or an unimplemented feature or just vestigial code, but it’s missing from both sides of the
connection.

The remote user and auth type presumably refer to HTTP-level authentication, and communicate the remote
user’s username and the type of authentication used to establish their identity (e.g. Basic, Digest).

The query string, ssl cert, ssl cipher, and ssl session refer to the corresponding pieces of HTTP
and HTTPS.

The jvm route, is used to support sticky sessions – associating a user’s sesson with a particular Tomcat instance in
the presence of multiple, load-balancing servers.

Beyond this list of basic attributes, any number of other attributes can be sent via the req attribute code 0x0A.
A pair of strings to represent the attribute name and value are sent immediately after each instance of that code.
Environment values are passed in via this method.

Finally, after all the attributes have been sent, the attribute terminator, 0xFF, is sent. This signals both the end of the
list of attributes and also then end of the Request Packet.

Response Packet Structure

for messages which the container can send back to the server.

760 CHAPTER 10. APACHE MODULES

AJP13_SEND_BODY_CHUNK :=
prefix_code 3
chunk_length (integer)
chunk *(byte)
chunk_terminator (byte) Ox00

AJP13_SEND_HEADERS :=
prefix_code 4
http_status_code (integer)
http_status_msg (string)
num_headers (integer)
response_headers *(res_header_name header_value)

res_header_name :=
sc_res_header_name | (string) [see below for how this is parsed]

sc_res_header_name := 0xA0 (byte)

header_value := (string)

AJP13_END_RESPONSE :=
prefix_code 5
reuse (boolean)

AJP13_GET_BODY_CHUNK :=
prefix_code 6
requested_length (integer)

Details:

Send Body Chunk

The chunk is basically binary data, and is sent directly back to the browser.

Send Headers

The status code and message are the usual HTTP things (e.g. 200 and OK). The response header names are encoded the
same way the request header names are. See header encoding above for details about how the codes are distinguished
from the strings.
The codes for common headers are:

10.77. APACHE MODULE MOD PROXY AJP 761

Name Code value
Content-Type 0xA001
Content-Language 0xA002
Content-Length 0xA003
Date 0xA004
Last-Modified 0xA005
Location 0xA006
Set-Cookie 0xA007
Set-Cookie2 0xA008
Servlet-Engine 0xA009
Status 0xA00A
WWW-Authenticate 0xA00B

After the code or the string header name, the header value is immediately encoded.

End Response

Signals the end of this request-handling cycle. If the reuse flag is true (anything other than 0 in the
actual C code), this TCP connection can now be used to handle new incoming requests. If reuse is false (==0),
the connection should be closed.

Get Body Chunk

The container asks for more data from the request (If the body was too large to fit in the first packet sent over or when
the request is chunked). The server will send a body packet back with an amount of data which is the minimum of the
request length, the maximum send body size (8186 (8 Kbytes - 6)), and the number of bytes actually
left to send from the request body.
If there is no more data in the body (i.e. the servlet container is trying to read past the end of the body), the server will
send back an empty packet, which is a body packet with a payload length of 0. (0x12,0x34,0x00,0x00)

762 CHAPTER 10. APACHE MODULES

10.78 Apache Module mod proxy balancer

Description: MOD PROXY extension for load balancing
Status: Extension
ModuleIdentifier: proxy balancer module
SourceFile: mod proxy balancer.c
Compatibility: Available in version 2.1 and later

Summary

This module requires the service of MOD PROXY. It provides load balancing support for HTTP, FTP and AJP13
protocols

Load balancing scheduler algorithm is provided by not this module but other modules such as:
MOD LBMETHOD BYREQUESTS, MOD LBMETHOD BYTRAFFIC, MOD LBMETHOD BYBUSYNESS and
MOD LBMETHOD HEARTBEAT.

Thus, in order to get the ability of load balancing, MOD PROXY, MOD PROXY BALANCER and at least one of load
balancing scheduler algorithm modules have to be present in the server.

! Warning
Do not enable proxying until you have secured your server (p. 727) . Open proxy servers are
dangerous both to your network and to the Internet at large.

Directives This module provides no directives.

See also

• MOD PROXY

Load balancer scheduler algorithm

At present, there are 3 load balancer scheduler algorithms available for use: Request Counting, Weighted Traffic
Counting and Pending Request Counting. These are controlled via the lbmethod value of the Balancer definition.
See the PROXYPASS directive for more information, especially regarding how to configure the Balancer and Balancer-
Members.

Load balancer stickyness

The balancer supports stickyness. When a request is proxied to some back-end, then all following requests from
the same user should be proxied to the same back-end. Many load balancers implement this feature via a table that
maps client IP addresses to back-ends. This approach is transparent to clients and back-ends, but suffers from some
problems: unequal load distribution if clients are themselves hidden behind proxies, stickyness errors when a client
uses a dynamic IP address that changes during a session and loss of stickyness, if the mapping table overflows.

The module MOD PROXY BALANCER implements stickyness on top of two alternative means: cookies and URL
encoding. Providing the cookie can be either done by the back-end or by the Apache web server itself. The URL
encoding is usually done on the back-end.

10.78. APACHE MODULE MOD PROXY BALANCER 763

Examples of a balancer configuration

Before we dive into the technical details, here’s an example of how you might use MOD PROXY BALANCER to provide
load balancing between two back-end servers:

<Proxy "balancer://mycluster">
BalancerMember "http://192.168.1.50:80"
BalancerMember "http://192.168.1.51:80"

</Proxy>
ProxyPass "/test" "balancer://mycluster"
ProxyPassReverse "/test" "balancer://mycluster"

Another example of how to provide load balancing with stickyness using MOD HEADERS, even if the back-end server
does not set a suitable session cookie:

Header add Set-Cookie "ROUTEID=.%{BALANCER_WORKER_ROUTE}e; path=/" env=BALANCER_ROUTE_CHANGED
<Proxy "balancer://mycluster">

BalancerMember "http://192.168.1.50:80" route=1
BalancerMember "http://192.168.1.51:80" route=2
ProxySet stickysession=ROUTEID

</Proxy>
ProxyPass "/test" "balancer://mycluster"
ProxyPassReverse "/test" "balancer://mycluster"

Exported Environment Variables

At present there are 6 environment variables exported:

BALANCER SESSION STICKY This is assigned the stickysession value used for the current request. It is the name
of the cookie or request parameter used for sticky sessions

BALANCER SESSION ROUTE This is assigned the route parsed from the current request.

BALANCER NAME This is assigned the name of the balancer used for the current request. The value is something
like balancer://foo.

BALANCER WORKER NAME This is assigned the name of the worker used for the current request. The value is
something like http://hostA:1234.

BALANCER WORKER ROUTE This is assigned the route of the worker that will be used for the current request.

BALANCER ROUTE CHANGED This is set to 1 if the session route does not match the worker route (BAL-
ANCER SESSION ROUTE != BALANCER WORKER ROUTE) or the session does not yet have an estab-
lished route. This can be used to determine when/if the client needs to be sent an updated route when sticky
sessions are used.

Enabling Balancer Manager Support

This module requires the service of MOD STATUS. Balancer manager enables dynamic update of balancer members.
You can use balancer manager to change the balance factor of a particular member, or put it in the off line mode.

Thus, in order to get the ability of load balancer management, MOD STATUS and MOD PROXY BALANCER have to be
present in the server.

To enable load balancer management for browsers from the example.com domain add this code to your httpd.conf
configuration file

764 CHAPTER 10. APACHE MODULES

<Location "/balancer-manager">
SetHandler balancer-manager
Require host example.com

</Location>

You can now access load balancer manager by using a Web browser to access the page
http://your.server.name/balancer-manager. Please note that only Balancers defined
outside of <Location ...> containers can be dynamically controlled by the Manager.

Details on load balancer stickyness

When using cookie based stickyness, you need to configure the name of the cookie that contains the information about
which back-end to use. This is done via the stickysession attribute added to either PROXYPASS or PROXYSET. The
name of the cookie is case-sensitive. The balancer extracts the value of the cookie and looks for a member worker
with route equal to that value. The route must also be set in either PROXYPASS or PROXYSET. The cookie can either
be set by the back-end, or as shown in the above example by the Apache web server itself.

Some back-ends use a slightly different form of stickyness cookie, for instance Apache Tomcat. Tomcat adds the name
of the Tomcat instance to the end of its session id cookie, separated with a dot (.) from the session id. Thus if the
Apache web server finds a dot in the value of the stickyness cookie, it only uses the part behind the dot to search for the
route. In order to let Tomcat know about its instance name, you need to set the attribute jvmRoute inside the Tomcat
configuration file conf/server.xml to the value of the route of the worker that connects to the respective Tomcat.
The name of the session cookie used by Tomcat (and more generally by Java web applications based on servlets) is
JSESSIONID (upper case) but can be configured to something else.

The second way of implementing stickyness is URL encoding. The web server searches for a query parameter in the
URL of the request. The name of the parameter is specified again using stickysession. The value of the parameter
is used to lookup a member worker with route equal to that value. Since it is not easy to extract and manipulate all
URL links contained in responses, generally the work of adding the parameters to each link is done by the back-end
generating the content. In some cases it might be feasible doing this via the web server using MOD SUBSTITUTE or
MOD SED. This can have negative impact on performance though.

The Java standards implement URL encoding slightly different. They use a path info appended to the URL using a
semicolon (;) as the separator and add the session id behind. As in the cookie case, Apache Tomcat can include the
configured jvmRoute in this path info. To let Apache find this sort of path info, you neet to set scolonpathdelim
to On in PROXYPASS or PROXYSET.

Finally you can support cookies and URL encoding at the same time, by configuring the name of the cookie and the
name of the URL parameter separated by a vertical bar (|) as in the following example:

ProxyPass "/test" "balancer://mycluster" stickysession=JSESSIONID|jsessionid scolonpathdelim=On
<Proxy "balancer://mycluster">

BalancerMember "http://192.168.1.50:80" route=node1
BalancerMember "http://192.168.1.51:80" route=node2

</Proxy>

If the cookie and the request parameter both provide routing information for the same request, the information from
the request parameter is used.

Troubleshooting load balancer stickyness

If you experience stickyness errors, e.g. users lose their application sessions and need to login again, you first want
to check whether this is because the back-ends are sometimes unavailable or whether your configuration is wrong. To
find out about possible stability problems with the back-ends, check your Apache error log for proxy error messages.

10.78. APACHE MODULE MOD PROXY BALANCER 765

To verify your configuration, first check, whether the stickyness is based on a cookie or on URL encoding. Next step
would be logging the appropriate data in the access log by using an enhanced LOGFORMAT. The following fields are
useful:

%{MYCOOKIE}C The value contained in the cookie with name MYCOOKIE. The name should be the same given in
the stickysession attribute.

%{Set-Cookie}o This logs any cookie set by the back-end. You can track, whether the back-end sets the session
cookie you expect, and to which value it is set.

%{BALANCER SESSION STICKY}e The name of the cookie or request parameter used to lookup the routing infor-
mation.

%{BALANCER SESSION ROUTE}e The route information found in the request.

%{BALANCER WORKER ROUTE}e The route of the worker chosen.

%{BALANCER ROUTE CHANGED}e Set to 1 if the route in the request is different from the route of the worker, i.e.
the request couldn’t be handled sticky.

Common reasons for loss of session are session timeouts, which are usually configurable on the back-end server.

The balancer also logs detailed information about handling stickyness to the error log, if the log level is set to debug
or higher. This is an easy way to troubleshoot stickyness problems, but the log volume might be to high for production
servers under high load.

766 CHAPTER 10. APACHE MODULES

10.79 Apache Module mod proxy connect

Description: MOD PROXY extension for CONNECT request handling
Status: Extension
ModuleIdentifier: proxy connect module
SourceFile: mod proxy connect.c

Summary

This module requires the service of MOD PROXY. It provides support for the CONNECT HTTP method. This method
is mainly used to tunnel SSL requests through proxy servers.

Thus, in order to get the ability of handling CONNECT requests, MOD PROXY and MOD PROXY CONNECT have to be
present in the server.

CONNECT is also used when the server needs to send an HTTPS request through a forward proxy. In this case the
server acts as a CONNECT client. This functionality is part of MOD PROXY and MOD PROXY CONNECT is not needed
in this case.

! Warning
Do not enable proxying until you have secured your server (p. 727) . Open proxy servers are
dangerous both to your network and to the Internet at large.

Directives

• AllowCONNECT

See also

• MOD PROXY

Request notes

MOD PROXY CONNECT creates the following request notes for logging using the %{VARNAME}n format in LOGFOR-
MAT or ERRORLOGFORMAT:

proxy-source-port The local port used for the connection to the backend server.

AllowCONNECT Directive

Description: Ports that are allowed to CONNECT through the proxy
Syntax: AllowCONNECT port[-port] [port[-port]] ...
Default: AllowCONNECT 443 563
Context: server config, virtual host
Status: Extension
Module: mod proxy connect
Compatibility: Moved from MOD PROXY in Apache 2.3.5. Port ranges available since Apache 2.3.7.

The ALLOWCONNECT directive specifies a list of port numbers or ranges to which the proxy CONNECT method
may connect. Today’s browsers use this method when a https connection is requested and proxy tunneling over
HTTP is in effect.

By default, only the default https port (443) and the default snews port (563) are enabled. Use the ALLOWCON-
NECT directive to override this default and allow connections to the listed ports only.

10.80. APACHE MODULE MOD PROXY EXPRESS 767

10.80 Apache Module mod proxy express

Description: Dynamic mass reverse proxy extension for MOD PROXY
Status: Extension
ModuleIdentifier: proxy express module
SourceFile: mod proxy express.c

Summary

This module creates dynamically configured mass reverse proxies, by mapping the Host: header of the HTTP request
to a server name and backend URL stored in a DBM file. This allows for easy use of a huge number of reverse
proxies with no configuration changes. It is much less feature-full than MOD PROXY BALANCER, which also provides
dynamic growth, but is intended to handle much, much larger numbers of backends. It is ideally suited as a front-end
HTTP switch.

This module requires the service of MOD PROXY.

! Warning
Do not enable proxying until you have secured your server (p. 727) . Open proxy servers are
dangerous both to your network and to the Internet at large.

=⇒Limitations

• This module is not intended to replace the dynamic capability of
MOD PROXY BALANCER. Instead, it is intended to be mostly a lightweight and
fast alternative to using MOD REWRITE with REWRITEMAP and the [P] flag for
mapped reverse proxying.

• It does not support regex or pattern matching at all.

• It emulates:

<VirtualHost *:80>
ServerName front.end.server
ProxyPass "/" "back.end.server:port"
ProxyPassReverse "/" "back.end.server:port"

</VirtualHost>

That is, the entire URL is appended to the mapped backend URL. This is in keeping with
the intent of being a simple but fast reverse proxy switch.

Directives

• ProxyExpressDBMFile

• ProxyExpressDBMType

• ProxyExpressEnable

See also

• MOD PROXY

768 CHAPTER 10. APACHE MODULES

ProxyExpressDBMFile Directive

Description: Pathname to DBM file.
Syntax: ProxyExpressDBMFile <pathname>
Default: None
Context: server config, virtual host
Status: Extension
Module: mod proxy express
Compatibility: Available in Apache 2.3.13 and later

The PROXYEXPRESSDBMFILE directive points to the location of the Express map DBM file. This file serves to map
the incoming server name, obtained from the Host: header, to a backend URL.

=⇒Note
The file is constructed from a plain text file format using the httxt2dbm (p. 315) util-
ity.

ProxyExpress map file
##
##express-map.txt:
##

www1.example.com http://192.168.211.2:8080
www2.example.com http://192.168.211.12:8088

www3.example.com http://192.168.212.10

Create DBM file
httxt2dbm -i express-map.txt -o emap

Configuration
ProxyExpressEnable on

ProxyExpressDBMFile emap

ProxyExpressDBMType Directive

Description: DBM type of file.
Syntax: ProxyExpressDBMFile <type>
Default: "default"
Context: server config, virtual host
Status: Extension
Module: mod proxy express
Compatibility: Available in Apache 2.3.13 and later

The PROXYEXPRESSDBMTYPE directive controls the DBM type expected by the module. The default is the default
DBM type created with httxt2dbm (p. 315) .

Possible values are (not all may be available at run time):

10.80. APACHE MODULE MOD PROXY EXPRESS 769

Value Description
db Berkeley DB files
gdbm GDBM files
ndbm NDBM files
sdbm SDBM files (always available)
default default DBM type

ProxyExpressEnable Directive

Description: Enable the module functionality.
Syntax: ProxyExpressEnable [on|off]
Default: off
Context: server config, virtual host
Status: Extension
Module: mod proxy express
Compatibility: Available in Apache 2.3.13 and later

The PROXYEXPRESSENABLE directive controls whether the module will be active.

770 CHAPTER 10. APACHE MODULES

10.81 Apache Module mod proxy fcgi

Description: FastCGI support module for MOD PROXY
Status: Extension
ModuleIdentifier: proxy fcgi module
SourceFile: mod proxy fcgi.c
Compatibility: Available in version 2.3 and later

Summary

This module requires the service of MOD PROXY. It provides support for the FastCGI60 protocol.

Thus, in order to get the ability of handling the FastCGI protocol, MOD PROXY and MOD PROXY FCGI have to be
present in the server.

Unlike mod fcgid61 and mod fastcgi62, MOD PROXY FCGI has no provision for starting the application process;
fcgistarter is provided (on some platforms) for that purpose. Alternatively, external launching or process man-
agement may be available in the FastCGI application framework in use.

! Warning
Do not enable proxying until you have secured your server (p. 727) . Open proxy servers are
dangerous both to your network and to the Internet at large.

Directives This module provides no directives.

See also

• fcgistarter

• MOD PROXY

• MOD AUTHNZ FCGI

Examples

Remember, in order to make the following examples work, you have to enable MOD PROXY and MOD PROXY FCGI.

Single application instance

ProxyPass "/myapp/" "fcgi://localhost:4000/"

MOD PROXY FCGI disables connection reuse by default, so after a request has been completed the connection will
NOT be held open by that httpd child process and won’t be reused. If the FastCGI application is able to handle
concurrent connections from httpd, you can opt-in to connection reuse as shown in the following example:

Single application instance, connection reuse (2.4.11 and later)

ProxyPass "/myapp/" "fcgi://localhost:4000/" enablereuse=on

The following example passes the request URI as a filesystem path for the PHP-FPM daemon to run. The request URL
is implicitly added to the 2nd parameter. The hostname and port following fcgi:// are where PHP-FPM is listening.
Connection pooling is enabled.

60http://www.fastcgi.com/
61http://httpd.apache.org/mod fcgid/
62http://www.fastcgi.com/

http://www.fastcgi.com/
http://httpd.apache.org/mod_fcgid/
http://www.fastcgi.com/

10.81. APACHE MODULE MOD PROXY FCGI 771

PHP-FPM

ProxyPassMatch "ˆ/myapp/.*\.php(/.*)?$" "fcgi://localhost:9000/var/www/" enablereuse=on

The following example passes the request URI as a filesystem path for the PHP-FPM daemon to run. In this case,
PHP-FPM is listening on a unix domain socket (UDS). Requires 2.4.9 or later. With this syntax, the hostname and
optional port following fcgi:// are ignored.

PHP-FPM with UDS

UDS does not currently support connection reuse
ProxyPassMatch "ˆ/(.*\.php(/.*)?)$" "unix:/var/run/php5-fpm.sock|fcgi://localhost/var/www/"

The balanced gateway needs MOD PROXY BALANCER and at least one load balancer algorithm module, such as
MOD LBMETHOD BYREQUESTS, in addition to the proxy modules listed above. MOD LBMETHOD BYREQUESTS is
the default, and will be used for this example configuration.

Balanced gateway to multiple application instances

ProxyPass "/myapp/" "balancer://myappcluster/"
<Proxy "balancer://myappcluster/">

BalancerMember "fcgi://localhost:4000"
BalancerMember "fcgi://localhost:4001"

</Proxy>

You can also force a request to be handled as a reverse-proxy request, by creating a suitable Handler pass-through.
The example configuration below will pass all requests for PHP scripts to the specified FastCGI server using reverse
proxy. This feature is available in Apache HTTP Server 2.4.10 and later. For performance reasons, you will want to
define a worker (p. 727) representing the same fcgi:// backend. The benefit of this form is that it allows the normal
mapping of URI to filename to occur in the server, and the local filesystem result is passed to the backend. When
FastCGI is configured this way, the server can calculate the most accurate PATH INFO.

Proxy via Handler

<FilesMatch "\.php$">
Note: The only part that varies is /path/to/app.sock
SetHandler "proxy:unix:/path/to/app.sock|fcgi://localhost/"

</FilesMatch>
Define a matching worker.
The part that is matched to the SetHandler is the part that
follows the pipe. If you need to distinguish, "localhost; can
be anything unique.
<Proxy "fcgi://localhost/" enablereuse=on max=10>
</Proxy>

<FilesMatch ...>
SetHandler "proxy:fcgi://localhost:9000"

</FilesMatch>

<FilesMatch ...>
SetHandler "proxy:balancer://myappcluster/"

</FilesMatch>

772 CHAPTER 10. APACHE MODULES

Environment Variables

In addition to the configuration directives that control the behaviour of MOD PROXY, there are a number of environment
variables that control the FCGI protocol provider:

proxy-fcgi-pathinfo When configured via PROXYPASS or PROXYPASSMATCH, MOD PROXY FCGI will not set the
PATH INFO environment variable. This allows the backend FCGI server to correctly determine SCRIPT NAME
and Script-URI and be compliant with RFC 3875 section 3.3. If instead you need MOD PROXY FCGI to generate
a "best guess" for PATH INFO, set this env-var. This is a workaround for a bug in some FCGI implementations.
This variable can be set to multiple values to tweak at how the best guess is chosen (In 2.4.11 and later only):

first-dot PATH INFO is split from the slash following the first "." in the URL.

last-dot PATH INFO is split from the slash following the last "." in the URL.

full PATH INFO is calculated by an attempt to map the URL to the local filesystem.

unescape PATH INFO is the path component of the URL, unescaped / decoded.

any other value PATH INFO is the same as the path component of the URL. Originally, this was the only
proxy-fcgi-pathinfo option.

10.82. APACHE MODULE MOD PROXY FDPASS 773

10.82 Apache Module mod proxy fdpass

Description: fdpass external process support module for MOD PROXY
Status: Extension
ModuleIdentifier: proxy fdpass module
SourceFile: mod proxy fdpass.c
Compatibility: Available for unix in version 2.3 and later

Summary

This module requires the service of MOD PROXY. It provides support for the passing the socket of the client to another
process.

mod proxy fdpass uses the ability of AF UNIX domain sockets to pass an open file descriptor63 to allow another
process to finish handling a request.

The module has a proxy fdpass flusher provider interface, which allows another module to optionally send the
response headers, or even the start of the response body. The default flush provider disables keep-alive, and sends the
response headers, letting the external process just send a response body.

At this time the only data passed to the external process is the client socket. To receive a client socket, call recvfrom
with an allocated struct cmsghdr64. Future versions of this module may include more data after the client socket,
but this is not implemented at this time.

Directives This module provides no directives.

See also

• MOD PROXY

63http://www.freebsd.org/cgi/man.cgi?query=recv
64http://www.kernel.org/doc/man-pages/online/pages/man3/cmsg.3.html

http://www.freebsd.org/cgi/man.cgi?query=recv
http://www.kernel.org/doc/man-pages/online/pages/man3/cmsg.3.html

774 CHAPTER 10. APACHE MODULES

10.83 Apache Module mod proxy ftp

Description: FTP support module for MOD PROXY
Status: Extension
ModuleIdentifier: proxy ftp module
SourceFile: mod proxy ftp.c

Summary

This module requires the service of MOD PROXY. It provides support for the proxying FTP sites. Note that FTP
support is currently limited to the GET method.

Thus, in order to get the ability of handling FTP proxy requests, MOD PROXY and MOD PROXY FTP have to be present
in the server.

! Warning
Do not enable proxying until you have secured your server (p. 727) . Open proxy servers are
dangerous both to your network and to the Internet at large.

Directives

• ProxyFtpDirCharset

• ProxyFtpEscapeWildcards

• ProxyFtpListOnWildcard

See also

• MOD PROXY

Why doesn’t file type xxx download via FTP?

You probably don’t have that particular file type defined as application/octet-stream in your proxy’s
mime.types configuration file. A useful line can be

application/octet-stream bin dms lha lzh exe class tgz taz

Alternatively you may prefer to default everything to binary:

ForceType application/octet-stream

How can I force an FTP ASCII download of File xxx?

In the rare situation where you must download a specific file using the FTP ASCII transfer method (while the default
transfer is in binary mode), you can override MOD PROXY’s default by suffixing the request with ;type=a to force
an ASCII transfer. (FTP Directory listings are always executed in ASCII mode, however.)

10.83. APACHE MODULE MOD PROXY FTP 775

How can I do FTP upload?

Currently, only GET is supported for FTP in mod proxy. You can of course use HTTP upload (POST or PUT) through
an Apache proxy.

How can I access FTP files outside of my home directory?

An FTP URI is interpreted relative to the home directory of the user who is logging in. Alas, to reach higher directory
levels you cannot use /../, as the dots are interpreted by the browser and not actually sent to the FTP server. To address
this problem, the so called Squid %2f hack was implemented in the Apache FTP proxy; it is a solution which is also
used by other popular proxy servers like the Squid Proxy Cache65. By prepending /%2f to the path of your request,
you can make such a proxy change the FTP starting directory to / (instead of the home directory). For example, to
retrieve the file /etc/motd, you would use the URL:

ftp://user@host/%2f/etc/motd

How can I hide the FTP cleartext password in my browser’s URL line?

To log in to an FTP server by username and password, Apache uses different strategies. In absence of a user name and
password in the URL altogether, Apache sends an anonymous login to the FTP server, i.e.,

user: anonymous

password: apache proxy@

This works for all popular FTP servers which are configured for anonymous access.

For a personal login with a specific username, you can embed the user name into the URL, like in:

ftp://username@host/myfile

If the FTP server asks for a password when given this username (which it should), then Apache will reply with a 401
(Authorization required) response, which causes the Browser to pop up the username/password dialog. Upon entering
the password, the connection attempt is retried, and if successful, the requested resource is presented. The advantage
of this procedure is that your browser does not display the password in cleartext (which it would if you had used

ftp://username:password@host/myfile

in the first place).

=⇒Note
The password which is transmitted in such a way is not encrypted on its way. It travels between
your browser and the Apache proxy server in a base64-encoded cleartext string, and between
the Apache proxy and the FTP server as plaintext. You should therefore think twice before
accessing your FTP server via HTTP (or before accessing your personal files via FTP at all!)
When using insecure channels, an eavesdropper might intercept your password on its way.

65http://www.squid-cache.org/

http://www.squid-cache.org/

776 CHAPTER 10. APACHE MODULES

Why do I get a file listing when I expected a file to be downloaded?

In order to allow both browsing the directories on an FTP server and downloading files, Apache looks at the request
URL. If it looks like a directory, or contains wildcard characters ("*?[{˜"), then it guesses that a listing is wanted
instead of a download.

You can disable the special handling of names with wildcard characters. See the PROXYFTPLISTONWILDCARD
directive.

ProxyFtpDirCharset Directive

Description: Define the character set for proxied FTP listings
Syntax: ProxyFtpDirCharset character set
Default: ProxyFtpDirCharset ISO-8859-1
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy ftp
Compatibility: Available in Apache 2.2.7 and later. Moved from MOD PROXY in Apache 2.3.5.

The PROXYFTPDIRCHARSET directive defines the character set to be set for FTP directory listings in HTML gener-
ated by MOD PROXY FTP.

ProxyFtpEscapeWildcards Directive

Description: Whether wildcards in requested filenames are escaped when sent to the FTP server
Syntax: ProxyFtpEscapeWildcards [on|off]
Default: on
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy ftp
Compatibility: Available in Apache 2.3.3 and later

The PROXYFTPESCAPEWILDCARDS directive controls whether wildcard characters ("*?[{˜") in requested filenames
are escaped with backslash before sending them to the FTP server. That is the default behavior, but many FTP servers
don’t know about the escaping and try to serve the literal filenames they were sent, including the backslashes in the
names.

Set to "off" to allow downloading files with wildcards in their names from FTP servers that don’t understand wildcard
escaping.

ProxyFtpListOnWildcard Directive

Description: Whether wildcards in requested filenames trigger a file listing
Syntax: ProxyFtpListOnWildcard [on|off]
Default: on
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy ftp
Compatibility: Available in Apache 2.3.3 and later

The PROXYFTPLISTONWILDCARD directive controls whether wildcard characters ("*?[{˜") in requested filenames
cause MOD PROXY FTP to return a listing of files instead of downloading a file. By default (value on), they do. Set to
"off" to allow downloading files even if they have wildcard characters in their names.

10.84. APACHE MODULE MOD PROXY HTML 777

10.84 Apache Module mod proxy html

Description: Rewrite HTML links in to ensure they are addressable from Clients’ networks in a proxy
context.

Status: Base
ModuleIdentifier: proxy html module
SourceFile: mod proxy html.c
Compatibility: Version 2.4 and later. Available as a third-party module for earlier 2.x versions

Summary

This module provides an output filter to rewrite HTML links in a proxy situation, to ensure that links work for users
outside the proxy. It serves the same purpose as Apache’s ProxyPassReverse directive does for HTTP headers, and is
an essential component of a reverse proxy.

For example, if a company has an application server at appserver.example.com that is only visible from
within the company’s internal network, and a public webserver www.example.com, they may wish to pro-
vide a gateway to the application server at http://www.example.com/appserver/. When the appli-
cation server links to itself, those links need to be rewritten to work through the gateway. mod proxy html
serves to rewrite foobar to
foobar making it acces-
sible from outside.

mod proxy html was originally developed at Webing, whose extensive documentation66 may be useful to users.

Directives

• ProxyHTMLBufSize

• ProxyHTMLCharsetOut

• ProxyHTMLDocType

• ProxyHTMLEnable

• ProxyHTMLEvents

• ProxyHTMLExtended

• ProxyHTMLFixups

• ProxyHTMLInterp

• ProxyHTMLLinks

• ProxyHTMLMeta

• ProxyHTMLStripComments

• ProxyHTMLURLMap

ProxyHTMLBufSize Directive

Description: Sets the buffer size increment for buffering inline scripts and stylesheets.
Syntax: ProxyHTMLBufSize bytes
Context: server config, virtual host, directory
Status: Base
Module: mod proxy html
Compatibility: Version 2.4 and later; available as a third-party for earlier 2.x versions

66http://apache.webthing.com/mod proxy html/

http://apache.webthing.com/mod_proxy_html/

778 CHAPTER 10. APACHE MODULES

In order to parse non-HTML content (stylesheets and scripts) embedded in HTML documents, mod proxy html has
to read the entire script or stylesheet into a buffer. This buffer will be expanded as necessary to hold the largest script
or stylesheet in a page, in increments of bytes as set by this directive.

The default is 8192, and will work well for almost all pages. However, if you know you’re proxying pages containing
stylesheets and/or scripts bigger than 8K (that is, for a single script or stylesheet, NOT in total), it will be more efficient
to set a larger buffer size and avoid the need to resize the buffer dynamically during a request.

ProxyHTMLCharsetOut Directive

Description: Specify a charset for mod proxy html output.
Syntax: ProxyHTMLCharsetOut Charset | *
Context: server config, virtual host, directory
Status: Base
Module: mod proxy html
Compatibility: Version 2.4 and later; available as a third-party for earlier 2.x versions

This selects an encoding for mod proxy html output. It should not normally be used, as any change from the default
UTF-8 (Unicode - as used internally by libxml2) will impose an additional processing overhead. The special token
ProxyHTMLCharsetOut * will generate output using the same encoding as the input.

Note that this relies on MOD XML2ENC being loaded.

ProxyHTMLDocType Directive

Description: Sets an HTML or XHTML document type declaration.
Syntax: ProxyHTMLDocType HTML|XHTML [Legacy]

OR
ProxyHTMLDocType fpi [SGML|XML]

Context: server config, virtual host, directory
Status: Base
Module: mod proxy html
Compatibility: Version 2.4 and later; available as a third-party for earlier 2.x versions

In the first form, documents will be declared as HTML 4.01 or XHTML 1.0 according to the option selected. This
option also determines whether HTML or XHTML syntax is used for output. Note that the format of the documents
coming from the backend server is immaterial: the parser will deal with it automatically. If the optional second
argument is set to "Legacy", documents will be declared "Transitional", an option that may be necessary if you are
proxying pre-1998 content or working with defective authoring/publishing tools.

In the second form, it will insert your own FPI. The optional second argument determines whether SGML/HTML or
XML/XHTML syntax will be used.

The default is changed to omitting any FPI, on the grounds that no FPI is better than a bogus one. If your backend
generates decent HTML or XHTML, set it accordingly.

If the first form is used, mod proxy html will also clean up the HTML to the specified standard. It cannot fix every
error, but it will strip out bogus elements and attributes. It will also optionally log other errors at LOGLEVEL Debug.

10.84. APACHE MODULE MOD PROXY HTML 779

ProxyHTMLEnable Directive

Description: Turns the proxy html filter on or off.
Syntax: ProxyHTMLEnable On|Off
Default: ProxyHTMLEnable Off
Context: server config, virtual host, directory
Status: Base
Module: mod proxy html
Compatibility: Version 2.4 and later; available as a third-party module for earlier 2.x versions.

A simple switch to enable or disable the proxy html filter. If MOD XML2ENC is loaded it will also automatically set
up internationalisation support.

Note that the proxy html filter will only act on HTML data (Content-Type text/html or application/xhtml+xml) and
when the data are proxied. You can override this (at your own risk) by setting the PROXY HTML FORCE environment
variable.

ProxyHTMLEvents Directive

Description: Specify attributes to treat as scripting events.
Syntax: ProxyHTMLEvents attribute [attribute ...]
Context: server config, virtual host, directory
Status: Base
Module: mod proxy html
Compatibility: Version 2.4 and later; available as a third-party for earlier 2.x versions

Specifies one or more attributes to treat as scripting events and apply PROXYHTMLURLMAPs to where enabled.
You can specify any number of attributes in one or more ProxyHTMLEvents directives.

Normally you’ll set this globally. If you set ProxyHTMLEvents in more than one scope so that one overrides the other,
you’ll need to specify a complete set in each of those scopes.

A default configuration is supplied in proxy-html.conf and defines the events in standard HTML 4 and XHTML 1.

ProxyHTMLExtended Directive

Description: Determines whether to fix links in inline scripts, stylesheets, and scripting events.
Syntax: ProxyHTMLExtended On|Off
Default: ProxyHTMLExtended Off
Context: server config, virtual host, directory
Status: Base
Module: mod proxy html
Compatibility: Version 2.4 and later; available as a third-party for earlier 2.x versions

Set to Off, HTML links are rewritten according to the PROXYHTMLURLMAP directives, but links appearing in
Javascript and CSS are ignored.

Set to On, all scripting events (as determined by PROXYHTMLEVENTS) and embedded scripts or stylesheets are also
processed by the PROXYHTMLURLMAP rules, according to the flags set for each rule. Since this requires more
parsing, performance will be best if you only enable it when strictly necessary.

You’ll also need to take care over patterns matched, since the parser has no knowledge of what is a URL within an
embedded script or stylesheet. In particular, extended matching of / is likely to lead to false matches.

780 CHAPTER 10. APACHE MODULES

ProxyHTMLFixups Directive

Description: Fixes for simple HTML errors.
Syntax: ProxyHTMLFixups [lowercase] [dospath] [reset]
Context: server config, virtual host, directory
Status: Base
Module: mod proxy html
Compatibility: Version 2.4 and later; available as a third-party for earlier 2.x versions

This directive takes one to three arguments as follows:

• lowercase Urls are rewritten to lowercase

• dospath Backslashes in URLs are rewritten to forward slashes.

• reset Unset any options set at a higher level in the configuration.

Take care when using these. The fixes will correct certain authoring mistakes, but risk also erroneously fixing links
that were correct to start with. Only use them if you know you have a broken backend server.

ProxyHTMLInterp Directive

Description: Enables per-request interpolation of PROXYHTMLURLMAP rules.
Syntax: ProxyHTMLInterp On|Off
Default: ProxyHTMLInterp Off
Context: server config, virtual host, directory
Status: Base
Module: mod proxy html
Compatibility: Version 2.4 and later; available as a third-party for earlier 2.x versions

This enables per-request interpolation in PROXYHTMLURLMAP to- and from- patterns.

If interpolation is not enabled, all rules are pre-compiled at startup. With interpolation, they must be re-compiled for
every request, which implies an extra processing overhead. It should therefore be enabled only when necessary.

ProxyHTMLLinks Directive

Description: Specify HTML elements that have URL attributes to be rewritten.
Syntax: ProxyHTMLLinks element attribute [attribute2 ...]
Context: server config, virtual host, directory
Status: Base
Module: mod proxy html
Compatibility: Version 2.4 and later; available as a third-party for earlier 2.x versions

Specifies elements that have URL attributes that should be rewritten using standard PROXYHTMLURLMAPs. You
will need one ProxyHTMLLinks directive per element, but it can have any number of attributes.

Normally you’ll set this globally. If you set ProxyHTMLLinks in more than one scope so that one overrides the other,
you’ll need to specify a complete set in each of those scopes.

A default configuration is supplied in proxy-html.conf and defines the HTML links for standard HTML 4 and XHTML
1.

10.84. APACHE MODULE MOD PROXY HTML 781

ProxyHTMLMeta Directive

Description: Turns on or off extra pre-parsing of metadata in HTML <head> sections.
Syntax: ProxyHTMLMeta On|Off
Default: ProxyHTMLMeta Off
Context: server config, virtual host, directory
Status: Base
Module: mod proxy html
Compatibility: Version 2.4 and later; available as a third-party module for earlier 2.x versions.

This turns on or off pre-parsing of metadata in HTML <head> sections.

If not required, turning ProxyHTMLMeta Off will give a small performance boost by skipping this parse step. How-
ever, it is sometimes necessary for internationalisation to work correctly.

ProxyHTMLMeta has two effects. Firstly and most importantly it enables detection of character encodings declared
in the form

<meta http-equiv="Content-Type" content="text/html;charset=foo">

or, in the case of an XHTML document, an XML declaration. It is NOT required if the charset is declared in a
real HTTP header (which is always preferable) from the backend server, nor if the document is utf-8 (unicode) or
a subset such as ASCII. You may also be able to dispense with it where documents use a default declared using
XML2ENCDEFAULT, but that risks propagating an incorrect declaration. A PROXYHTMLCHARSETOUT can remove
that risk, but is likely to be a bigger processing overhead than enabling ProxyHTMLMeta.

The other effect of enabling ProxyHTMLMeta is to parse all <meta http-equiv=...> declarations and convert
them to real HTTP headers, in keeping with the original purpose of this form of the HTML <meta> element.

ProxyHTMLStripComments Directive

Description: Determines whether to strip HTML comments.
Syntax: ProxyHTMLStripComments On|Off
Default: ProxyHTMLStripComments Off
Context: server config, virtual host, directory
Status: Base
Module: mod proxy html
Compatibility: Version 2.4 and later; available as a third-party for earlier 2.x versions

This directive will cause mod proxy html to strip HTML comments. Note that this will also kill off any scripts or
styles embedded in comments (a bogosity introduced in 1995/6 with Netscape 2 for the benefit of then-older browsers,
but still in use today). It may also interfere with comment-based processors such as SSI or ESI: be sure to run any of
those before mod proxy html in the filter chain if stripping comments!

ProxyHTMLURLMap Directive

Description: Defines a rule to rewrite HTML links
Syntax: ProxyHTMLURLMap from-pattern to-pattern [flags] [cond]
Context: server config, virtual host, directory
Status: Base
Module: mod proxy html
Compatibility: Version 2.4 and later; available as a third-party module for earlier 2.x versions.

This is the key directive for rewriting HTML links. When parsing a document, whenever a link target matches from-
pattern, the matching portion will be rewritten to to-pattern, as modified by any flags supplied and by the PROXY-
HTMLEXTENDED directive.

782 CHAPTER 10. APACHE MODULES

The optional third argument may define any of the following Flags. Flags are case-sensitive.

h Ignore HTML links (pass through unchanged)

e Ignore scripting events (pass through unchanged)

c Pass embedded script and style sections through untouched.

L Last-match. If this rule matches, no more rules are applied (note that this happens automatically for HTML links).

l Opposite to L. Overrides the one-change-only default behaviour with HTML links.

R Use Regular Expression matching-and-replace. from-pattern is a regexp, and to-pattern a replace-
ment string that may be based on the regexp. Regexp memory is supported: you can use brackets () in the
from-pattern and retrieve the matches with $1 to $9 in the to-pattern.

If R is not set, it will use string-literal search-and-replace. The logic is starts-with in HTML links, but contains
in scripting events and embedded script and style sections.

x Use POSIX extended Regular Expressions. Only applicable with R.

i Case-insensitive matching. Only applicable with R.

n Disable regexp memory (for speed). Only applicable with R.

s Line-based regexp matching. Only applicable with R.

ˆ Match at start only. This applies only to string matching (not regexps) and is irrelevant to HTML links.

$ Match at end only. This applies only to string matching (not regexps) and is irrelevant to HTML links.

V Interpolate environment variables in to-pattern. A string of the form ${varname|default} will be re-
placed by the value of environment variable varname. If that is unset, it is replaced by default. The
|default is optional.

NOTE: interpolation will only be enabled if PROXYHTMLINTERP is On.

v Interpolate environment variables in from-pattern. Patterns supported are as above.

NOTE: interpolation will only be enabled if PROXYHTMLINTERP is On.

The optional fourth cond argument defines a condition that will be evaluated per Request, provided PROXYHTMLIN-
TERP is On. If the condition evaluates FALSE the map will not be applied in this request. If TRUE, or if no condition
is defined, the map is applied.

A cond is evaluated by the Expression Parser (p. 89) . In addition, the simpler syntax of conditions in mod proxy html
3.x for HTTPD 2.0 and 2.2 is also supported.

10.85. APACHE MODULE MOD PROXY HTTP 783

10.85 Apache Module mod proxy http

Description: HTTP support module for MOD PROXY
Status: Extension
ModuleIdentifier: proxy http module
SourceFile: mod proxy http.c

Summary

This module requires the service of MOD PROXY. It provides the features used for proxying HTTP and HTTPS
requests. MOD PROXY HTTP supports HTTP/0.9, HTTP/1.0 and HTTP/1.1. It does not provide any caching abilities.
If you want to set up a caching proxy, you might want to use the additional service of the MOD CACHE module.

Thus, in order to get the ability of handling HTTP proxy requests, MOD PROXY and MOD PROXY HTTP have to be
present in the server.

! Warning
Do not enable proxying until you have secured your server (p. 727) . Open proxy servers are
dangerous both to your network and to the Internet at large.

Directives This module provides no directives.

See also

• MOD PROXY

• MOD PROXY CONNECT

Environment Variables

In addition to the configuration directives that control the behaviour of MOD PROXY, there are a number of environment
variables that control the HTTP protocol provider. Environment variables below that don’t specify specific values are
enabled when set to any value.

proxy-sendextracrlf Causes proxy to send an extra CR-LF newline on the end of a request. This is a workaround for
a bug in some browsers.

force-proxy-request-1.0 Forces the proxy to send requests to the backend as HTTP/1.0 and disables HTTP/1.1 fea-
tures.

proxy-nokeepalive Forces the proxy to close the backend connection after each request.

proxy-chain-auth If the proxy requires authentication, it will read and consume the proxy authentication credentials
sent by the client. With proxy-chain-auth it will also forward the credentials to the next proxy in the chain. This
may be necessary if you have a chain of proxies that share authentication information. Security Warning: Do
not set this unless you know you need it, as it forwards sensitive information!

proxy-sendcl HTTP/1.0 required all HTTP requests that include a body (e.g. POST requests) to include a Content-
Length header. This environment variable forces the Apache proxy to send this header to the backend server,
regardless of what the Client sent to the proxy. It ensures compatibility when proxying for an HTTP/1.0 or
unknown backend. However, it may require the entire request to be buffered by the proxy, so it becomes very
inefficient for large requests.

784 CHAPTER 10. APACHE MODULES

proxy-sendchunks or proxy-sendchunked This is the opposite of proxy-sendcl. It allows request bodies to be sent
to the backend using chunked transfer encoding. This allows the request to be efficiently streamed, but requires
that the backend server supports HTTP/1.1.

proxy-interim-response This variable takes values RFC (the default) or Suppress. Earlier httpd versions would
suppress HTTP interim (1xx) responses sent from the backend. This is technically a violation of the HTTP
protocol. In practice, if a backend sends an interim response, it may itself be extending the protocol in a manner
we know nothing about, or just broken. So this is now configurable: set proxy-interim-response RFC
to be fully protocol compliant, or proxy-interim-response Suppress to suppress interim responses.

proxy-initial-not-pooled If this variable is set, no pooled connection will be reused if the client request is the initial
request on the frontend connection. This avoids the "proxy: error reading status line from remote server" error
message caused by the race condition that the backend server closed the pooled connection after the connection
check by the proxy and before data sent by the proxy reached the backend. It has to be kept in mind that setting
this variable downgrades performance, especially with HTTP/1.0 clients.

Request notes

MOD PROXY HTTP creates the following request notes for logging using the %{VARNAME}n format in LOGFORMAT
or ERRORLOGFORMAT:

proxy-source-port The local port used for the connection to the backend server.

proxy-status The HTTP status received from the backend server.

10.86. APACHE MODULE MOD PROXY SCGI 785

10.86 Apache Module mod proxy scgi

Description: SCGI gateway module for MOD PROXY
Status: Extension
ModuleIdentifier: proxy scgi module
SourceFile: mod proxy scgi.c
Compatibility: Available in version 2.2.14 and later

Summary

This module requires the service of MOD PROXY. It provides support for the SCGI protocol, version 167.

Thus, in order to get the ability of handling the SCGI protocol, MOD PROXY and MOD PROXY SCGI have to be present
in the server.

! Warning
Do not enable proxying until you have secured your server (p. 727) . Open proxy servers are
dangerous both to your network and to the Internet at large.

Directives

• ProxySCGIInternalRedirect

• ProxySCGISendfile

See also

• MOD PROXY

• MOD PROXY BALANCER

Examples

Remember, in order to make the following examples work, you have to enable MOD PROXY and MOD PROXY SCGI.

Simple gateway

ProxyPass /scgi-bin/ scgi://localhost:4000/

The balanced gateway needs MOD PROXY BALANCER and at least one load balancer algorithm module, such as
MOD LBMETHOD BYREQUESTS, in addition to the proxy modules listed above. MOD LBMETHOD BYREQUESTS is
the default, and will be used for this example configuration.

Balanced gateway

ProxyPass "/scgi-bin/" "balancer://somecluster/"
<Proxy "balancer://somecluster">

BalancerMember "scgi://localhost:4000"
BalancerMember "scgi://localhost:4001"

</Proxy>

67http://python.ca/scgi/protocol.txt

http://python.ca/scgi/protocol.txt

786 CHAPTER 10. APACHE MODULES

Environment Variables

In addition to the configuration directives that control the behaviour of MOD PROXY, an environment variable may
also control the SCGI protocol provider:

proxy-scgi-pathinfo By default MOD PROXY SCGI will neither create nor export the PATH INFO environment vari-
able. This allows the backend SCGI server to correctly determine SCRIPT NAME and Script-URI and be
compliant with RFC 3875 section 3.3. If instead you need MOD PROXY SCGI to generate a "best guess"
for PATH INFO, set this env-var. The variable must be set before SETENV is effective. SETENVIF can be used
instead: SetEnvIf Request URI . proxy-scgi-pathinfo

ProxySCGIInternalRedirect Directive

Description: Enable or disable internal redirect responses from the backend
Syntax: ProxySCGIInternalRedirect On|Off|Headername
Default: ProxySCGIInternalRedirect On
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy scgi
Compatibility: The Headername feature is available in version 2.4.13 and later

The PROXYSCGIINTERNALREDIRECT enables the backend to internally redirect the gateway to a different URL.
This feature originates in MOD CGI, which internally redirects the response if the response status is OK (200) and the
response contains a Location (or configured alternate header) and its value starts with a slash (/). This value is
interpreted as a new local URL that Apache httpd internally redirects to.

MOD PROXY SCGI does the same as MOD CGI in this regard, except that you can turn off the feature or specify the
use of a header other than Location.

Example

ProxySCGIInternalRedirect Off

Django and some other frameworks will fully qualify "local URLs"
set by the application, so an alternate header must be used.
<Location /django-app/>

ProxySCGIInternalRedirect X-Location
</Location>

ProxySCGISendfile Directive

Description: Enable evaluation of X-Sendfile pseudo response header
Syntax: ProxySCGISendfile On|Off|Headername
Default: ProxySCGISendfile Off
Context: server config, virtual host, directory
Status: Extension
Module: mod proxy scgi

The PROXYSCGISENDFILE directive enables the SCGI backend to let files be served directly by the gateway. This is
useful for performance purposes - httpd can use sendfile or other optimizations, which are not possible if the file
comes over the backend socket. Additionally, the file contents are not transmitted twice.

The PROXYSCGISENDFILE argument determines the gateway behaviour:

10.86. APACHE MODULE MOD PROXY SCGI 787

Off No special handling takes place.

On The gateway looks for a backend response header called X-Sendfile and interprets the value as the filename
to serve. The header is removed from the final response headers. This is equivalent to ProxySCGISendfile
X-Sendfile.

anything else Similar to On, but instead of the hardcoded header name X-Sendfile, the argument is used as the
header name.

Example

Use the default header (X-Sendfile)
ProxySCGISendfile On

Use a different header
ProxySCGISendfile X-Send-Static

788 CHAPTER 10. APACHE MODULES

10.87 Apache Module mod proxy wstunnel

Description: Websockets support module for MOD PROXY
Status: Extension
ModuleIdentifier: proxy wstunnel module
SourceFile: mod proxy wstunnel.c
Compatibility: Available in httpd 2.4.5 and later

Summary

This module requires the service of MOD PROXY. It provides support for the tunnelling of web socket connections to
a backend websockets server. The connection is automagically upgraded to a websocket connection:

Upgrade: WebSocket
Connection: Upgrade

Proxying requests to websockets server

ProxyPass "/ws2/" "ws://echo.websocket.org/"
ProxyPass "/wss2/" "wss://echo.websocket.org/"

Directives This module provides no directives.

See also

• MOD PROXY

10.88. APACHE MODULE MOD RATELIMIT 789

10.88 Apache Module mod ratelimit

Description: Bandwidth Rate Limiting for Clients
Status: Extension
ModuleIdentifier: ratelimit module
SourceFile: mod ratelimit.c

Summary

Provides a filter named RATE LIMIT to limit client bandwidth. The connection speed to be simulated is specified, in
KiB/s, using the environment variable rate-limit.

Example Configuration

<Location "/downloads">
SetOutputFilter RATE_LIMIT
SetEnv rate-limit 400

</Location>

Directives This module provides no directives.

790 CHAPTER 10. APACHE MODULES

10.89 Apache Module mod reflector

Description: Reflect a request body as a response via the output filter stack.
Status: Base
ModuleIdentifier: reflector module
SourceFile: mod reflector.c
Compatibility: Version 2.3 and later

Summary

This module allows request bodies to be reflected back to the client, in the process passing the request through the
output filter stack. A suitably configured chain of filters can be used to transform the request into a response. This
module can be used to turn an output filter into an HTTP service.

Directives

• ReflectorHeader

Examples

Compression service Pass the request body through the DEFLATE filter to compress the body. This request requires
a Content-Encoding request header containing "gzip" for the filter to return compressed data.

<Location "/compress">
SetHandler reflector
SetOutputFilter DEFLATE

</Location>

Image downsampling service Pass the request body through an image downsampling filter, and reflect the results to
the caller.

<Location "/downsample">
SetHandler reflector
SetOutputFilter DOWNSAMPLE

</Location>

ReflectorHeader Directive

Description: Reflect an input header to the output headers
Syntax: ReflectorHeader inputheader [outputheader]
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Base
Module: mod reflector

This directive controls the reflection of request headers to the response. The first argument is the name of the request
header to copy. If the optional second argument is specified, it will be used as the name of the response header,
otherwise the original request header name will be used.

10.90. APACHE MODULE MOD REMOTEIP 791

10.90 Apache Module mod remoteip

Description: Replaces the original client IP address for the connection with the useragent IP address
list presented by a proxies or a load balancer via the request headers.

Status: Base
ModuleIdentifier: remoteip module
SourceFile: mod remoteip.c

Summary

This module is used to treat the useragent which initiated the request as the originating useragent as identified by httpd
for the purposes of authorization and logging, even where that useragent is behind a load balancer, front end server, or
proxy server.

The module overrides the client IP address for the connection with the useragent IP address reported in the request
header configured with the REMOTEIPHEADER directive.

Once replaced as instructed, this overridden useragent IP address is then used for the MOD AUTHZ HOST REQUIRE
IP feature, is reported by MOD STATUS, and is recorded by MOD LOG CONFIG %a and CORE %a format strings. The
underlying client IP of the connection is available in the %{c}a format string.

! It is critical to only enable this behavior from intermediate hosts (proxies, etc) which are trusted
by this server, since it is trivial for the remote useragent to impersonate another useragent.

Directives

• RemoteIPHeader

• RemoteIPInternalProxy

• RemoteIPInternalProxyList

• RemoteIPProxiesHeader

• RemoteIPTrustedProxy

• RemoteIPTrustedProxyList

See also

• MOD AUTHZ HOST

• MOD STATUS

• MOD LOG CONFIG

Remote IP Processing

Apache by default identifies the useragent with the connection’s client ip value, and the connection remote host and
remote logname are derived from this value. These fields play a role in authentication, authorization and logging and
other purposes by other loadable modules.

mod remoteip overrides the client IP of the connection with the advertised useragent IP as provided by a proxy or load
balancer, for the duration of the request. A load balancer might establish a long lived keepalive connection with the
server, and each request will have the correct useragent IP, even though the underlying client IP address of the load
balancer remains unchanged.

792 CHAPTER 10. APACHE MODULES

When multiple, comma delimited useragent IP addresses are listed in the header value, they are processed in Right-
to-Left order. Processing halts when a given useragent IP address is not trusted to present the preceding IP address.
The header field is updated to this remaining list of unconfirmed IP addresses, or if all IP addresses were trusted, this
header is removed from the request altogether.

In overriding the client IP, the module stores the list of intermediate hosts in a remoteip-proxy-ip-list note, which
MOD LOG CONFIG can record using the %{remoteip-proxy-ip-list}n format token. If the administrator
needs to store this as an additional header, this same value can also be recording as a header using the directive
REMOTEIPPROXIESHEADER.

=⇒IPv4-over-IPv6 Mapped Addresses
As with httpd in general, any IPv4-over-IPv6 mapped addresses are recorded in their IPv4
representation.

=⇒Internal (Private) Addresses
All internal addresses 10/8, 172.16/12, 192.168/16, 169.254/16 and 127/8 blocks (and IPv6
addresses outside of the public 2000::/3 block) are only evaluated by mod remoteip when
REMOTEIPINTERNALPROXY internal (intranet) proxies are registered.

RemoteIPHeader Directive

Description: Declare the header field which should be parsed for useragent IP addresses
Syntax: RemoteIPHeader header-field
Context: server config, virtual host
Status: Base
Module: mod remoteip

The REMOTEIPHEADER directive triggers MOD REMOTEIP to treat the value of the specified header-field header
as the useragent IP address, or list of intermediate useragent IP addresses, subject to further configuration of the
REMOTEIPINTERNALPROXY and REMOTEIPTRUSTEDPROXY directives. Unless these other directives are used,
MOD REMOTEIP will trust all hosts presenting a REMOTEIPHEADER IP value.

Internal (Load Balancer) Example

RemoteIPHeader X-Client-IP

Proxy Example

RemoteIPHeader X-Forwarded-For

RemoteIPInternalProxy Directive

Description: Declare client intranet IP addresses trusted to present the RemoteIPHeader value
Syntax: RemoteIPInternalProxy proxy-ip|proxy-ip/subnet|hostname ...
Context: server config, virtual host
Status: Base
Module: mod remoteip

The REMOTEIPINTERNALPROXY directive adds one or more addresses (or address blocks) to trust as presenting a
valid RemoteIPHeader value of the useragent IP. Unlike the REMOTEIPTRUSTEDPROXY directive, any IP address
presented in this header, including private intranet addresses, are trusted when passed from these proxies.

10.90. APACHE MODULE MOD REMOTEIP 793

Internal (Load Balancer) Example

RemoteIPHeader X-Client-IP
RemoteIPInternalProxy 10.0.2.0/24
RemoteIPInternalProxy gateway.localdomain

RemoteIPInternalProxyList Directive

Description: Declare client intranet IP addresses trusted to present the RemoteIPHeader value
Syntax: RemoteIPInternalProxyList filename
Context: server config, virtual host
Status: Base
Module: mod remoteip

The REMOTEIPINTERNALPROXYLIST directive specifies a file parsed at startup, and builds a list of addresses (or
address blocks) to trust as presenting a valid RemoteIPHeader value of the useragent IP.

The ’#’ hash character designates a comment line, otherwise each whitespace or newline separated entry is processed
identically to the REMOTEIPINTERNALPROXY directive.

Internal (Load Balancer) Example

RemoteIPHeader X-Client-IP
RemoteIPInternalProxyList conf/trusted-proxies.lst

conf/trusted-proxies.lst contents

Our internally trusted proxies;
10.0.2.0/24 #Everyone in the testing group
gateway.localdomain #The front end balancer

RemoteIPProxiesHeader Directive

Description: Declare the header field which will record all intermediate IP addresses
Syntax: RemoteIPProxiesHeader HeaderFieldName
Context: server config, virtual host
Status: Base
Module: mod remoteip

The REMOTEIPPROXIESHEADER directive specifies a header into which MOD REMOTEIP will collect a list of all
of the intermediate client IP addresses trusted to resolve the useragent IP of the request. Note that intermediate RE-
MOTEIPTRUSTEDPROXY addresses are recorded in this header, while any intermediate REMOTEIPINTERNALPROXY
addresses are discarded.

Example

RemoteIPHeader X-Forwarded-For
RemoteIPProxiesHeader X-Forwarded-By

794 CHAPTER 10. APACHE MODULES

RemoteIPTrustedProxy Directive

Description: Declare client intranet IP addresses trusted to present the RemoteIPHeader value
Syntax: RemoteIPTrustedProxy proxy-ip|proxy-ip/subnet|hostname ...
Context: server config, virtual host
Status: Base
Module: mod remoteip

The REMOTEIPTRUSTEDPROXY directive adds one or more addresses (or address blocks) to trust as presenting a
valid RemoteIPHeader value of the useragent IP. Unlike the REMOTEIPINTERNALPROXY directive, any intranet or
private IP address reported by such proxies, including the 10/8, 172.16/12, 192.168/16, 169.254/16 and 127/8 blocks
(or outside of the IPv6 public 2000::/3 block) are not trusted as the useragent IP, and are left in the REMOTEIPHEADER
header’s value.

Trusted (Load Balancer) Example

RemoteIPHeader X-Forwarded-For
RemoteIPTrustedProxy 10.0.2.16/28
RemoteIPTrustedProxy proxy.example.com

RemoteIPTrustedProxyList Directive

Description: Declare client intranet IP addresses trusted to present the RemoteIPHeader value
Syntax: RemoteIPTrustedProxyList filename
Context: server config, virtual host
Status: Base
Module: mod remoteip

The REMOTEIPTRUSTEDPROXYLIST directive specifies a file parsed at startup, and builds a list of addresses (or
address blocks) to trust as presenting a valid RemoteIPHeader value of the useragent IP.

The ’#’ hash character designates a comment line, otherwise each whitespace or newline separated entry is processed
identically to the REMOTEIPTRUSTEDPROXY directive.

Trusted (Load Balancer) Example

RemoteIPHeader X-Forwarded-For
RemoteIPTrustedProxyList conf/trusted-proxies.lst

conf/trusted-proxies.lst contents
Identified external proxies;
192.0.2.16/28 #wap phone group of proxies

proxy.isp.example.com #some well known ISP

10.91. APACHE MODULE MOD REQTIMEOUT 795

10.91 Apache Module mod reqtimeout

Description: Set timeout and minimum data rate for receiving requests
Status: Extension
ModuleIdentifier: reqtimeout module
SourceFile: mod reqtimeout.c
Compatibility: Available in Apache HTTPD 2.2.15 and later

Directives

• RequestReadTimeout

Examples

1. Allow 10 seconds to receive the request including the headers and 30 seconds for receiving the request body:

RequestReadTimeout header=10 body=30

2. Allow at least 10 seconds to receive the request body. If the client sends data, increase the timeout by 1 second
for every 1000 bytes received, with no upper limit for the timeout (except for the limit given indirectly by
LIMITREQUESTBODY):

RequestReadTimeout body=10,MinRate=1000

3. Allow at least 10 seconds to receive the request including the headers. If the client sends data, increase the
timeout by 1 second for every 500 bytes received. But do not allow more than 30 seconds for the request
including the headers:

RequestReadTimeout header=10-30,MinRate=500

4. Usually, a server should have both header and body timeouts configured. If a common configuration is used for
http and https virtual hosts, the timeouts should not be set too low:

RequestReadTimeout header=20-40,MinRate=500 body=20,MinRate=500

RequestReadTimeout Directive

Description: Set timeout values for receiving request headers and body from client.
Syntax: RequestReadTimeout [header=timeout[-maxtimeout][,MinRate=rate]

[body=timeout[-maxtimeout][,MinRate=rate]
Default: header=20-40,MinRate=500 body=20,MinRate=500
Context: server config, virtual host
Status: Extension
Module: mod reqtimeout
Compatibility: Available in version 2.2.15 and later; defaulted to disabled in version 2.3.14 and earlier.

This directive can set various timeouts for receiving the request headers and the request body from the client. If the
client fails to send headers or body within the configured time, a 408 REQUEST TIME OUT error is sent.

For SSL virtual hosts, the header timeout values include the time needed to do the initial SSL handshake. If the
user’s browser is configured to query certificate revocation lists and the CRL server is not reachable, the initial SSL
handshake may take a significant time until the browser gives up waiting for the CRL. Therefore the header timeout

796 CHAPTER 10. APACHE MODULES

values should not be set to very low values for SSL virtual hosts. The body timeout values include the time needed for
SSL renegotiation (if necessary).

When an ACCEPTFILTER is in use (usually the case on Linux and FreeBSD), the socket is not sent to the server
process before at least one byte (or the whole request for httpready) is received. The header timeout configured
with RequestReadTimeout is only effective after the server process has received the socket.

For each of the two timeout types (header or body), there are three ways to specify the timeout:

• Fixed timeout value:

type=timeout

The time in seconds allowed for reading all of the request headers or body, respectively. A value of 0 means no
limit.

• Disable module for a vhost::

header=0 body=0

This disables MOD REQTIMEOUT completely.

• Timeout value that is increased when data is received:

type=timeout,MinRate=data rate

Same as above, but whenever data is received, the timeout value is increased according to the specified minimum
data rate (in bytes per second).

• Timeout value that is increased when data is received, with an upper bound:

type=timeout-maxtimeout,MinRate=data rate

Same as above, but the timeout will not be increased above the second value of the specified timeout range.

10.92. APACHE MODULE MOD REQUEST 797

10.92 Apache Module mod request

Description: Filters to handle and make available HTTP request bodies
Status: Base
ModuleIdentifier: request module
SourceFile: mod request.c
Compatibility: Available in Apache 2.3 and later

Directives

• KeptBodySize

KeptBodySize Directive

Description: Keep the request body instead of discarding it up to the specified maximum size, for potential
use by filters such as mod include.

Syntax: KeptBodySize maximum size in bytes
Default: KeptBodySize 0
Context: directory
Status: Base
Module: mod request

Under normal circumstances, request handlers such as the default handler for static files will discard the request body
when it is not needed by the request handler. As a result, filters such as mod include are limited to making GET
requests only when including other URLs as subrequests, even if the original request was a POST request, as the
discarded request body is no longer available once filter processing is taking place.

When this directive has a value greater than zero, request handlers that would otherwise discard request bodies will
instead set the request body aside for use by filters up to the maximum size specified. In the case of the mod include
filter, an attempt to POST a request to the static shtml file will cause any subrequests to be POST requests, instead of
GET requests as before.

This feature makes it possible to break up complex web pages and web applications into small individual components,
and combine the components and the surrounding web page structure together using MOD INCLUDE. The components
can take the form of CGI programs, scripted languages, or URLs reverse proxied into the URL space from another
server using MOD PROXY.

Note: Each request set aside has to be set aside in temporary RAM until the request is complete. As a result, care
should be taken to ensure sufficient RAM is available on the server to support the intended load. Use of this directive
should be limited to where needed on targeted parts of your URL space, and with the lowest possible value that is still
big enough to hold a request body.

If the request size sent by the client exceeds the maximum size allocated by this directive, the server will return 413
Request Entity Too Large.

See also

• mod include (p. 619) documentation

• mod auth form (p. 434) documentation

798 CHAPTER 10. APACHE MODULES

10.93 Apache Module mod rewrite

Description: Provides a rule-based rewriting engine to rewrite requested URLs on the fly
Status: Extension
ModuleIdentifier: rewrite module
SourceFile: mod rewrite.c

Summary

The MOD REWRITE module uses a rule-based rewriting engine, based on a PCRE regular-expression parser, to rewrite
requested URLs on the fly. By default, MOD REWRITE maps a URL to a filesystem path. However, it can also be used
to redirect one URL to another URL, or to invoke an internal proxy fetch.

MOD REWRITE provides a flexible and powerful way to manipulate URLs using an unlimited number of rules. Each
rule can have an unlimited number of attached rule conditions, to allow you to rewrite URL based on server variables,
environment variables, HTTP headers, or time stamps.

MOD REWRITE operates on the full URL path, including the path-info section. A rewrite rule can be invoked in
httpd.conf or in .htaccess. The path generated by a rewrite rule can include a query string, or can lead to
internal sub-processing, external request redirection, or internal proxy throughput.

Further details, discussion, and examples, are provided in the detailed mod rewrite documentation (p. 136) .

Directives

• RewriteBase

• RewriteCond

• RewriteEngine

• RewriteMap

• RewriteOptions

• RewriteRule

Logging

MOD REWRITE offers detailed logging of its actions at the trace1 to trace8 log levels. The log level can be
set specifically for MOD REWRITE using the LOGLEVEL directive: Up to level debug, no actions are logged, while
trace8 means that practically all actions are logged.

=⇒Using a high trace log level for MOD REWRITE will slow down your Apache HTTP Server
dramatically! Use a log level higher than trace2 only for debugging!

Example

LogLevel alert rewrite:trace3

=⇒RewriteLog
Those familiar with earlier versions of MOD REWRITE will no doubt be looking for the
RewriteLog and RewriteLogLevel directives. This functionality has been completely
replaced by the new per-module logging configuration mentioned above.
To get just the MOD REWRITE-specific log messages, pipe the log file through grep:

tail -f error log|fgrep ’[rewrite:’

10.93. APACHE MODULE MOD REWRITE 799

RewriteBase Directive

Description: Sets the base URL for per-directory rewrites
Syntax: RewriteBase URL-path
Default: None
Context: directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod rewrite

The REWRITEBASE directive specifies the URL prefix to be used for per-directory (htaccess) REWRITERULE direc-
tives that substitute a relative path.

This directive is required when you use a relative path in a substitution in per-directory (htaccess) context unless either
of the following conditions are true:

• The original request, and the substitution, are underneath the DOCUMENTROOT (as opposed to reachable by
other means, such as ALIAS).

• The filesystem path to the directory containing the REWRITERULE, suffixed by the relative substitution is also
valid as a URL path on the server (this is rare).

• In Apache HTTP Server 2.4.13 and later, this directive may be omitted when the request is mapped via ALIAS
or MOD USERDIR.

In the example below, REWRITEBASE is necessary to avoid rewriting to http://example.com/opt/myapp-
1.2.3/welcome.html since the resource was not relative to the document root. This misconfiguration would normally
cause the server to look for an "opt" directory under the document root.

DocumentRoot "/var/www/example.com"
AliasMatch "ˆ/myapp" "/opt/myapp-1.2.3"
<Directory "/opt/myapp-1.2.3">

RewriteEngine On
RewriteBase /myapp/
RewriteRule "ˆindex\.html$" "welcome.html"

</Directory>

RewriteCond Directive

Description: Defines a condition under which rewriting will take place
Syntax: RewriteCond TestString CondPattern
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod rewrite

The REWRITECOND directive defines a rule condition. One or more REWRITECOND can precede a REWRITERULE
directive. The following rule is then only used if both the current state of the URI matches its pattern, and if these
conditions are met.

TestString is a string which can contain the following expanded constructs in addition to plain text:

• RewriteRule backreferences: These are backreferences of the form $N (0 <= N <= 9). $1 to $9 provide access
to the grouped parts (in parentheses) of the pattern, from the RewriteRule which is subject to the current set
of RewriteCond conditions. $0 provides access to the whole string matched by that pattern.

800 CHAPTER 10. APACHE MODULES

• RewriteCond backreferences: These are backreferences of the form %N (0 <= N <= 9). %1 to %9 provide
access to the grouped parts (again, in parentheses) of the pattern, from the last matched RewriteCond in the
current set of conditions. %0 provides access to the whole string matched by that pattern.

• RewriteMap expansions: These are expansions of the form ${mapname:key|default}. See the docu-
mentation for RewriteMap for more details.

• Server-Variables: These are variables of the form %{ NAME OF VARIABLE } where NAME OF VARIABLE
can be a string taken from the following list:

HTTP headers: connection & request:
HTTP ACCEPT
HTTP COOKIE
HTTP FORWARDED
HTTP HOST
HTTP PROXY CONNECTION
HTTP REFERER
HTTP USER AGENT

AUTH TYPE
CONN REMOTE ADDR
CONTEXT PREFIX
CONTEXT DOCUMENT ROOT
IPV6
PATH INFO
QUERY STRING
REMOTE ADDR
REMOTE HOST
REMOTE IDENT
REMOTE PORT
REMOTE USER
REQUEST METHOD
SCRIPT FILENAME

server internals: date and time: specials:
DOCUMENT ROOT
SCRIPT GROUP
SCRIPT USER
SERVER ADDR
SERVER ADMIN
SERVER NAME
SERVER PORT
SERVER PROTOCOL
SERVER SOFTWARE

TIME YEAR
TIME MON
TIME DAY
TIME HOUR
TIME MIN
TIME SEC
TIME WDAY
TIME

API VERSION
CONN REMOTE ADDR
HTTPS
IS SUBREQ
REMOTE ADDR
REQUEST FILENAME
REQUEST SCHEME
REQUEST URI
THE REQUEST

These variables all correspond to the similarly named HTTP MIME-headers, C variables of the Apache HTTP
Server or struct tm fields of the Unix system. Most are documented here (p. 89) or elsewhere in the Manual
or in the CGI specification.

SERVER NAME and SERVER PORT depend on the values of USECANONICALNAME and USECANONICAL-
PHYSICALPORT respectively.

Those that are special to mod rewrite include those below.

10.93. APACHE MODULE MOD REWRITE 801

=⇒
API VERSION This is the version of the Apache httpd module API (the internal interface

between server and module) in the current httpd build, as defined in include/ap mmn.h.
The module API version corresponds to the version of Apache httpd in use (in the release
version of Apache httpd 1.3.14, for instance, it is 19990320:10), but is mainly of interest
to module authors.

CONN REMOTE ADDR Since 2.4.8: The peer IP address of the connection (see the
MOD REMOTEIP module).

HTTPS Will contain the text "on" if the connection is using SSL/TLS, or "off" otherwise.
(This variable can be safely used regardless of whether or not MOD SSL is loaded).

IS SUBREQ Will contain the text "true" if the request currently being processed is a sub-
request, "false" otherwise. Sub-requests may be generated by modules that need to
resolve additional files or URIs in order to complete their tasks.

REMOTE ADDR The IP address of the remote host (see the MOD REMOTEIP module).

REQUEST FILENAME The full local filesystem path to the file or script matching the request,
if this has already been determined by the server at the time REQUEST FILENAME is
referenced. Otherwise, such as when used in virtual host context, the same value as
REQUEST URI. Depending on the value of ACCEPTPATHINFO, the server may have
only used some leading components of the REQUEST URI to map the request to a file.

REQUEST SCHEME Will contain the scheme of the request (usually "http" or "https"). This
value can be influenced with SERVERNAME.

REQUEST URI The path component of the requested URI, such as "/index.html". This
notably excludes the query string which is available as as its own variable named
QUERY STRING.

THE REQUEST The full HTTP request line sent by the browser to the server (e.g., "GET
/index.html HTTP/1.1"). This does not include any additional headers sent by
the browser. This value has not been unescaped (decoded), unlike most other variables
below.

If the TestString has the special value expr, the CondPattern will be treated as an ap expr (p. 89) . HTTP headers
referenced in the expression will be added to the Vary header if the novary flag is not given.

Other things you should be aware of:

1. The variables SCRIPT FILENAME and REQUEST FILENAME contain the same value - the value of the
filename field of the internal request rec structure of the Apache HTTP Server. The first name is the
commonly known CGI variable name while the second is the appropriate counterpart of REQUEST URI (which
contains the value of the uri field of request rec).

If a substitution occurred and the rewriting continues, the value of both variables will be updated accordingly.

If used in per-server context (i.e., before the request is mapped to the filesystem) SCRIPT FILENAME and
REQUEST FILENAME cannot contain the full local filesystem path since the path is unknown at this stage
of processing. Both variables will initially contain the value of REQUEST URI in that case. In order
to obtain the full local filesystem path of the request in per-server context, use an URL-based look-ahead
%{LA-U:REQUEST FILENAME} to determine the final value of REQUEST FILENAME.

2. %{ENV:variable}, where variable can be any environment variable, is also available. This is looked-up via
internal Apache httpd structures and (if not found there) via getenv() from the Apache httpd server process.

802 CHAPTER 10. APACHE MODULES

3. %{SSL:variable}, where variable is the name of an SSL environment variable (p. 847) , can be used
whether or not MOD SSL is loaded, but will always expand to the empty string if it is not. Example:
%{SSL:SSL CIPHER USEKEYSIZE} may expand to 128.

4. %{HTTP:header}, where header can be any HTTP MIME-header name, can always be used to obtain the
value of a header sent in the HTTP request. Example: %{HTTP:Proxy-Connection} is the value of the
HTTP header “Proxy-Connection:”. If a HTTP header is used in a condition this header is added to
the Vary header of the response in case the condition evaluates to true for the request. It is not added if the
condition evaluates to false for the request. Adding the HTTP header to the Vary header of the response is
needed for proper caching.

It has to be kept in mind that conditions follow a short circuit logic in the case of the ’ornext|OR’ flag so that
certain conditions might not be evaluated at all.

5. %{LA-U:variable} can be used for look-aheads which perform an internal (URL-based) sub-request to
determine the final value of variable. This can be used to access variable for rewriting which is not available
at the current stage, but will be set in a later phase. For instance, to rewrite according to the REMOTE USER
variable from within the per-server context (httpd.conf file) you must use %{LA-U:REMOTE USER} -
this variable is set by the authorization phases, which come after the URL translation phase (during which
mod rewrite operates).

On the other hand, because mod rewrite implements its per-directory context (.htaccess file) via the
Fixup phase of the API and because the authorization phases come before this phase, you just can use
%{REMOTE USER} in that context.

6. %{LA-F:variable} can be used to perform an internal (filename-based) sub-request, to determine the final
value of variable. Most of the time, this is the same as LA-U above.

CondPattern is the condition pattern, a regular expression which is applied to the current instance of the TestString.
TestString is first evaluated, before being matched against CondPattern.

CondPattern is usually a perl compatible regular expression, but there is additional syntax available to perform other
useful tests against the Teststring:

1. You can prefix the pattern string with a ’!’ character (exclamation mark) to negate the result of the condition,
no matter what kind of CondPattern is used.

2. You can perform lexicographical string comparisons:

• ’<CondPattern’ (lexicographically precedes)
Treats the CondPattern as a plain string and compares it lexicographically to TestString. True if TestString
lexicographically precedes CondPattern.
• ’>CondPattern’ (lexicographically follows)

Treats the CondPattern as a plain string and compares it lexicographically to TestString. True if TestString
lexicographically follows CondPattern.
• ’=CondPattern’ (lexicographically equal)

Treats the CondPattern as a plain string and compares it lexicographically to TestString. True if TestString
is lexicographically equal to CondPattern (the two strings are exactly equal, character for character). If
CondPattern is "" (two quotation marks) this compares TestString to the empty string.
• ’<=CondPattern’ (lexicographically less than or equal to)

Treats the CondPattern as a plain string and compares it lexicographically to TestString. True if TestString
lexicographically precedes CondPattern, or is equal to CondPattern (the two strings are equal, character
for character).
• ’>=CondPattern’ (lexicographically greater than or equal to)

Treats the CondPattern as a plain string and compares it lexicographically to TestString. True if TestString
lexicographically follows CondPattern, or is equal to CondPattern (the two strings are equal, character for
character).

10.93. APACHE MODULE MOD REWRITE 803

3. You can perform integer comparisons:

• ’-eq’ (is numerically equal to)
The TestString is treated as an integer, and is numerically compared to the CondPattern. True if the two
are numerically equal.
• ’-ge’ (is numerically greater than or equal to)

The TestString is treated as an integer, and is numerically compared to the CondPattern. True if the
TestString is numerically greater than or equal to the CondPattern.
• ’-gt’ (is numerically greater than)

The TestString is treated as an integer, and is numerically compared to the CondPattern. True if the
TestString is numerically greater than the CondPattern.
• ’-le’ (is numerically less than or equal to)

The TestString is treated as an integer, and is numerically compared to the CondPattern. True if the
TestString is numerically less than or equal to the CondPattern. Avoid confusion with the -l by using the
-L or -h variant.
• ’-lt’ (is numerically less than)

The TestString is treated as an integer, and is numerically compared to the CondPattern. True if the
TestString is numerically less than the CondPattern. Avoid confusion with the -l by using the -L or -h
variant.

4. You can perform various file attribute tests:

• ’-d’ (is directory)
Treats the TestString as a pathname and tests whether or not it exists, and is a directory.
• ’-f’ (is regular file)

Treats the TestString as a pathname and tests whether or not it exists, and is a regular file.
• ’-F’ (is existing file, via subrequest)

Checks whether or not TestString is a valid file, accessible via all the server’s currently-configured access
controls for that path. This uses an internal subrequest to do the check, so use it with care - it can impact
your server’s performance!
• ’-H’ (is symbolic link, bash convention)

See -l.
• ’-l’ (is symbolic link)

Treats the TestString as a pathname and tests whether or not it exists, and is a symbolic link. May also use
the bash convention of -L or -h if there’s a possibility of confusion such as when using the -lt or -le tests.
• ’-L’ (is symbolic link, bash convention)

See -l.
• ’-s’ (is regular file, with size)

Treats the TestString as a pathname and tests whether or not it exists, and is a regular file with size greater
than zero.
• ’-U’ (is existing URL, via subrequest)

Checks whether or not TestString is a valid URL, accessible via all the server’s currently-configured access
controls for that path. This uses an internal subrequest to do the check, so use it with care - it can impact
your server’s performance!
This flag only returns information about things like access control, authentication, and authorization. This
flag does not return information about the status code the configured handler (static file, CGI, proxy, etc.)
would have returned.
• ’-x’ (has executable permissions)

Treats the TestString as a pathname and tests whether or not it exists, and has executable permissions.
These permissions are determined according to the underlying OS.

5. If the TestString has the special value expr, the CondPattern will be treated as an ap expr (p. 89) .

In the below example, -strmatch is used to compare the REFERER against the site hostname, to block
unwanted hotlinking.

804 CHAPTER 10. APACHE MODULES

RewriteCond expr "! %{HTTP_REFERER} -strmatch ’*://%{HTTP_HOST}/*’"
RewriteRule "ˆ/images" "-" [F]

6. You can also set special flags for CondPattern by appending [flags] as the third argument to the
RewriteCond directive, where flags is a comma-separated list of any of the following flags:

• ’nocase|NC’ (no case)
This makes the test case-insensitive - differences between ’A-Z’ and ’a-z’ are ignored, both in the ex-
panded TestString and the CondPattern. This flag is effective only for comparisons between TestString and
CondPattern. It has no effect on filesystem and subrequest checks.
• ’ornext|OR’ (or next condition)

Use this to combine rule conditions with a local OR instead of the implicit AND. Typical example:

RewriteCond "%{REMOTE_HOST}" "ˆhost1" [OR]
RewriteCond "%{REMOTE_HOST}" "ˆhost2" [OR]
RewriteCond "%{REMOTE_HOST}" "ˆhost3"
RewriteRule ...some special stuff for any of these hosts...

Without this flag you would have to write the condition/rule pair three times.
• ’novary|NV’ (no vary)

If a HTTP header is used in the condition, this flag prevents this header from being added to the Vary
header of the response.
Using this flag might break proper caching of the response if the representation of this response varies
on the value of this header. So this flag should be only used if the meaning of the Vary header is well
understood.

Example:

To rewrite the Homepage of a site according to the “User-Agent:” header of the request, you can use the following:

RewriteCond "%{HTTP_USER_AGENT}" "(iPhone|Blackberry|Android)"
RewriteRule "ˆ/$" "/homepage.mobile.html" [L]

RewriteRule "ˆ/$" "/homepage.std.html" [L]

Explanation: If you use a browser which identifies itself as a mobile browser (note that the example is incomplete, as
there are many other mobile platforms), the mobile version of the homepage is served. Otherwise, the standard page
is served.

RewriteEngine Directive

Description: Enables or disables runtime rewriting engine
Syntax: RewriteEngine on|off
Default: RewriteEngine off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod rewrite

The REWRITEENGINE directive enables or disables the runtime rewriting engine. If it is set to off this module does
no runtime processing at all. It does not even update the SCRIPT URx environment variables.

Use this directive to disable rules in a particular context, rather than commenting out all the REWRITERULE directives.

10.93. APACHE MODULE MOD REWRITE 805

Note that rewrite configurations are not inherited by virtual hosts. This means that you need to have a
RewriteEngine on directive for each virtual host in which you wish to use rewrite rules.

REWRITEMAP directives of the type prg are not started during server initialization if they’re defined in a context that
does not have REWRITEENGINE set to on

RewriteMap Directive

Description: Defines a mapping function for key-lookup
Syntax: RewriteMap MapName MapType:MapSource
Context: server config, virtual host
Status: Extension
Module: mod rewrite

The REWRITEMAP directive defines a Rewriting Map which can be used inside rule substitution strings by the
mapping-functions to insert/substitute fields through a key lookup. The source of this lookup can be of various types.

The MapName is the name of the map and will be used to specify a mapping-function for the substitution strings of a
rewriting rule via one of the following constructs:

${MapName : LookupKey }
${MapName : LookupKey | DefaultValue }

When such a construct occurs, the map MapName is consulted and the key LookupKey is looked-up. If the key is found,
the map-function construct is substituted by SubstValue. If the key is not found then it is substituted by DefaultValue
or by the empty string if no DefaultValue was specified. Empty values behave as if the key was absent, therefore it is
not possible to distinguish between empty-valued keys and absent keys.

For example, you might define a REWRITEMAP as:

RewriteMap "examplemap" "txt:/path/to/file/map.txt"

You would then be able to use this map in a REWRITERULE as follows:

RewriteRule "ˆ/ex/(.*)" "${examplemap:$1}"

The following combinations for MapType and MapSource can be used:

txt A plain text file containing space-separated key-value pairs, one per line. (Details ... (p. 156))

rnd Randomly selects an entry from a plain text file (Details ... (p. 156))

dbm Looks up an entry in a dbm file containing name, value pairs. Hash is constructed from a plain text file format
using the httxt2dbm (p. 315) utility. (Details ... (p. 156))

int One of the four available internal functions provided by RewriteMap: toupper, tolower, escape or unescape.
(Details ... (p. 156))

prg Calls an external program or script to process the rewriting. (Details ... (p. 156))

dbd or fastdbd A SQL SELECT statement to be performed to look up the rewrite target. (Details ... (p. 156))

Further details, and numerous examples, may be found in the RewriteMap HowTo (p. 156)

806 CHAPTER 10. APACHE MODULES

RewriteOptions Directive

Description: Sets some special options for the rewrite engine
Syntax: RewriteOptions Options
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod rewrite
Compatibility: MaxRedirects is no longer available in version 2.1 and later

The REWRITEOPTIONS directive sets some special options for the current per-server or per-directory configuration.
The Option string can currently only be one of the following:

Inherit This forces the current configuration to inherit the configuration of the parent. In per-virtual-server context,
this means that the maps, conditions and rules of the main server are inherited. In per-directory context this
means that conditions and rules of the parent directory’s .htaccess configuration or <DIRECTORY> sections
are inherited. The inherited rules are virtually copied to the section where this directive is being used. If used in
combination with local rules, the inherited rules are copied behind the local rules. The position of this directive
- below or above of local rules - has no influence on this behavior. If local rules forced the rewriting to stop, the
inherited rules won’t be processed.

! Rules inherited from the parent scope are applied after rules specified in the child scope.

InheritBefore Like Inherit above, but the rules from the parent scope are applied before rules specified in
the child scope.
Available in Apache HTTP Server 2.3.10 and later.

InheritDown If this option is enabled, all child configurations will inherit the configuration of the current con-
figuration. It is equivalent to specifying RewriteOptions Inherit in all child configurations. See the
Inherit option for more details on how the parent-child relationships are handled.
Available in Apache HTTP Server 2.4.8 and later.

InheritDownBefore Like InheritDown above, but the rules from the current scope are applied before rules
specified in any child’s scope.
Available in Apache HTTP Server 2.4.8 and later.

IgnoreInherit This option forces the current and child configurations to ignore all rules that would be inherited
from a parent specifying InheritDown or InheritDownBefore.
Available in Apache HTTP Server 2.4.8 and later.

AllowNoSlash By default, MOD REWRITE will ignore URLs that map to a directory on disk but lack a trailing
slash, in the expectation that the MOD DIR module will issue the client with a redirect to the canonical URL
with a trailing slash.

When the DIRECTORYSLASH directive is set to off, the AllowNoSlash option can be enabled to ensure that
rewrite rules are no longer ignored. This option makes it possible to apply rewrite rules within .htaccess files
that match the directory without a trailing slash, if so desired.
Available in Apache HTTP Server 2.4.0 and later.

AllowAnyURI When REWRITERULE is used in VirtualHost or server context with version 2.2.22 or later of
httpd, MOD REWRITE will only process the rewrite rules if the request URI is a URL-path (p. 351) . This avoids
some security issues where particular rules could allow "surprising" pattern expansions (see CVE-2011-336868

and CVE-2011-431769). To lift the restriction on matching a URL-path, the AllowAnyURI option can be

68http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3368
69http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4317

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3368
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4317

10.93. APACHE MODULE MOD REWRITE 807

enabled, and MOD REWRITE will apply the rule set to any request URI string, regardless of whether that string
matches the URL-path grammar required by the HTTP specification.
Available in Apache HTTP Server 2.4.3 and later.

! Security Warning

Enabling this option will make the server vulnerable to security issues if used with rewrite
rules which are not carefully authored. It is strongly recommended that this option is not
used. In particular, beware of input strings containing the ’@’ character which could change
the interpretation of the transformed URI, as per the above CVE names.

MergeBase With this option, the value of REWRITEBASE is copied from where it’s explicitly defined into any sub-
directory or sub-location that doesn’t define its own REWRITEBASE. This was the default behavior in 2.4.0
through 2.4.3, and the flag to restore it is available Apache HTTP Server 2.4.4 and later.

IgnoreContextInfo In versions 2.4.13 and later, when a relative substitution is made in directory (htaccess)
context and REWRITEBASE has not been set, this module uses some extended URL and filesystem context in-
formation to change the relative substitution back into a URL. Modules such as MOD USERDIR and MOD ALIAS
supply this extended context info. This option disables the behavior introduced in 2.4.13 and should only be set
if all of the conditions above are present and a substituion has an unexpected result.

RewriteRule Directive

Description: Defines rules for the rewriting engine
Syntax: RewriteRule Pattern Substitution [flags]
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod rewrite

The REWRITERULE directive is the real rewriting workhorse. The directive can occur more than once, with each
instance defining a single rewrite rule. The order in which these rules are defined is important - this is the order in
which they will be applied at run-time.

Pattern is a perl compatible regular expression. On the first RewriteRule, it is matched against the (%-decoded) URL-
path (p. 351) of the request, or, in per-directory context (see below), the URL path relative to that per-directory context.
Subsequent patterns are matched against the output of the last matching RewriteRule.

=⇒What is matched?
In VIRTUALHOST context, The Pattern will initially be matched against the part of the URL
after the hostname and port, and before the query string (e.g. "/app1/index.html").
In DIRECTORY and htaccess context, the Pattern will initially be matched against the filesys-
tem path, after removing the prefix that led the server to the current REWRITERULE (e.g.
"app1/index.html" or "index.html" depending on where the directives are defined).
If you wish to match against the hostname, port, or query string, use a REWRITECOND with
the %{HTTP HOST}, %{SERVER PORT}, or %{QUERY STRING} variables respectively.

808 CHAPTER 10. APACHE MODULES

=⇒Per-directory Rewrites

• The rewrite engine may be used in .htaccess (p. 239) files and in <DIRECTORY> sec-
tions, with some additional complexity.

• To enable the rewrite engine in this context, you need to set "RewriteEngine On"
and "Options FollowSymLinks" must be enabled. If your administrator has dis-
abled override of FollowSymLinks for a user’s directory, then you cannot use the
rewrite engine. This restriction is required for security reasons.

• When using the rewrite engine in .htaccess files the per-directory prefix (which al-
ways is the same for a specific directory) is automatically removed for the RewriteRule
pattern matching and automatically added after any relative (not starting with a slash or
protocol name) substitution encounters the end of a rule set. See the REWRITEBASE
directive for more information regarding what prefix will be added back to relative sub-
stitutions.

• If you wish to match against the full URL-path in a per-directory (htaccess) RewriteRule,
use the %{REQUEST URI} variable in a REWRITECOND.

• The removed prefix always ends with a slash, meaning the matching occurs against a
string which never has a leading slash. Therefore, a Pattern with ˆ/ never matches in
per-directory context.

• Although rewrite rules are syntactically permitted in <LOCATION> and <FILES> sec-
tions (including their regular expression counterparts), this should never be necessary
and is unsupported. A likely feature to break in these contexts is relative substitutions.

For some hints on regular expressions, see the mod rewrite Introduction (p. 137) .

In mod rewrite, the NOT character (’!’) is also available as a possible pattern prefix. This enables you to negate a
pattern; to say, for instance: “if the current URL does NOT match this pattern”. This can be used for exceptional cases,
where it is easier to match the negative pattern, or as a last default rule.

=⇒Note
When using the NOT character to negate a pattern, you cannot include grouped wildcard parts
in that pattern. This is because, when the pattern does NOT match (ie, the negation matches),
there are no contents for the groups. Thus, if negated patterns are used, you cannot use $N in
the substitution string!

The Substitution of a rewrite rule is the string that replaces the original URL-path that was matched by Pattern. The
Substitution may be a:

file-system path Designates the location on the file-system of the resource to be delivered to the client. Substitutions
are only treated as a file-system path when the rule is configured in server (virtualhost) context and the first
component of the path in the substitution exists in the file-system

URL-path A DOCUMENTROOT-relative path to the resource to be served. Note that MOD REWRITE tries to guess
whether you have specified a file-system path or a URL-path by checking to see if the first segment of the path
exists at the root of the file-system. For example, if you specify a Substitution string of /www/file.html,
then this will be treated as a URL-path unless a directory named www exists at the root or your file-system (or, in
the case of using rewrites in a .htaccess file, relative to your document root), in which case it will be treated
as a file-system path. If you wish other URL-mapping directives (such as ALIAS) to be applied to the resulting
URL-path, use the [PT] flag as described below.

Absolute URL If an absolute URL is specified, MOD REWRITE checks to see whether the hostname matches the
current host. If it does, the scheme and hostname are stripped out and the resulting path is treated as a URL-
path. Otherwise, an external redirect is performed for the given URL. To force an external redirect back to the
current host, see the [R] flag below.

10.93. APACHE MODULE MOD REWRITE 809

- (dash) A dash indicates that no substitution should be performed (the existing path is passed through untouched).
This is used when a flag (see below) needs to be applied without changing the path.

In addition to plain text, the Substitution string can include

1. back-references ($N) to the RewriteRule pattern

2. back-references (%N) to the last matched RewriteCond pattern

3. server-variables as in rule condition test-strings (%{VARNAME})

4. mapping-function calls (${mapname:key|default})

Back-references are identifiers of the form $N (N=0..9), which will be replaced by the contents of the Nth group
of the matched Pattern. The server-variables are the same as for the TestString of a RewriteCond directive. The
mapping-functions come from the RewriteMap directive and are explained there. These three types of variables are
expanded in the order above.

Rewrite rules are applied to the results of previous rewrite rules, in the order in which they are defined in the config
file. The URL-path or file-system path (see "What is matched?", above) is completely replaced by the Substitution
and the rewriting process continues until all rules have been applied, or it is explicitly terminated by an L flag (p. 168)
, or other flag which implies immediate termination, such as END or F.

=⇒Modifying the Query String
By default, the query string is passed through unchanged. You can, however, create URLs in
the substitution string containing a query string part. Simply use a question mark inside the
substitution string to indicate that the following text should be re-injected into the query string.
When you want to erase an existing query string, end the substitution string with just a question
mark. To combine new and old query strings, use the [QSA] flag.

Additionally you can set special actions to be performed by appending [flags] as the third argument to the
RewriteRule directive. Flags is a comma-separated list, surround by square brackets, of any of the flags in the
following table. More details, and examples, for each flag, are available in the Rewrite Flags document (p. 168) .

Flag and syntax Function
B Escape non-alphanumeric characters before applying the

transformation. details ... (p. 168)
chain—C Rule is chained to the following rule. If the rule fails, the

rule(s) chained to it will be skipped. details ... (p. 168)
cookie—CO=NAME:VAL Sets a cookie in the client browser. Full syntax is:

CO=NAME:VAL:domain[:lifetime[:path[:secure[:httponly]]]]
details ... (p. 168)

discardpath—DPI Causes the PATH INFO portion of the rewritten URI to be dis-
carded. details ... (p. 168)

END Stop the rewriting process immediately and don’t apply any
more rules. Also prevents further execution of rewrite rules
in per-directory and .htaccess context. (Available in 2.3.9 and
later) details ... (p. 168)

env—E=[!]VAR[:VAL] Causes an environment variable VAR to be set (to the value
VAL if provided). The form !VAR causes the environment vari-
able VAR to be unset. details ... (p. 168)

forbidden—F Returns a 403 FORBIDDEN response to the client browser.
details ... (p. 168)

gone—G Returns a 410 GONE response to the client browser. details ...
(p. 168)

Handler—H=Content-handler Causes the resulting URI to be sent to the specified Content-
handler for processing. details ... (p. 168)

810 CHAPTER 10. APACHE MODULES

last—L Stop the rewriting process immediately and don’t apply any
more rules. Especially note caveats for per-directory and .htac-
cess context (see also the END flag). details ... (p. 168)

next—N Re-run the rewriting process, starting again with the first rule,
using the result of the ruleset so far as a starting point. details
... (p. 168)

nocase—NC Makes the pattern comparison case-insensitive. details ... (p.
168)

noescape—NE Prevent mod rewrite from applying hexcode escaping of spe-
cial characters in the result of the rewrite. details ... (p. 168)

nosubreq—NS Causes a rule to be skipped if the current request is an internal
sub-request. details ... (p. 168)

proxy—P Force the substitution URL to be internally sent as a proxy
request. details ... (p. 168)

passthrough—PT Forces the resulting URI to be passed back to the URL map-
ping engine for processing of other URI-to-filename transla-
tors, such as Alias or Redirect. details ... (p. 168)

qsappend—QSA Appends any query string from the original request URL to
any query string created in the rewrite target.details ... (p. 168)

qsdiscard—QSD Discard any query string attached to the incoming URI. details
... (p. 168)

redirect—R[=code] Forces an external redirect, optionally with the specified HTTP
status code. details ... (p. 168)

skip—S=num Tells the rewriting engine to skip the next num rules if the cur-
rent rule matches. details ... (p. 168)

type—T=MIME-type Force the MIME-type of the target file to be the specified type.
details ... (p. 168)

=⇒Home directory expansion
When the substitution string begins with a string resembling "/˜user" (via explicit text or
backreferences), mod rewrite performs home directory expansion independent of the presence
or configuration of MOD USERDIR.
This expansion does not occur when the PT flag is used on the REWRITERULE directive.

Here are all possible substitution combinations and their meanings:

Inside per-server configuration (httpd.conf)
for request “GET /somepath/pathinfo”:

Given Rule Resulting Substitution
ˆ/somepath(.*) otherpath$1 invalid, not supported
ˆ/somepath(.*) otherpath$1 [R] invalid, not supported
ˆ/somepath(.*) otherpath$1 [P] invalid, not supported
ˆ/somepath(.*) /otherpath$1 /otherpath/pathinfo
ˆ/somepath(.*) /otherpath$1 [R] http://thishost/otherpath/pathinfo via external redirection
ˆ/somepath(.*) /otherpath$1 [P] doesn’t make sense, not supported
ˆ/somepath(.*) http://thishost/otherpath$1 /otherpath/pathinfo
ˆ/somepath(.*) http://thishost/otherpath$1 [R] http://thishost/otherpath/pathinfo via external redirection
ˆ/somepath(.*) http://thishost/otherpath$1 [P] doesn’t make sense, not supported
ˆ/somepath(.*) http://otherhost/otherpath$1 http://otherhost/otherpath/pathinfo via external redirection
ˆ/somepath(.*) http://otherhost/otherpath$1 [R] http://otherhost/otherpath/pathinfo via external redirection

(the [R] flag is redundant)
ˆ/somepath(.*) http://otherhost/otherpath$1 [P] http://otherhost/otherpath/pathinfo via internal proxy

Inside per-directory configuration for /somepath
(/physical/path/to/somepath/.htaccess, with RewriteBase /somepath)
for request “GET /somepath/localpath/pathinfo”:

10.93. APACHE MODULE MOD REWRITE 811

Given Rule Resulting Substitution
ˆlocalpath(.*) otherpath$1 /somepath/otherpath/pathinfo
ˆlocalpath(.*) otherpath$1 [R] http://thishost/somepath/otherpath/pathinfo via external redi-

rection
ˆlocalpath(.*) otherpath$1 [P] doesn’t make sense, not supported
ˆlocalpath(.*) /otherpath$1 /otherpath/pathinfo
ˆlocalpath(.*) /otherpath$1 [R] http://thishost/otherpath/pathinfo via external redirection
ˆlocalpath(.*) /otherpath$1 [P] doesn’t make sense, not supported
ˆlocalpath(.*) http://thishost/otherpath$1 /otherpath/pathinfo
ˆlocalpath(.*) http://thishost/otherpath$1 [R] http://thishost/otherpath/pathinfo via external redirection
ˆlocalpath(.*) http://thishost/otherpath$1 [P] doesn’t make sense, not supported
ˆlocalpath(.*) http://otherhost/otherpath$1 http://otherhost/otherpath/pathinfo via external redirection
ˆlocalpath(.*) http://otherhost/otherpath$1 [R] http://otherhost/otherpath/pathinfo via external redirection

(the [R] flag is redundant)
ˆlocalpath(.*) http://otherhost/otherpath$1 [P] http://otherhost/otherpath/pathinfo via internal proxy

812 CHAPTER 10. APACHE MODULES

10.94 Apache Module mod sed

Description: Filter Input (request) and Output (response) content using sed syntax
Status: Experimental
ModuleIdentifier: sed module
SourceFile: mod sed.c sed0.c sed1.c regexp.c regexp.h sed.h
Compatibility: Available in Apache 2.3 and later

Summary

MOD SED is an in-process content filter. The MOD SED filter implements the sed editing commands implemented by
the Solaris 10 sed program as described in the manual page70. However, unlike sed, MOD SED doesn’t take data
from standard input. Instead, the filter acts on the entity data sent between client and server. MOD SED can be used
as an input or output filter. MOD SED is a content filter, which means that it cannot be used to modify client or server
http headers.

The MOD SED output filter accepts a chunk of data, executes the sed scripts on the data, and generates the output
which is passed to the next filter in the chain.

The MOD SED input filter reads the data from the next filter in the chain, executes the sed scripts, and returns the
generated data to the caller filter in the filter chain.

Both the input and output filters only process the data if newline characters are seen in the content. At the end of the
data, the rest of the data is treated as the last line.

A tutorial article on MOD SED, and why it is more powerful than simple string or regular expression search and replace,
is available on the author’s blog71.

Directives

• InputSed

• OutputSed

Sample Configuration

Adding an output filter

In the following example, the sed filter will change the string
"monday" to "MON" and the string "sunday" to SUN in html documents
before sending to the client.
<Directory "/var/www/docs/sed">

AddOutputFilter Sed html
OutputSed "s/monday/MON/g"
OutputSed "s/sunday/SUN/g"

</Directory>

70http://www.gnu.org/software/sed/manual/sed.txt
71https://blogs.oracle.com/basant/entry/using mod sed to filter

http://www.gnu.org/software/sed/manual/sed.txt
https://blogs.oracle.com/basant/entry/using_mod_sed_to_filter

10.94. APACHE MODULE MOD SED 813

Adding an input filter

In the following example, the sed filter will change the string
"monday" to "MON" and the string "sunday" to SUN in the POST data
sent to PHP.
<Directory "/var/www/docs/sed">

AddInputFilter Sed php
InputSed "s/monday/MON/g"
InputSed "s/sunday/SUN/g"

</Directory>

Sed Commands

Complete details of the sed command can be found from the sed manual page72.

b Branch to the label specified (similar to goto).

h Copy the current line to the hold buffer.

H Append the current line to the hold buffer.

g Copy the hold buffer to the current line.

G Append the hold buffer to the current line.

x Swap the contents of the hold buffer and the current line.

InputSed Directive

Description: Sed command to filter request data (typically POST data)
Syntax: InputSed sed-command
Context: directory, .htaccess
Status: Experimental
Module: mod sed

The INPUTSED directive specifies the sed command to execute on the request data e.g., POST data.

OutputSed Directive

Description: Sed command for filtering response content
Syntax: OutputSed sed-command
Context: directory, .htaccess
Status: Experimental
Module: mod sed

The OUTPUTSED directive specifies the sed command to execute on the response.

72http://www.gnu.org/software/sed/manual/sed.txt

http://www.gnu.org/software/sed/manual/sed.txt

814 CHAPTER 10. APACHE MODULES

10.95 Apache Module mod session

Description: Session support
Status: Extension
ModuleIdentifier: session module
SourceFile: mod session.c
Compatibility: Available in Apache 2.3 and later

Summary

! Warning
The session modules make use of HTTP cookies, and as such can fall victim to Cross Site
Scripting attacks, or expose potentially private information to clients. Please ensure that the
relevant risks have been taken into account before enabling the session functionality on your
server.

This module provides support for a server wide per user session interface. Sessions can be used for keeping track of
whether a user has been logged in, or for other per user information that should be kept available across requests.

Sessions may be stored on the server, or may be stored on the browser. Sessions may also be optionally encrypted for
added security. These features are divided into several modules in addition to MOD SESSION; MOD SESSION CRYPTO,
MOD SESSION COOKIE and MOD SESSION DBD. Depending on the server requirements, load the appropriate mod-
ules into the server (either statically at compile time or dynamically via the LOADMODULE directive).

Sessions may be manipulated from other modules that depend on the session, or the session may be read from and
written to using environment variables and HTTP headers, as appropriate.

Directives

• Session

• SessionEnv

• SessionExclude

• SessionHeader

• SessionInclude

• SessionMaxAge

See also

• MOD SESSION COOKIE

• MOD SESSION CRYPTO

• MOD SESSION DBD

What is a session?

At the core of the session interface is a table of key and value pairs that are made accessible across browser requests.
These pairs can be set to any valid string, as needed by the application making use of the session.

The "session" is a application/x-www-form-urlencoded string containing these key value pairs, as defined by the
HTML specification73.

73http://www.w3.org/TR/html4/

http://www.w3.org/TR/html4/

10.95. APACHE MODULE MOD SESSION 815

The session can optionally be encrypted and base64 encoded before being written to the storage mechanism, as defined
by the administrator.

Who can use a session?

The session interface is primarily developed for the use by other server modules, such as MOD AUTH FORM, how-
ever CGI based applications can optionally be granted access to the contents of the session via the HTTP SESSION
environment variable. Sessions have the option to be modified and/or updated by inserting an HTTP response header
containing the new session parameters.

Keeping sessions on the server

Apache can be configured to keep track of per user sessions stored on a particular server or group of servers. This
functionality is similar to the sessions available in typical application servers.

If configured, sessions are tracked through the use of a session ID that is stored inside a cookie, or extracted from the
parameters embedded within the URL query string, as found in a typical GET request.

As the contents of the session are stored exclusively on the server, there is an expectation of privacy of the contents of
the session. This does have performance and resource implications should a large number of sessions be present, or
where a large number of webservers have to share sessions with one another.

The MOD SESSION DBD module allows the storage of user sessions within a SQL database via MOD DBD.

Keeping sessions on the browser

In high traffic environments where keeping track of a session on a server is too resource intensive or inconvenient, the
option exists to store the contents of the session within a cookie on the client browser instead.

This has the advantage that minimal resources are required on the server to keep track of sessions, and multiple servers
within a server farm have no need to share session information.

The contents of the session however are exposed to the client, with a corresponding risk of a loss of privacy. The
MOD SESSION CRYPTO module can be configured to encrypt the contents of the session before writing the session to
the client.

The MOD SESSION COOKIE allows the storage of user sessions on the browser within an HTTP cookie.

Basic Examples

Creating a session is as simple as turning the session on, and deciding where the session will be stored. In this example,
the session will be stored on the browser, in a cookie called session.

Browser based session

Session On
SessionCookieName session path=/

The session is not useful unless it can be written to or read from. The following example shows how values can be
injected into the session through the use of a predetermined HTTP response header called X-Replace-Session.

Writing to a session

Session On
SessionCookieName session path=/
SessionHeader X-Replace-Session

816 CHAPTER 10. APACHE MODULES

The header should contain name value pairs expressed in the same format as a query string in a URL, as in the example
below. Setting a key to the empty string has the effect of removing that key from the session.

CGI to write to a session

#!/bin/bash
echo "Content-Type: text/plain"
echo "X-Replace-Session: key1=foo&key2=&key3=bar"
echo
env

If configured, the session can be read back from the HTTP SESSION environment variable. By default, the session is
kept private, so this has to be explicitly turned on with the SESSIONENV directive.

Read from a session

Session On
SessionEnv On
SessionCookieName session path=/
SessionHeader X-Replace-Session

Once read, the CGI variable HTTP SESSION should contain the value key1=foo&key3=bar.

Session Privacy

Using the "show cookies" feature of your browser, you would have seen a clear text representation of the session.
This could potentially be a problem should the end user need to be kept unaware of the contents of the session, or
where a third party could gain unauthorised access to the data within the session.

The contents of the session can be optionally encrypted before being placed on the browser using the
MOD SESSION CRYPTO module.

Browser based encrypted session

Session On
SessionCryptoPassphrase secret
SessionCookieName session path=/

The session will be automatically decrypted on load, and encrypted on save by Apache, the underlying application
using the session need have no knowledge that encryption is taking place.

Sessions stored on the server rather than on the browser can also be encrypted as needed, offering privacy where
potentially sensitive information is being shared between webservers in a server farm using the MOD SESSION DBD
module.

Cookie Privacy

The HTTP cookie mechanism also offers privacy features, such as the ability to restrict cookie transport to SSL
protected pages only, or to prevent browser based javascript from gaining access to the contents of the cookie.

! Warning
Some of the HTTP cookie privacy features are either non-standard, or are not implemented
consistently across browsers. The session modules allow you to set cookie parameters, but it
makes no guarantee that privacy will be respected by the browser. If security is a concern, use
the MOD SESSION CRYPTO to encrypt the contents of the session, or store the session on the
server using the MOD SESSION DBD module.

10.95. APACHE MODULE MOD SESSION 817

Standard cookie parameters can be specified after the name of the cookie, as in the example below.

Setting cookie parameters

Session On
SessionCryptoPassphrase secret
SessionCookieName session path=/private;domain=example.com;httponly;secure;

In cases where the Apache server forms the frontend for backend origin servers, it is possible to have the session
cookies removed from the incoming HTTP headers using the SESSIONCOOKIEREMOVE directive. This keeps the
contents of the session cookies from becoming accessible from the backend server.

Session Support for Authentication

As is possible within many application servers, authentication modules can use a session for storing the username and
password after login. The MOD AUTH FORM saves the user’s login name and password within the session.

Form based authentication

Session On
SessionCryptoPassphrase secret
SessionCookieName session path=/
AuthFormProvider file
AuthUserFile "conf/passwd"
AuthType form
AuthName realm
#...

See the MOD AUTH FORM module for documentation and complete examples.

Integrating Sessions with External Applications

In order for sessions to be useful, it must be possible to share the contents of a session with external applications, and
it must be possible for an external application to write a session of its own.

A typical example might be an application that changes a user’s password set by MOD AUTH FORM. This application
would need to read the current username and password from the session, make the required changes to the user’s
password, and then write the new password to the session in order to provide a seamless transition to the new password.

A second example might involve an application that registers a new user for the first time. When registration is
complete, the username and password is written to the session, providing a seamless transition to being logged in.

Apache modules Modules within the server that need access to the session can use the mod session.h API in order
to read from and write to the session. This mechanism is used by modules like MOD AUTH FORM.

CGI programs and scripting languages Applications that run within the webserver can optionally retrieve the
value of the session from the HTTP SESSION environment variable. The session should be encoded as a
application/x-www-form-urlencoded string as described by the HTML specification74. The environment vari-
able is controlled by the setting of the SESSIONENV directive. The session can be written to by the script by
returning a application/x-www-form-urlencoded response header with a name set by the SESSIONHEADER
directive. In both cases, any encryption or decryption, and the reading the session from or writing the session to
the chosen storage mechanism is handled by the MOD SESSION modules and corresponding configuration.

74http://www.w3.org/TR/html4/

http://www.w3.org/TR/html4/

818 CHAPTER 10. APACHE MODULES

Applications behind MOD PROXY If the SESSIONHEADER directive is used to define an HTTP request header, the
session, encoded as a application/x-www-form-urlencoded string, will be made available to the application. If
the same header is provided in the response, the value of this response header will be used to replace the session.
As above, any encryption or decryption, and the reading the session from or writing the session to the chosen
storage mechanism is handled by the MOD SESSION modules and corresponding configuration.

Standalone applications Applications might choose to manipulate the session outside the control of the Apache
HTTP server. In this case, it is the responsibility of the application to read the session from the chosen storage
mechanism, decrypt the session, update the session, encrypt the session and write the session to the chosen
storage mechanism, as appropriate.

Session Directive

Description: Enables a session for the current directory or location
Syntax: Session On|Off
Default: Session Off
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod session

The SESSION directive enables a session for the directory or location container. Further directives control where the
session will be stored and how privacy is maintained.

SessionEnv Directive

Description: Control whether the contents of the session are written to the HTTP SESSION environment
variable

Syntax: SessionEnv On|Off
Default: SessionEnv Off
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod session

If set to On, the SESSIONENV directive causes the contents of the session to be written to a CGI environment variable
called HTTP SESSION.

The string is written in the URL query format, for example:

key1=foo&key3=bar

SessionExclude Directive

Description: Define URL prefixes for which a session is ignored
Syntax: SessionExclude path
Default: none
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod session

The SESSIONEXCLUDE directive allows sessions to be disabled relative to URL prefixes only. This can be used to
make a website more efficient, by targeting a more precise URL space for which a session should be maintained. By

10.95. APACHE MODULE MOD SESSION 819

default, all URLs within the directory or location are included in the session. The SESSIONEXCLUDE directive takes
precedence over the SESSIONINCLUDE directive.

! Warning
This directive has a similar purpose to the path attribute in HTTP cookies, but should not
be confused with this attribute. This directive does not set the path attribute, which must be
configured separately.

SessionHeader Directive

Description: Import session updates from a given HTTP response header
Syntax: SessionHeader header
Default: none
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod session

The SESSIONHEADER directive defines the name of an HTTP response header which, if present, will be parsed and
written to the current session.

The header value is expected to be in the URL query format, for example:

key1=foo&key2=&key3=bar

Where a key is set to the empty string, that key will be removed from the session.

SessionInclude Directive

Description: Define URL prefixes for which a session is valid
Syntax: SessionInclude path
Default: all URLs
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod session

The SESSIONINCLUDE directive allows sessions to be made valid for specific URL prefixes only. This can be used to
make a website more efficient, by targeting a more precise URL space for which a session should be maintained. By
default, all URLs within the directory or location are included in the session.

! Warning
This directive has a similar purpose to the path attribute in HTTP cookies, but should not
be confused with this attribute. This directive does not set the path attribute, which must be
configured separately.

820 CHAPTER 10. APACHE MODULES

SessionMaxAge Directive

Description: Define a maximum age in seconds for a session
Syntax: SessionMaxAge maxage
Default: SessionMaxAge 0
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod session

The SESSIONMAXAGE directive defines a time limit for which a session will remain valid. When a session is saved,
this time limit is reset and an existing session can be continued. If a session becomes older than this limit without a
request to the server to refresh the session, the session will time out and be removed. Where a session is used to stored
user login details, this has the effect of logging the user out automatically after the given time.

Setting the maxage to zero disables session expiry.

10.96. APACHE MODULE MOD SESSION COOKIE 821

10.96 Apache Module mod session cookie

Description: Cookie based session support
Status: Extension
ModuleIdentifier: session cookie module
SourceFile: mod session cookie.c
Compatibility: Available in Apache 2.3 and later

Summary

! Warning
The session modules make use of HTTP cookies, and as such can fall victim to Cross Site
Scripting attacks, or expose potentially private information to clients. Please ensure that the
relevant risks have been taken into account before enabling the session functionality on your
server.

This submodule of MOD SESSION provides support for the storage of user sessions on the remote browser within
HTTP cookies.

Using cookies to store a session removes the need for the server or a group of servers to store the session locally, or
collaborate to share a session, and can be useful for high traffic environments where a server based session might be
too resource intensive.

If session privacy is required, the MOD SESSION CRYPTO module can be used to encrypt the contents of the session
before writing the session to the client.

For more details on the session interface, see the documentation for the MOD SESSION module.

Directives

• SessionCookieName

• SessionCookieName2

• SessionCookieRemove

See also

• MOD SESSION

• MOD SESSION CRYPTO

• MOD SESSION DBD

Basic Examples

To create a simple session and store it in a cookie called session, configure the session as follows:

Browser based session

Session On
SessionCookieName session path=/

For more examples on how the session can be configured to be read from and written to by a CGI application, see the
MOD SESSION examples section.

For documentation on how the session can be used to store username and password details, see the MOD AUTH FORM
module.

822 CHAPTER 10. APACHE MODULES

SessionCookieName Directive

Description: Name and attributes for the RFC2109 cookie storing the session
Syntax: SessionCookieName name attributes
Default: none
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod session cookie

The SESSIONCOOKIENAME directive specifies the name and optional attributes of an RFC2109 compliant cookie
inside which the session will be stored. RFC2109 cookies are set using the Set-Cookie HTTP header.

An optional list of cookie attributes can be specified, as per the example below. These attributes are inserted into the
cookie as is, and are not interpreted by Apache. Ensure that your attributes are defined correctly as per the cookie
specification.

Cookie with attributes

Session On
SessionCookieName session path=/private;domain=example.com;httponly;secure;version=1;

SessionCookieName2 Directive

Description: Name and attributes for the RFC2965 cookie storing the session
Syntax: SessionCookieName2 name attributes
Default: none
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod session cookie

The SESSIONCOOKIENAME2 directive specifies the name and optional attributes of an RFC2965 compliant cookie
inside which the session will be stored. RFC2965 cookies are set using the Set-Cookie2 HTTP header.

An optional list of cookie attributes can be specified, as per the example below. These attributes are inserted into the
cookie as is, and are not interpreted by Apache. Ensure that your attributes are defined correctly as per the cookie
specification.

Cookie2 with attributes

Session On
SessionCookieName2 session path=/private;domain=example.com;httponly;secure;version=1;

SessionCookieRemove Directive

Description: Control for whether session cookies should be removed from incoming HTTP headers
Syntax: SessionCookieRemove On|Off
Default: SessionCookieRemove Off
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod session cookie

The SESSIONCOOKIEREMOVE flag controls whether the cookies containing the session will be removed from the
headers during request processing.

10.96. APACHE MODULE MOD SESSION COOKIE 823

In a reverse proxy situation where the Apache server acts as a server frontend for a backend origin server, revealing
the contents of the session cookie to the backend could be a potential privacy violation. When set to on, the session
cookie will be removed from the incoming HTTP headers.

824 CHAPTER 10. APACHE MODULES

10.97 Apache Module mod session crypto

Description: Session encryption support
Status: Experimental
ModuleIdentifier: session crypto module
SourceFile: mod session crypto.c
Compatibility: Available in Apache 2.3 and later

Summary

! Warning
The session modules make use of HTTP cookies, and as such can fall victim to Cross Site
Scripting attacks, or expose potentially private information to clients. Please ensure that the
relevant risks have been taken into account before enabling the session functionality on your
server.

This submodule of MOD SESSION provides support for the encryption of user sessions before being written to a local
database, or written to a remote browser via an HTTP cookie.

This can help provide privacy to user sessions where the contents of the session should be kept private from the user,
or where protection is needed against the effects of cross site scripting attacks.

For more details on the session interface, see the documentation for the MOD SESSION module.

Directives

• SessionCryptoCipher

• SessionCryptoDriver

• SessionCryptoPassphrase

• SessionCryptoPassphraseFile

See also

• MOD SESSION

• MOD SESSION COOKIE

• MOD SESSION DBD

Basic Usage

To create a simple encrypted session and store it in a cookie called session, configure the session as follows:

Browser based encrypted session

Session On
SessionCookieName session path=/
SessionCryptoPassphrase secret

The session will be encrypted with the given key. Different servers can be configured to share sessions by ensuring
the same encryption key is used on each server.

If the encryption key is changed, sessions will be invalidated automatically.

For documentation on how the session can be used to store username and password details, see the MOD AUTH FORM
module.

10.97. APACHE MODULE MOD SESSION CRYPTO 825

SessionCryptoCipher Directive

Description: The crypto cipher to be used to encrypt the session
Syntax: SessionCryptoCipher name
Default: aes256
Context: server config, virtual host, directory, .htaccess
Status: Experimental
Module: mod session crypto
Compatibility: Available in Apache 2.3.0 and later

The SESSIONCRYPTOCIPHER directive allows the cipher to be used during encryption. If not specified, the cipher
defaults to aes256.

Possible values depend on the crypto driver in use, and could be one of:

• 3des192

• aes128

• aes192

• aes256

SessionCryptoDriver Directive

Description: The crypto driver to be used to encrypt the session
Syntax: SessionCryptoDriver name [param[=value]]
Default: none
Context: server config
Status: Experimental
Module: mod session crypto
Compatibility: Available in Apache 2.3.0 and later

The SESSIONCRYPTODRIVER directive specifies the name of the crypto driver to be used for encryption. If not
specified, the driver defaults to the recommended driver compiled into APR-util.

The NSS crypto driver requires some parameters for configuration, which are specified as parameters with optional
values after the driver name.

NSS without a certificate database

SessionCryptoDriver nss

NSS with certificate database

SessionCryptoDriver nss dir=certs

NSS with certificate database and parameters

SessionCryptoDriver nss dir=certs key3=key3.db cert7=cert7.db secmod=secmod

NSS with paths containing spaces

SessionCryptoDriver nss "dir=My Certs" key3=key3.db cert7=cert7.db secmod=secmod

826 CHAPTER 10. APACHE MODULES

The NSS crypto driver might have already been configured by another part of the server, for example from mod nss
or MOD LDAP. If found to have already been configured, a warning will be logged, and the existing configuration will
have taken affect. To avoid this warning, use the noinit parameter as follows.

NSS with certificate database

SessionCryptoDriver nss noinit

To prevent confusion, ensure that all modules requiring NSS are configured with identical parameters.

The openssl crypto driver supports an optional parameter to specify the engine to be used for encryption.

OpenSSL with engine support

SessionCryptoDriver openssl engine=name

SessionCryptoPassphrase Directive

Description: The key used to encrypt the session
Syntax: SessionCryptoPassphrase secret [secret ...]
Default: none
Context: server config, virtual host, directory, .htaccess
Status: Experimental
Module: mod session crypto
Compatibility: Available in Apache 2.3.0 and later

The SESSIONCRYPTOPASSPHRASE directive specifies the keys to be used to enable symmetrical encryption on the
contents of the session before writing the session, or decrypting the contents of the session after reading the session.

Keys are more secure when they are long, and consist of truly random characters. Changing the key on a server has
the effect of invalidating all existing sessions.

Multiple keys can be specified in order to support key rotation. The first key listed will be used for encryption, while
all keys listed will be attempted for decryption. To rotate keys across multiple servers over a period of time, add a new
secret to the end of the list, and once rolled out completely to all servers, remove the first key from the start of the list.

As of version 2.4.7 if the value begins with exec: the resulting command will be executed and the first line returned to
standard output by the program will be used as the key.

#key used as-is
SessionCryptoPassphrase secret

#Run /path/to/program to get key
SessionCryptoPassphrase exec:/path/to/program

#Run /path/to/otherProgram and provide arguments
SessionCryptoPassphrase "exec:/path/to/otherProgram argument1"

10.97. APACHE MODULE MOD SESSION CRYPTO 827

SessionCryptoPassphraseFile Directive

Description: File containing keys used to encrypt the session
Syntax: SessionCryptoPassphraseFile filename
Default: none
Context: server config, virtual host, directory
Status: Experimental
Module: mod session crypto
Compatibility: Available in Apache 2.3.0 and later

The SESSIONCRYPTOPASSPHRASEFILE directive specifies the name of a configuration file containing the keys to use
for encrypting or decrypting the session, specified one per line. The file is read on server start, and a graceful restart
will be necessary for httpd to pick up changes to the keys.

Unlike the SESSIONCRYPTOPASSPHRASE directive, the keys are not exposed within the httpd configuration and can
be hidden by protecting the file appropriately.

Multiple keys can be specified in order to support key rotation. The first key listed will be used for encryption, while
all keys listed will be attempted for decryption. To rotate keys across multiple servers over a period of time, add a new
secret to the end of the list, and once rolled out completely to all servers, remove the first key from the start of the list.

828 CHAPTER 10. APACHE MODULES

10.98 Apache Module mod session dbd

Description: DBD/SQL based session support
Status: Extension
ModuleIdentifier: session dbd module
SourceFile: mod session dbd.c
Compatibility: Available in Apache 2.3 and later

Summary

! Warning
The session modules make use of HTTP cookies, and as such can fall victim to Cross Site
Scripting attacks, or expose potentially private information to clients. Please ensure that the
relevant risks have been taken into account before enabling the session functionality on your
server.

This submodule of MOD SESSION provides support for the storage of user sessions within a SQL database using the
MOD DBD module.

Sessions can either be anonymous, where the session is keyed by a unique UUID string stored on the browser in a
cookie, or per user, where the session is keyed against the userid of the logged in user.

SQL based sessions are hidden from the browser, and so offer a measure of privacy without the need for encryption.

Different webservers within a server farm may choose to share a database, and so share sessions with one another.

For more details on the session interface, see the documentation for the MOD SESSION module.

Directives

• SessionDBDCookieName

• SessionDBDCookieName2

• SessionDBDCookieRemove

• SessionDBDDeleteLabel

• SessionDBDInsertLabel

• SessionDBDPerUser

• SessionDBDSelectLabel

• SessionDBDUpdateLabel

See also

• MOD SESSION

• MOD SESSION CRYPTO

• MOD SESSION COOKIE

• MOD DBD

DBD Configuration

Before the MOD SESSION DBD module can be configured to maintain a session, the MOD DBD module must be con-
figured to make the various database queries available to the server.

10.98. APACHE MODULE MOD SESSION DBD 829

There are four queries required to keep a session maintained, to select an existing session, to update an existing session,
to insert a new session, and to delete an expired or empty session. These queries are configured as per the example
below.

Sample DBD configuration

DBDriver pgsql
DBDParams "dbname=apachesession user=apache password=xxxxx host=localhost"
DBDPrepareSQL "delete from session where key = %s" deletesession
DBDPrepareSQL "update session set value = %s, expiry = %lld, key = %s where key = %s" updatesession
DBDPrepareSQL "insert into session (value, expiry, key) values (%s, %lld, %s)" insertsession
DBDPrepareSQL "select value from session where key = %s and (expiry = 0 or expiry > %lld)" selectsession
DBDPrepareSQL "delete from session where expiry != 0 and expiry < %lld" cleansession

Anonymous Sessions

Anonymous sessions are keyed against a unique UUID, and stored on the browser within an HTTP cookie. This
method is similar to that used by most application servers to store session information.

To create a simple anonymous session and store it in a postgres database table called apachesession, and save the
session ID in a cookie called session, configure the session as follows:

SQL based anonymous session

Session On
SessionDBDCookieName session path=/

For more examples on how the session can be configured to be read from and written to by a CGI application, see the
MOD SESSION examples section.

For documentation on how the session can be used to store username and password details, see the MOD AUTH FORM
module.

Per User Sessions

Per user sessions are keyed against the username of a successfully authenticated user. It offers the most privacy, as no
external handle to the session exists outside of the authenticated realm.

Per user sessions work within a correctly configured authenticated environment, be that using basic authentication,
digest authentication or SSL client certificates. Due to the limitations of who came first, the chicken or the egg, per
user sessions cannot be used to store authentication credentials from a module like MOD AUTH FORM.

To create a simple per user session and store it in a postgres database table called apachesession, and with the session
keyed to the userid, configure the session as follows:

SQL based per user session

Session On
SessionDBDPerUser On

830 CHAPTER 10. APACHE MODULES

Database Housekeeping

Over the course of time, the database can be expected to start accumulating expired sessions. At this point, the
MOD SESSION DBD module is not yet able to handle session expiry automatically.

! Warning
The administrator will need to set up an external process via cron to clean out expired sessions.

SessionDBDCookieName Directive

Description: Name and attributes for the RFC2109 cookie storing the session ID
Syntax: SessionDBDCookieName name attributes
Default: none
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod session dbd

The SESSIONDBDCOOKIENAME directive specifies the name and optional attributes of an RFC2109 compliant
cookie inside which the session ID will be stored. RFC2109 cookies are set using the Set-Cookie HTTP header.

An optional list of cookie attributes can be specified, as per the example below. These attributes are inserted into the
cookie as is, and are not interpreted by Apache. Ensure that your attributes are defined correctly as per the cookie
specification.

Cookie with attributes

Session On
SessionDBDCookieName session path=/private;domain=example.com;httponly;secure;version=1;

SessionDBDCookieName2 Directive

Description: Name and attributes for the RFC2965 cookie storing the session ID
Syntax: SessionDBDCookieName2 name attributes
Default: none
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod session dbd

The SESSIONDBDCOOKIENAME2 directive specifies the name and optional attributes of an RFC2965 compliant
cookie inside which the session ID will be stored. RFC2965 cookies are set using the Set-Cookie2 HTTP header.

An optional list of cookie attributes can be specified, as per the example below. These attributes are inserted into the
cookie as is, and are not interpreted by Apache. Ensure that your attributes are defined correctly as per the cookie
specification.

Cookie2 with attributes

Session On
SessionDBDCookieName2 session path=/private;domain=example.com;httponly;secure;version=1;

10.98. APACHE MODULE MOD SESSION DBD 831

SessionDBDCookieRemove Directive

Description: Control for whether session ID cookies should be removed from incoming HTTP headers
Syntax: SessionDBDCookieRemove On|Off
Default: SessionDBDCookieRemove On
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod session dbd

The SESSIONDBDCOOKIEREMOVE flag controls whether the cookies containing the session ID will be removed
from the headers during request processing.

In a reverse proxy situation where the Apache server acts as a server frontend for a backend origin server, revealing
the contents of the session ID cookie to the backend could be a potential privacy violation. When set to on, the session
ID cookie will be removed from the incoming HTTP headers.

SessionDBDDeleteLabel Directive

Description: The SQL query to use to remove sessions from the database
Syntax: SessionDBDDeleteLabel label
Default: SessionDBDDeleteLabel deletesession
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod session dbd

The SESSIONDBDDELETELABEL directive sets the default delete query label to be used to delete an expired or empty
session. This label must have been previously defined using the DBDPREPARESQL directive.

SessionDBDInsertLabel Directive

Description: The SQL query to use to insert sessions into the database
Syntax: SessionDBDInsertLabel label
Default: SessionDBDInsertLabel insertsession
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod session dbd

The SESSIONDBDINSERTLABEL directive sets the default insert query label to be used to load in a session. This
label must have been previously defined using the DBDPREPARESQL directive.

If an attempt to update the session affects no rows, this query will be called to insert the session into the database.

SessionDBDPerUser Directive

Description: Enable a per user session
Syntax: SessionDBDPerUser On|Off
Default: SessionDBDPerUser Off
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod session dbd

The SESSIONDBDPERUSER flag enables a per user session keyed against the user’s login name. If the user is not
logged in, this directive will be ignored.

832 CHAPTER 10. APACHE MODULES

SessionDBDSelectLabel Directive

Description: The SQL query to use to select sessions from the database
Syntax: SessionDBDSelectLabel label
Default: SessionDBDSelectLabel selectsession
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod session dbd

The SESSIONDBDSELECTLABEL directive sets the default select query label to be used to load in a session. This
label must have been previously defined using the DBDPREPARESQL directive.

SessionDBDUpdateLabel Directive

Description: The SQL query to use to update existing sessions in the database
Syntax: SessionDBDUpdateLabel label
Default: SessionDBDUpdateLabel updatesession
Context: server config, virtual host, directory, .htaccess
Status: Extension
Module: mod session dbd

The SESSIONDBDUPDATELABEL directive sets the default update query label to be used to load in a session. This
label must have been previously defined using the DBDPREPARESQL directive.

If an attempt to update the session affects no rows, the insert query will be called to insert the session into the database.
If the database supports InsertOrUpdate, override this query to perform the update in one query instead of two.

10.99. APACHE MODULE MOD SETENVIF 833

10.99 Apache Module mod setenvif

Description: Allows the setting of environment variables based on characteristics of the request
Status: Base
ModuleIdentifier: setenvif module
SourceFile: mod setenvif.c

Summary

The MOD SETENVIF module allows you to set internal environment variables according to whether different aspects
of the request match regular expressions you specify. These environment variables can be used by other parts of the
server to make decisions about actions to be taken, as well as becoming available to CGI scripts and SSI pages.

The directives are considered in the order they appear in the configuration files. So more complex sequences can be
used, such as this example, which sets netscape if the browser is mozilla but not MSIE.

BrowserMatch ˆMozilla netscape
BrowserMatch MSIE !netscape

When the server looks up a path via an internal subrequest such as looking for a DIRECTORYINDEX or generating a
directory listing with MOD AUTOINDEX, per-request environment variables are not inherited in the subrequest. Addi-
tionally, SETENVIF directives are not separately evaluated in the subrequest due to the API phases MOD SETENVIF
takes action in.

Directives

• BrowserMatch

• BrowserMatchNoCase

• SetEnvIf

• SetEnvIfExpr

• SetEnvIfNoCase

See also

• Environment Variables in Apache HTTP Server (p. 82)

BrowserMatch Directive

Description: Sets environment variables conditional on HTTP User-Agent
Syntax: BrowserMatch regex [!]env-variable[=value]

[[!]env-variable[=value]] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod setenvif

The BROWSERMATCH is a special cases of the SETENVIF directive that sets environment variables conditional on the
User-Agent HTTP request header. The following two lines have the same effect:

BrowserMatchNoCase Robot is_a_robot
SetEnvIfNoCase User-Agent Robot is_a_robot

834 CHAPTER 10. APACHE MODULES

Some additional examples:

BrowserMatch ˆMozilla forms jpeg=yes browser=netscape
BrowserMatch "ˆMozilla/[2-3]" tables agif frames javascript
BrowserMatch MSIE !javascript

BrowserMatchNoCase Directive

Description: Sets environment variables conditional on User-Agent without respect to case
Syntax: BrowserMatchNoCase regex [!]env-variable[=value]

[[!]env-variable[=value]] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod setenvif

The BROWSERMATCHNOCASE directive is semantically identical to the BROWSERMATCH directive. However, it
provides for case-insensitive matching. For example:

BrowserMatchNoCase mac platform=macintosh
BrowserMatchNoCase win platform=windows

The BROWSERMATCH and BROWSERMATCHNOCASE directives are special cases of the SETENVIF and SETENV-
IFNOCASE directives. The following two lines have the same effect:

BrowserMatchNoCase Robot is_a_robot
SetEnvIfNoCase User-Agent Robot is_a_robot

SetEnvIf Directive

Description: Sets environment variables based on attributes of the request
Syntax: SetEnvIf attribute regex [!]env-variable[=value]

[[!]env-variable[=value]] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod setenvif

The SETENVIF directive defines environment variables based on attributes of the request. The attribute specified in
the first argument can be one of four things:

1. An HTTP request header field (see RFC261675 for more information about these); for example: Host,
User-Agent, Referer, and Accept-Language. A regular expression may be used to specify a set
of request headers.

2. One of the following aspects of the request:

• Remote Host - the hostname (if available) of the client making the request
• Remote Addr - the IP address of the client making the request
• Server Addr - the IP address of the server on which the request was received (only with versions later

than 2.0.43)
75http://www.rfc-editor.org/rfc/rfc2616.txt

http://www.rfc-editor.org/rfc/rfc2616.txt

10.99. APACHE MODULE MOD SETENVIF 835

• Request Method - the name of the method being used (GET, POST, et cetera)

• Request Protocol - the name and version of the protocol with which the request was made (e.g.,
"HTTP/0.9", "HTTP/1.1", etc.)

• Request URI - the resource requested on the HTTP request line – generally the portion of the URL
following the scheme and host portion without the query string. See the REWRITECOND directive of
MOD REWRITE for extra information on how to match your query string.

3. The name of an environment variable in the list of those associated with the request. This allows SETEN-
VIF directives to test against the result of prior matches. Only those environment variables defined by earlier
SetEnvIf[NoCase] directives are available for testing in this manner. ’Earlier’ means that they were defined
at a broader scope (such as server-wide) or previously in the current directive’s scope. Environment variables
will be considered only if there was no match among request characteristics and a regular expression was not
used for the attribute.

The second argument (regex) is a regular expression. If the regex matches against the attribute, then the remainder of
the arguments are evaluated.

The rest of the arguments give the names of variables to set, and optionally values to which they should be set. These
take the form of

1. varname, or

2. !varname, or

3. varname=value

In the first form, the value will be set to "1". The second will remove the given variable if already defined, and the
third will set the variable to the literal value given by value. Since version 2.0.51, Apache httpd will recognize
occurrences of $1..$9 within value and replace them by parenthesized subexpressions of regex.

SetEnvIf Request_URI "\.gif$" object_is_image=gif
SetEnvIf Request_URI "\.jpg$" object_is_image=jpg
SetEnvIf Request_URI "\.xbm$" object_is_image=xbm

SetEnvIf Referer www\.mydomain\.example\.com intra_site_referral

SetEnvIf object_is_image xbm XBIT_PROCESSING=1

SetEnvIf ˆTS ˆ[a-z] HAVE_TS

The first three will set the environment variable object is image if the request was for an image file, and the fourth
sets intra site referral if the referring page was somewhere on the www.mydomain.example.com Web
site.

The last example will set environment variable HAVE TS if the request contains any headers that begin with "TS"
whose values begins with any character in the set [a-z].

See also

• Environment Variables in Apache HTTP Server (p. 82) , for additional examples.

836 CHAPTER 10. APACHE MODULES

SetEnvIfExpr Directive

Description: Sets environment variables based on an ap expr expression
Syntax: SetEnvIfExpr expr [!]env-variable[=value]

[[!]env-variable[=value]] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod setenvif

The SETENVIFEXPR directive defines environment variables based on an <IF> ap expr. These expressions will be
evaluated at runtime, and applied env-variable in the same fashion as SETENVIF.

SetEnvIfExpr "tolower(req(’X-Sendfile’)) == ’d:\images\very_big.iso’)" iso_delivered

This would set the environment variable iso delivered every time our application attempts to send it via
X-Sendfile

A more useful example would be to set the variable rfc1918 if the remote IP address is a private address according to
RFC 1918:

SetEnvIfExpr "-R ’10.0.0.0/8’ || -R ’172.16.0.0/12’ || -R ’192.168.0.0/16’" rfc1918

See also

• Expressions in Apache HTTP Server (p. 89) , for a complete reference and more examples.

• <IF> can be used to achieve similar results.

• MOD FILTER

SetEnvIfNoCase Directive

Description: Sets environment variables based on attributes of the request without respect to case
Syntax: SetEnvIfNoCase attribute regex [!]env-variable[=value]

[[!]env-variable[=value]] ...
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Base
Module: mod setenvif

The SETENVIFNOCASE is semantically identical to the SETENVIF directive, and differs only in that the regular
expression matching is performed in a case-insensitive manner. For example:

SetEnvIfNoCase Host Example\.Org site=example

This will cause the site environment variable to be set to "example" if the HTTP request header field Host: was
included and contained Example.Org, example.org, or any other combination.

10.100. APACHE MODULE MOD SLOTMEM PLAIN 837

10.100 Apache Module mod slotmem plain

Description: Slot-based shared memory provider.
Status: Extension
ModuleIdentifier: slotmem plain module
SourceFile: mod slotmem plain.c

Summary

mod slotmem plain is a memory provider which provides for creation and access to a plain memory segment in
which the datasets are organized in "slots."

If the memory needs to be shared between threads and processes, a better provider would be MOD SLOTMEM SHM.

mod slotmem plain provides the following API functions:

apr status t doall(ap slotmem instance t *s, ap slotmem callback fn t *func, void *data, apr pool t *pool)
call the callback on all worker slots

apr status t create(ap slotmem instance t **new, const char *name, apr size t item size, unsigned int item num, ap slotmem type t type, apr pool t *pool)
create a new slotmem with each item size is item size.

apr status t attach(ap slotmem instance t **new, const char *name, apr size t *item size, unsigned int *item num, apr pool t *pool)
attach to an existing slotmem.

apr status t dptr(ap slotmem instance t *s, unsigned int item id, void**mem) get the direct pointer to the mem-
ory associated with this worker slot.

apr status t get(ap slotmem instance t *s, unsigned int item id, unsigned char *dest, apr size t dest len)
get/read the memory from this slot to dest

apr status t put(ap slotmem instance t *slot, unsigned int item id, unsigned char *src, apr size t src len)
put/write the data from src to this slot

unsigned int num slots(ap slotmem instance t *s) return the total number of slots in the segment

apr size t slot size(ap slotmem instance t *s) return the total data size, in bytes, of a slot in the segment

apr status t grab(ap slotmem instance t *s, unsigned int *item id); grab or allocate the first free slot and mark as
in-use (does not do any data copying)

apr status t fgrab(ap slotmem instance t *s, unsigned int item id); forced grab or allocate the specified slot and
mark as in-use (does not do any data copying)

apr status t release(ap slotmem instance t *s, unsigned int item id); release or free a slot and mark as not in-use
(does not do any data copying)

Directives This module provides no directives.

838 CHAPTER 10. APACHE MODULES

10.101 Apache Module mod slotmem shm

Description: Slot-based shared memory provider.
Status: Extension
ModuleIdentifier: slotmem shm module
SourceFile: mod slotmem shm.c

Summary

mod slotmem shm is a memory provider which provides for creation and access to a shared memory segment in
which the datasets are organized in "slots."

All shared memory is cleared and cleaned with each restart, whether graceful or not. The data itself is stored and
restored within a file noted by the name parameter in the create and attach calls. If not specified with an
absolute path, the file will be created relative to the path specified by the DEFAULTRUNTIMEDIR directive.

mod slotmem shm provides the following API functions:

apr status t doall(ap slotmem instance t *s, ap slotmem callback fn t *func, void *data, apr pool t *pool)
call the callback on all worker slots

apr status t create(ap slotmem instance t **new, const char *name, apr size t item size, unsigned int item num, ap slotmem type t type, apr pool t *pool)
create a new slotmem with each item size is item size. name is used to generate a filename for the persistent
store of the shared memory if configured. Values are:

"none" Anonymous shared memory and no persistent store

"file-name" [DefaultRuntimeDir]/file-name

"/absolute-file-name" Absolute file name

apr status t attach(ap slotmem instance t **new, const char *name, apr size t *item size, unsigned int *item num, apr pool t *pool)
attach to an existing slotmem. See create for description of name parameter.

apr status t dptr(ap slotmem instance t *s, unsigned int item id, void**mem) get the direct pointer to the mem-
ory associated with this worker slot.

apr status t get(ap slotmem instance t *s, unsigned int item id, unsigned char *dest, apr size t dest len)
get/read the memory from this slot to dest

apr status t put(ap slotmem instance t *slot, unsigned int item id, unsigned char *src, apr size t src len)
put/write the data from src to this slot

unsigned int num slots(ap slotmem instance t *s) return the total number of slots in the segment

apr size t slot size(ap slotmem instance t *s) return the total data size, in bytes, of a slot in the segment

apr status t grab(ap slotmem instance t *s, unsigned int *item id); grab or allocate the first free slot and mark as
in-use (does not do any data copying)

apr status t fgrab(ap slotmem instance t *s, unsigned int item id); forced grab or allocate the specified slot and
mark as in-use (does not do any data copying)

apr status t release(ap slotmem instance t *s, unsigned int item id); release or free a slot and mark as not in-use
(does not do any data copying)

Directives This module provides no directives.

10.102. APACHE MODULE MOD SO 839

10.102 Apache Module mod so

Description: Loading of executable code and modules into the server at start-up or restart time
Status: Extension
ModuleIdentifier: so module
SourceFile: mod so.c
Compatibility: This is a Base module (always included) on Windows

Summary

On selected operating systems this module can be used to load modules into Apache HTTP Server at runtime via the
Dynamic Shared Object (p. 65) (DSO) mechanism, rather than requiring a recompilation.

On Unix, the loaded code typically comes from shared object files (usually with .so extension), on Windows this
may either the .so or .dll extension.

! Warning
Modules built for one major version of the Apache HTTP Server will generally not work on
another. (e.g. 1.3 vs. 2.0, or 2.0 vs. 2.2) There are usually API changes between one major
version and another that require that modules be modified to work with the new version.

Directives

• LoadFile

• LoadModule

Creating Loadable Modules for Windows

=⇒Note
On Windows, where loadable files typically have a file extension of .dll, Apache httpd mod-
ules are called mod whatever.so, just as they are on other platforms. However, you may
encounter third-party modules, such as PHP for example, that continue to use the .dll con-
vention.
While mod so still loads modules with ApacheModuleFoo.dll names, the new naming
convention is preferred; if you are converting your loadable module for 2.0, please fix the name
to this 2.0 convention.

The Apache httpd module API is unchanged between the Unix and Windows versions. Many modules will run on
Windows with no or little change from Unix, although others rely on aspects of the Unix architecture which are not
present in Windows, and will not work.

When a module does work, it can be added to the server in one of two ways. As with Unix, it can be compiled
into the server. Because Apache httpd for Windows does not have the Configure program of Apache httpd for
Unix, the module’s source file must be added to the ApacheCore project file, and its symbols must be added to the
os\win32\modules.c file.

The second way is to compile the module as a DLL, a shared library that can be loaded into the server at runtime,
using the LOADMODULE directive. These module DLLs can be distributed and run on any Apache httpd for Windows
installation, without recompilation of the server.

To create a module DLL, a small change is necessary to the module’s source file: The module record must be exported
from the DLL (which will be created later; see below). To do this, add the AP MODULE DECLARE DATA (defined in
the Apache httpd header files) to your module’s module record definition. For example, if your module has:

840 CHAPTER 10. APACHE MODULES

module foo module;

Replace the above with:

module AP MODULE DECLARE DATA foo module;

Note that this will only be activated on Windows, so the module can continue to be used, unchanged, with Unix if
needed. Also, if you are familiar with .DEF files, you can export the module record with that method instead.

Now, create a DLL containing your module. You will need to link this against the libhttpd.lib export library that
is created when the libhttpd.dll shared library is compiled. You may also have to change the compiler settings to
ensure that the Apache httpd header files are correctly located. You can find this library in your server root’s modules
directory. It is best to grab an existing module .dsp file from the tree to assure the build environment is configured
correctly, or alternately compare the compiler and link options to your .dsp.

This should create a DLL version of your module. Now simply place it in the modules directory of your server root,
and use the LOADMODULE directive to load it.

LoadFile Directive

Description: Link in the named object file or library
Syntax: LoadFile filename [filename] ...
Context: server config, virtual host
Status: Extension
Module: mod so

The LoadFile directive links in the named object files or libraries when the server is started or restarted; this is used to
load additional code which may be required for some module to work. Filename is either an absolute path or relative
to ServerRoot (p. 354) .

For example:

LoadFile libexec/libxmlparse.so

LoadModule Directive

Description: Links in the object file or library, and adds to the list of active modules
Syntax: LoadModule module filename
Context: server config, virtual host
Status: Extension
Module: mod so

The LoadModule directive links in the object file or library filename and adds the module structure named module to
the list of active modules. Module is the name of the external variable of type module in the file, and is listed as the
Module Identifier (p. 350) in the module documentation. Example:

LoadModule status_module modules/mod_status.so

loads the named module from the modules subdirectory of the ServerRoot.

10.103. APACHE MODULE MOD SOCACHE DBM 841

10.103 Apache Module mod socache dbm

Description: DBM based shared object cache provider.
Status: Extension
ModuleIdentifier: socache dbm module
SourceFile: mod socache dbm.c

Summary

mod socache dbm is a shared object cache provider which provides for creation and access to a cache backed by a
DBM database.

dbm:/path/to/datafile

Details of other shared object cache providers can be found here (p. 104) .

Directives This module provides no directives.

842 CHAPTER 10. APACHE MODULES

10.104 Apache Module mod socache dc

Description: Distcache based shared object cache provider.
Status: Extension
ModuleIdentifier: socache dc module
SourceFile: mod socache dc.c

Summary

mod socache dc is a shared object cache provider which provides for creation and access to a cache backed by the
distcache76 distributed session caching libraries.

Details of other shared object cache providers can be found here (p. 104) .

Directives This module provides no directives.

76http://www.distcache.org/

http://www.distcache.org/

10.105. APACHE MODULE MOD SOCACHE MEMCACHE 843

10.105 Apache Module mod socache memcache

Description: Memcache based shared object cache provider.
Status: Extension
ModuleIdentifier: socache memcache module
SourceFile: mod socache memcache.c

Summary

mod socache memcache is a shared object cache provider which provides for creation and access to a cache
backed by the memcached77 high-performance, distributed memory object caching system.

This shared object cache provider’s "create" method requires a comma separated list of memcached host/port speci-
fications. If using this provider via another modules configuration (such as SSLSESSIONCACHE), provide the list of
servers as the optional "arg" parameter.

SSLSessionCache memcache:memcache.example.com:12345,memcache2.example.com:12345

Details of other shared object cache providers can be found here (p. 104) .

Directives This module provides no directives.

77http://memcached.org/

http://memcached.org/

844 CHAPTER 10. APACHE MODULES

10.106 Apache Module mod socache shmcb

Description: shmcb based shared object cache provider.
Status: Extension
ModuleIdentifier: socache shmcb module
SourceFile: mod socache shmcb.c

Summary

mod socache shmcb is a shared object cache provider which provides for creation and access to a cache backed by
a high-performance cyclic buffer inside a shared memory segment.

shmcb:/path/to/datafile(512000)

Details of other shared object cache providers can be found here (p. 104) .

Directives This module provides no directives.

10.107. APACHE MODULE MOD SPELING 845

10.107 Apache Module mod speling

Description: Attempts to correct mistaken URLs by ignoring capitalization, or attempting to correct
various minor misspellings.

Status: Extension
ModuleIdentifier: speling module
SourceFile: mod speling.c

Summary

Requests to documents sometimes cannot be served by the core apache server because the request was misspelled or
miscapitalized. This module addresses this problem by trying to find a matching document, even after all other modules
gave up. It does its work by comparing each document name in the requested directory against the requested document
name without regard to case, and allowing up to one misspelling (character insertion / omission / transposition or
wrong character). A list is built with all document names which were matched using this strategy.

If, after scanning the directory,

• no matching document was found, Apache will proceed as usual and return a "document not found" error.

• only one document is found that "almost" matches the request, then it is returned in the form of a redirection
response.

• more than one document with a close match was found, then the list of the matches is returned to the client, and
the client can select the correct candidate.

Directives

• CheckCaseOnly

• CheckSpelling

CheckCaseOnly Directive

Description: Limits the action of the speling module to case corrections
Syntax: CheckCaseOnly on|off
Default: CheckCaseOnly Off
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Extension
Module: mod speling

When set, this directive limits the action of the spelling correction to lower/upper case changes. Other potential
corrections are not performed.

CheckSpelling Directive

Description: Enables the spelling module
Syntax: CheckSpelling on|off
Default: CheckSpelling Off
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Extension
Module: mod speling

846 CHAPTER 10. APACHE MODULES

This directive enables or disables the spelling module. When enabled, keep in mind that

• the directory scan which is necessary for the spelling correction will have an impact on the server’s performance
when many spelling corrections have to be performed at the same time.

• the document trees should not contain sensitive files which could be matched inadvertently by a spelling
"correction".

• the module is unable to correct misspelled user names (as in http://my.host/˜apahce/), just file names
or directory names.

• spelling corrections apply strictly to existing files, so a request for the <Location "/status"> may get
incorrectly treated as the negotiated file "/stats.html".

mod speling should not be enabled in DAV (p. 557) enabled directories, because it will try to "spell fix" newly created
resource names against existing filenames, e.g., when trying to upload a new document doc43.html it might redirect
to an existing document doc34.html, which is not what was intended.

10.108. APACHE MODULE MOD SSL 847

10.108 Apache Module mod ssl

Description: Strong cryptography using the Secure Sockets Layer (SSL) and Transport Layer Security
(TLS) protocols

Status: Extension
ModuleIdentifier: ssl module
SourceFile: mod ssl.c

Summary

This module provides SSL v3 and TLS v1.x support for the Apache HTTP Server. SSL v2 is no longer supported.

This module relies on OpenSSL78 to provide the cryptography engine.

Further details, discussion, and examples are provided in the SSL documentation (p. 182) .

Directives

• SSLCACertificateFile

• SSLCACertificatePath

• SSLCADNRequestFile

• SSLCADNRequestPath

• SSLCARevocationCheck

• SSLCARevocationFile

• SSLCARevocationPath

• SSLCertificateChainFile

• SSLCertificateFile

• SSLCertificateKeyFile

• SSLCipherSuite

• SSLCompression

• SSLCryptoDevice

• SSLEngine

• SSLFIPS

• SSLHonorCipherOrder

• SSLInsecureRenegotiation

• SSLOCSPDefaultResponder

• SSLOCSPEnable

• SSLOCSPOverrideResponder

• SSLOCSPResponderTimeout

• SSLOCSPResponseMaxAge

• SSLOCSPResponseTimeSkew

• SSLOCSPUseRequestNonce

• SSLOpenSSLConfCmd

• SSLOptions

78http://www.openssl.org/

http://www.openssl.org/

848 CHAPTER 10. APACHE MODULES

• SSLPassPhraseDialog

• SSLProtocol

• SSLProxyCACertificateFile

• SSLProxyCACertificatePath

• SSLProxyCARevocationCheck

• SSLProxyCARevocationFile

• SSLProxyCARevocationPath

• SSLProxyCheckPeerCN

• SSLProxyCheckPeerExpire

• SSLProxyCheckPeerName

• SSLProxyCipherSuite

• SSLProxyEngine

• SSLProxyMachineCertificateChainFile

• SSLProxyMachineCertificateFile

• SSLProxyMachineCertificatePath

• SSLProxyProtocol

• SSLProxyVerify

• SSLProxyVerifyDepth

• SSLRandomSeed

• SSLRenegBufferSize

• SSLRequire

• SSLRequireSSL

• SSLSessionCache

• SSLSessionCacheTimeout

• SSLSessionTicketKeyFile

• SSLSessionTickets

• SSLSRPUnknownUserSeed

• SSLSRPVerifierFile

• SSLStaplingCache

• SSLStaplingErrorCacheTimeout

• SSLStaplingFakeTryLater

• SSLStaplingForceURL

• SSLStaplingResponderTimeout

• SSLStaplingResponseMaxAge

• SSLStaplingResponseTimeSkew

• SSLStaplingReturnResponderErrors

• SSLStaplingStandardCacheTimeout

• SSLStrictSNIVHostCheck

• SSLUserName

• SSLUseStapling

• SSLVerifyClient

• SSLVerifyDepth

10.108. APACHE MODULE MOD SSL 849

Environment Variables

This module can be configured to provide several items of SSL information as additional environment variables to the
SSI and CGI namespace. This information is not provided by default for performance reasons. (See SSLOPTIONS
StdEnvVars, below.) The generated variables are listed in the table below. For backward compatibility the information
can be made available under different names, too. Look in the Compatibility (p. 192) chapter for details on the
compatibility variables.

Variable Name: Value Type: Description:
HTTPS flag HTTPS is being used.
SSL PROTOCOL string The SSL protocol version (SSLv3, TLSv1, TLSv1.1, TLSv1.2)
SSL SESSION ID string The hex-encoded SSL session id
SSL SESSION RESUMED string Initial or Resumed SSL Session. Note: multiple requests may be

served over the same (Initial or Resumed) SSL session if HTTP
KeepAlive is in use

SSL SECURE RENEG string true if secure renegotiation is supported, else false
SSL CIPHER string The cipher specification name
SSL CIPHER EXPORT string true if cipher is an export cipher
SSL CIPHER USEKEYSIZE number Number of cipher bits (actually used)
SSL CIPHER ALGKEYSIZE number Number of cipher bits (possible)
SSL COMPRESS METHOD string SSL compression method negotiated
SSL VERSION INTERFACE string The mod ssl program version
SSL VERSION LIBRARY string The OpenSSL program version
SSL CLIENT M VERSION string The version of the client certificate
SSL CLIENT M SERIAL string The serial of the client certificate
SSL CLIENT S DN string Subject DN in client’s certificate
SSL CLIENT S DN x509 string Component of client’s Subject DN
SSL CLIENT SAN Email n string Client certificate’s subjectAltName extension entries of type

rfc822Name
SSL CLIENT SAN DNS n string Client certificate’s subjectAltName extension entries of type

dNSName
SSL CLIENT I DN string Issuer DN of client’s certificate
SSL CLIENT I DN x509 string Component of client’s Issuer DN
SSL CLIENT V START string Validity of client’s certificate (start time)
SSL CLIENT V END string Validity of client’s certificate (end time)
SSL CLIENT V REMAIN string Number of days until client’s certificate expires
SSL CLIENT A SIG string Algorithm used for the signature of client’s certificate
SSL CLIENT A KEY string Algorithm used for the public key of client’s certificate
SSL CLIENT CERT string PEM-encoded client certificate
SSL CLIENT CERT CHAIN n string PEM-encoded certificates in client certificate chain
SSL CLIENT CERT RFC4523 CEA string Serial number and issuer of the certificate. The format matches

that of the CertificateExactAssertion in RFC4523
SSL CLIENT VERIFY string NONE, SUCCESS, GENEROUS or FAILED:reason
SSL SERVER M VERSION string The version of the server certificate
SSL SERVER M SERIAL string The serial of the server certificate
SSL SERVER S DN string Subject DN in server’s certificate
SSL SERVER SAN Email n string Server certificate’s subjectAltName extension entries of type

rfc822Name
SSL SERVER SAN DNS n string Server certificate’s subjectAltName extension entries of type

dNSName
SSL SERVER S DN x509 string Component of server’s Subject DN
SSL SERVER I DN string Issuer DN of server’s certificate
SSL SERVER I DN x509 string Component of server’s Issuer DN
SSL SERVER V START string Validity of server’s certificate (start time)

850 CHAPTER 10. APACHE MODULES

SSL SERVER V END string Validity of server’s certificate (end time)
SSL SERVER A SIG string Algorithm used for the signature of server’s certificate
SSL SERVER A KEY string Algorithm used for the public key of server’s certificate
SSL SERVER CERT string PEM-encoded server certificate
SSL SRP USER string SRP username
SSL SRP USERINFO string SRP user info
SSL TLS SNI string Contents of the SNI TLS extension (if supplied with ClientHello)

x509 specifies a component of an X.509 DN; one of C,ST,L,O,OU,CN,T,I,G,S,D,UID,Email. In Apache
2.1 and later, x509 may also include a numeric n suffix. If the DN in question contains multiple attributes of the same
name, this suffix is used as a zero-based index to select a particular attribute. For example, where the server certificate
subject DN included two OU attributes, SSL SERVER S DN OU 0 and SSL SERVER S DN OU 1 could be used to
reference each. A variable name without a n suffix is equivalent to that name with a 0 suffix; the first (or only)
attribute. When the environment table is populated using the StdEnvVars option of the SSLOPTIONS directive, the
first (or only) attribute of any DN is added only under a non-suffixed name; i.e. no 0 suffixed entries are added.

The format of the * DN variables has changed in Apache HTTPD 2.3.11. See the LegacyDNStringFormat option
for SSLOPTIONS for details.

SSL CLIENT V REMAIN is only available in version 2.1 and later.

A number of additional environment variables can also be used in SSLREQUIRE expressions, or in custom log formats:

=⇒
HTTP_USER_AGENT PATH_INFO AUTH_TYPE
HTTP_REFERER QUERY_STRING SERVER_SOFTWARE
HTTP_COOKIE REMOTE_HOST API_VERSION
HTTP_FORWARDED REMOTE_IDENT TIME_YEAR
HTTP_HOST IS_SUBREQ TIME_MON
HTTP_PROXY_CONNECTION DOCUMENT_ROOT TIME_DAY
HTTP_ACCEPT SERVER_ADMIN TIME_HOUR
THE_REQUEST SERVER_NAME TIME_MIN
REQUEST_FILENAME SERVER_PORT TIME_SEC
REQUEST_METHOD SERVER_PROTOCOL TIME_WDAY
REQUEST_SCHEME REMOTE_ADDR TIME
REQUEST_URI REMOTE_USER

In these contexts, two special formats can also be used:

ENV:variablename This will expand to the standard environment variable variablename.

HTTP:headername This will expand to the value of the request header with name headername.

Custom Log Formats

When MOD SSL is built into Apache or at least loaded (under DSO situation) additional functions exist for the Custom
Log Format (p. 656) of MOD LOG CONFIG. First there is an additional “%{varname}x” eXtension format function
which can be used to expand any variables provided by any module, especially those provided by mod ssl which can
you find in the above table.

For backward compatibility there is additionally a special “%{name}c” cryptography format function provided. Infor-
mation about this function is provided in the Compatibility (p. 192) chapter.

Example

CustomLog "logs/ssl_request_log" "%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"

10.108. APACHE MODULE MOD SSL 851

Request Notes

MOD SSL sets "notes" for the request which can be used in logging with the %{name}n format string in
MOD LOG CONFIG.

The notes supported are as follows:

ssl-access-forbidden This note is set to the value 1 if access was denied due to an SSLREQUIRE or SSLRE-
QUIRESSL directive.

ssl-secure-reneg If MOD SSL is built against a version of OpenSSL which supports the secure renegotiation
extension, this note is set to the value 1 if SSL is in used for the current connection, and the client also supports
the secure renegotiation extension. If the client does not support the secure renegotiation extension, the note is
set to the value 0. If MOD SSL is not built against a version of OpenSSL which supports secure renegotiation,
or if SSL is not in use for the current connection, the note is not set.

Authorization providers for use with Require

MOD SSL provides a few authentication providers for use with MOD AUTHZ CORE’s REQUIRE directive.

Require ssl

The ssl provider denies access if a connection is not encrypted with SSL. This is similar to the SSLREQUIRESSL
directive.

Require ssl

Require ssl-verify-client

The ssl provider allows access if the user is authenticated with a valid client certificate. This is only useful if
SSLVerifyClient optional is in effect.

The following example grants access if the user is authenticated either with a client certificate or by username and
password.

Require ssl-verify-client
Require valid-user

SSLCACertificateFile Directive

Description: File of concatenated PEM-encoded CA Certificates for Client Auth
Syntax: SSLCACertificateFile file-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive sets the all-in-one file where you can assemble the Certificates of Certification Authorities (CA) whose
clients you deal with. These are used for Client Authentication. Such a file is simply the concatenation of the various
PEM-encoded Certificate files, in order of preference. This can be used alternatively and/or additionally to SSLCAC-
ERTIFICATEPATH.

Example

SSLCACertificateFile "/usr/local/apache2/conf/ssl.crt/ca-bundle-client.crt"

852 CHAPTER 10. APACHE MODULES

SSLCACertificatePath Directive

Description: Directory of PEM-encoded CA Certificates for Client Auth
Syntax: SSLCACertificatePath directory-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive sets the directory where you keep the Certificates of Certification Authorities (CAs) whose clients you
deal with. These are used to verify the client certificate on Client Authentication.

The files in this directory have to be PEM-encoded and are accessed through hash filenames. So usually you can’t just
place the Certificate files there: you also have to create symbolic links named hash-value.N. And you should always
make sure this directory contains the appropriate symbolic links.

Example

SSLCACertificatePath "/usr/local/apache2/conf/ssl.crt/"

SSLCADNRequestFile Directive

Description: File of concatenated PEM-encoded CA Certificates for defining acceptable CA names
Syntax: SSLCADNRequestFile file-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

When a client certificate is requested by mod ssl, a list of acceptable Certificate Authority names is sent to the client
in the SSL handshake. These CA names can be used by the client to select an appropriate client certificate out of those
it has available.

If neither of the directives SSLCADNREQUESTPATH or SSLCADNREQUESTFILE are given, then the set of accept-
able CA names sent to the client is the names of all the CA certificates given by the SSLCACERTIFICATEFILE and
SSLCACERTIFICATEPATH directives; in other words, the names of the CAs which will actually be used to verify the
client certificate.

In some circumstances, it is useful to be able to send a set of acceptable CA names which differs from the actual CAs
used to verify the client certificate - for example, if the client certificates are signed by intermediate CAs. In such
cases, SSLCADNREQUESTPATH and/or SSLCADNREQUESTFILE can be used; the acceptable CA names are then
taken from the complete set of certificates in the directory and/or file specified by this pair of directives.

SSLCADNREQUESTFILE must specify an all-in-one file containing a concatenation of PEM-encoded CA certifi-
cates.

Example

SSLCADNRequestFile "/usr/local/apache2/conf/ca-names.crt"

SSLCADNRequestPath Directive

Description: Directory of PEM-encoded CA Certificates for defining acceptable CA names
Syntax: SSLCADNRequestPath directory-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

10.108. APACHE MODULE MOD SSL 853

This optional directive can be used to specify the set of acceptable CA names which will be sent to the client when a
client certificate is requested. See the SSLCADNREQUESTFILE directive for more details.

The files in this directory have to be PEM-encoded and are accessed through hash filenames. So usually you can’t just
place the Certificate files there: you also have to create symbolic links named hash-value.N. And you should always
make sure this directory contains the appropriate symbolic links.

Example

SSLCADNRequestPath "/usr/local/apache2/conf/ca-names.crt/"

SSLCARevocationCheck Directive

Description: Enable CRL-based revocation checking
Syntax: SSLCARevocationCheck chain|leaf|none
Default: SSLCARevocationCheck none
Context: server config, virtual host
Status: Extension
Module: mod ssl

Enables certificate revocation list (CRL) checking. At least one of SSLCAREVOCATIONFILE or SSLCAREVOCA-
TIONPATH must be configured. When set to chain (recommended setting), CRL checks are applied to all certificates
in the chain, while setting it to leaf limits the checks to the end-entity cert.

=⇒When set to chain or leaf, CRLs must be available for successful validation

Prior to version 2.3.15, CRL checking in mod ssl also succeeded when no CRL(s) were found
in any of the locations configured with SSLCAREVOCATIONFILE or SSLCAREVOCATION-
PATH. With the introduction of this directive, the behavior has been changed: when checking
is enabled, CRLs must be present for the validation to succeed - otherwise it will fail with an
"unable to get certificate CRL" error.

Example

SSLCARevocationCheck chain

SSLCARevocationFile Directive

Description: File of concatenated PEM-encoded CA CRLs for Client Auth
Syntax: SSLCARevocationFile file-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive sets the all-in-one file where you can assemble the Certificate Revocation Lists (CRL) of Certification
Authorities (CA) whose clients you deal with. These are used for Client Authentication. Such a file is simply the
concatenation of the various PEM-encoded CRL files, in order of preference. This can be used alternatively and/or
additionally to SSLCAREVOCATIONPATH.

Example

SSLCARevocationFile "/usr/local/apache2/conf/ssl.crl/ca-bundle-client.crl"

854 CHAPTER 10. APACHE MODULES

SSLCARevocationPath Directive

Description: Directory of PEM-encoded CA CRLs for Client Auth
Syntax: SSLCARevocationPath directory-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive sets the directory where you keep the Certificate Revocation Lists (CRL) of Certification Authorities
(CAs) whose clients you deal with. These are used to revoke the client certificate on Client Authentication.

The files in this directory have to be PEM-encoded and are accessed through hash filenames. So usually you have not
only to place the CRL files there. Additionally you have to create symbolic links named hash-value.rN. And you
should always make sure this directory contains the appropriate symbolic links.

Example

SSLCARevocationPath "/usr/local/apache2/conf/ssl.crl/"

SSLCertificateChainFile Directive

Description: File of PEM-encoded Server CA Certificates
Syntax: SSLCertificateChainFile file-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

=⇒SSLCertificateChainFile is deprecated
SSLCertificateChainFile became obsolete with version 2.4.8, when SSLCERTIFI-
CATEFILE was extended to also load intermediate CA certificates from the server certificate
file.

This directive sets the optional all-in-one file where you can assemble the certificates of Certification Authorities (CA)
which form the certificate chain of the server certificate. This starts with the issuing CA certificate of the server
certificate and can range up to the root CA certificate. Such a file is simply the concatenation of the various PEM-
encoded CA Certificate files, usually in certificate chain order.

This should be used alternatively and/or additionally to SSLCACERTIFICATEPATH for explicitly constructing the
server certificate chain which is sent to the browser in addition to the server certificate. It is especially useful to avoid
conflicts with CA certificates when using client authentication. Because although placing a CA certificate of the server
certificate chain into SSLCACERTIFICATEPATH has the same effect for the certificate chain construction, it has the
side-effect that client certificates issued by this same CA certificate are also accepted on client authentication.

But be careful: Providing the certificate chain works only if you are using a single RSA or DSA based server certificate.
If you are using a coupled RSA+DSA certificate pair, this will work only if actually both certificates use the same
certificate chain. Else the browsers will be confused in this situation.

Example

SSLCertificateChainFile "/usr/local/apache2/conf/ssl.crt/ca.crt"

10.108. APACHE MODULE MOD SSL 855

SSLCertificateFile Directive

Description: Server PEM-encoded X.509 certificate data file
Syntax: SSLCertificateFile file-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive points to a file with certificate data in PEM format. At a minimum, the file must include an
end-entity (leaf) certificate. The directive can be used multiple times (referencing different filenames) to sup-
port multiple algorithms for server authentication - typically RSA, DSA, and ECC. The number of supported
algorithms depends on the OpenSSL version being used for mod ssl: with version 1.0.0 or later, openssl
list-public-key-algorithms will output a list of supported algorithms.

The files may also include intermediate CA certificates, sorted from leaf to root. This is supported with version 2.4.8
and later, and obsoletes SSLCERTIFICATECHAINFILE. When running with OpenSSL 1.0.2 or later, this allows to
configure the intermediate CA chain on a per-certificate basis.

Custom DH parameters and an EC curve name for ephemeral keys, can also be added to end of the first file configured
using SSLCERTIFICATEFILE. This is supported in version 2.4.7 or later. Such parameters can be generated using
the commands openssl dhparam and openssl ecparam. The parameters can be added as-is to the end of the
first certificate file. Only the first file can be used for custom parameters, as they are applied independently of the
authentication algorithm type.

Finally the the end-entity certificate’s private key can also be added to the certificate file instead of using a separate
SSLCERTIFICATEKEYFILE directive. This practice is highly discouraged. If it is used, the certificate files using such
an embedded key must be configured after the certificates using a separate key file. If the private key is encrypted, the
pass phrase dialog is forced at startup time.

=⇒DH parameter interoperability with primes > 1024 bit

Beginning with version 2.4.7, mod ssl makes use of standardized DH parameters with prime
lengths of 2048, 3072 and 4096 bits and with additional prime lengths of 6144 and 8192 bits
beginning with version 2.4.10 (from RFC 3526a), and hands them out to clients based on
the length of the certificate’s RSA/DSA key. With Java-based clients in particular (Java 7 or
earlier), this may lead to handshake failures - see this FAQ answer (p. 202) for working around
such issues.

ahttp://www.ietf.org/rfc/rfc3526.txt

Example

SSLCertificateFile "/usr/local/apache2/conf/ssl.crt/server.crt"

SSLCertificateKeyFile Directive

Description: Server PEM-encoded private key file
Syntax: SSLCertificateKeyFile file-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive points to the PEM-encoded private key file for the server. If the contained private key is encrypted, the
pass phrase dialog is forced at startup time.

http://www.ietf.org/rfc/rfc3526.txt

856 CHAPTER 10. APACHE MODULES

The directive can be used multiple times (referencing different filenames) to support multiple algorithms for server
authentication. For each SSLCERTIFICATEKEYFILE directive, there must be a matching SSLCERTIFICATEFILE
directive.

The private key may also be combined with the certificate in the file given by SSLCERTIFICATEFILE, but this practice
is highly discouraged. If it is used, the certificate files using such an embedded key must be configured after the
certificates using a separate key file.

Example

SSLCertificateKeyFile "/usr/local/apache2/conf/ssl.key/server.key"

SSLCipherSuite Directive

Description: Cipher Suite available for negotiation in SSL handshake
Syntax: SSLCipherSuite cipher-spec
Default: SSLCipherSuite DEFAULT (depends on OpenSSL version)
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod ssl

This complex directive uses a colon-separated cipher-spec string consisting of OpenSSL cipher specifications to con-
figure the Cipher Suite the client is permitted to negotiate in the SSL handshake phase. Notice that this directive can
be used both in per-server and per-directory context. In per-server context it applies to the standard SSL handshake
when a connection is established. In per-directory context it forces a SSL renegotiation with the reconfigured Cipher
Suite after the HTTP request was read but before the HTTP response is sent.

An SSL cipher specification in cipher-spec is composed of 4 major attributes plus a few extra minor ones:

• Key Exchange Algorithm:
RSA, Diffie-Hellman, Elliptic Curve Diffie-Hellman, Secure Remote Password

• Authentication Algorithm:
RSA, Diffie-Hellman, DSS, ECDSA, or none.

• Cipher/Encryption Algorithm:
AES, DES, Triple-DES, RC4, RC2, IDEA, etc.

• MAC Digest Algorithm:
MD5, SHA or SHA1, SHA256, SHA384.

An SSL cipher can also be an export cipher. SSLv2 ciphers are no longer supported. To specify which ciphers to use,
one can either specify all the Ciphers, one at a time, or use aliases to specify the preference and order for the ciphers
(see Table 1). The actually available ciphers and aliases depends on the used openssl version. Newer openssl versions
may include additional ciphers.

Tag Description
Key Exchange Algorithm:
kRSA RSA key exchange
kDHr Diffie-Hellman key exchange with RSA key
kDHd Diffie-Hellman key exchange with DSA key
kEDH Ephemeral (temp.key) Diffie-Hellman key exchange (no cert)
kSRP Secure Remote Password (SRP) key exchange
Authentication Algorithm:

10.108. APACHE MODULE MOD SSL 857

aNULL No authentication
aRSA RSA authentication
aDSS DSS authentication
aDH Diffie-Hellman authentication
Cipher Encoding Algorithm:
eNULL No encryption
NULL alias for eNULL
AES AES encryption
DES DES encryption
3DES Triple-DES encryption
RC4 RC4 encryption
RC2 RC2 encryption
IDEA IDEA encryption
MAC Digest Algorithm:
MD5 MD5 hash function
SHA1 SHA1 hash function
SHA alias for SHA1
SHA256 SHA256 hash function
SHA384 SHA384 hash function
Aliases:
SSLv3 all SSL version 3.0 ciphers
TLSv1 all TLS version 1.0 ciphers
EXP all export ciphers
EXPORT40 all 40-bit export ciphers only
EXPORT56 all 56-bit export ciphers only
LOW all low strength ciphers (no export, single DES)
MEDIUM all ciphers with 128 bit encryption
HIGH all ciphers using Triple-DES
RSA all ciphers using RSA key exchange
DH all ciphers using Diffie-Hellman key exchange
EDH all ciphers using Ephemeral Diffie-Hellman key exchange
ECDH Elliptic Curve Diffie-Hellman key exchange
ADH all ciphers using Anonymous Diffie-Hellman key exchange
AECDH all ciphers using Anonymous Elliptic Curve Diffie-Hellman key

exchange
SRP all ciphers using Secure Remote Password (SRP) key exchange
DSS all ciphers using DSS authentication
ECDSA all ciphers using ECDSA authentication
aNULL all ciphers using no authentication

Now where this becomes interesting is that these can be put together to specify the order and ciphers you wish to use.
To speed this up there are also aliases (SSLv3, TLSv1, EXP, LOW, MEDIUM, HIGH) for certain groups of
ciphers. These tags can be joined together with prefixes to form the cipher-spec. Available prefixes are:

• none: add cipher to list

• +: move matching ciphers to the current location in list

• -: remove cipher from list (can be added later again)

• !: kill cipher from list completely (can not be added later again)

858 CHAPTER 10. APACHE MODULES

=⇒aNULL, eNULL and EXP ciphers are always disabled

Beginning with version 2.4.7, null and export-grade ciphers are always disabled, as mod ssl
unconditionally prepends any supplied cipher suite string with !aNULL:!eNULL:!EXP: at
initialization.

A simpler way to look at all of this is to use the “openssl ciphers -v” command which provides a nice way
to successively create the correct cipher-spec string. The default cipher-spec string depends on the version of the
OpenSSL libraries used. Let’s suppose it is “RC4-SHA:AES128-SHA:HIGH:MEDIUM:!aNULL:!MD5” which
means the following: Put RC4-SHA and AES128-SHA at the beginning. We do this, because these ciphers offer a
good compromise between speed and security. Next, include high and medium security ciphers. Finally, remove all
ciphers which do not authenticate, i.e. for SSL the Anonymous Diffie-Hellman ciphers, as well as all ciphers which
use MD5 as hash algorithm, because it has been proven insufficient.

$ openssl ciphers -v ’RC4-SHA:AES128-SHA:HIGH:MEDIUM:!aNULL:!MD5’
RC4-SHA SSLv3 Kx=RSA Au=RSA Enc=RC4(128) Mac=SHA1
AES128-SHA SSLv3 Kx=RSA Au=RSA Enc=AES(128) Mac=SHA1
DHE-RSA-AES256-SHA SSLv3 Kx=DH Au=RSA Enc=AES(256) Mac=SHA1
...
SEED-SHA SSLv3 Kx=RSA Au=RSA Enc=SEED(128) Mac=SHA1
PSK-RC4-SHA SSLv3 Kx=PSK Au=PSK Enc=RC4(128) Mac=SHA1
KRB5-RC4-SHA SSLv3 Kx=KRB5 Au=KRB5 Enc=RC4(128) Mac=SHA1

The complete list of particular RSA & DH ciphers for SSL is given in Table 2.

Example

SSLCipherSuite RSA:!EXP:!NULL:+HIGH:+MEDIUM:-LOW

Cipher-Tag Protocol Key Ex. Auth. Enc. MAC Type
RSA Ciphers:
DES-CBC3-SHA SSLv3 RSA RSA 3DES(168) SHA1
IDEA-CBC-SHA SSLv3 RSA RSA IDEA(128) SHA1
RC4-SHA SSLv3 RSA RSA RC4(128) SHA1
RC4-MD5 SSLv3 RSA RSA RC4(128) MD5
DES-CBC-SHA SSLv3 RSA RSA DES(56) SHA1
EXP-DES-CBC-SHA SSLv3 RSA(512) RSA DES(40) SHA1 export
EXP-RC2-CBC-MD5 SSLv3 RSA(512) RSA RC2(40) MD5 export
EXP-RC4-MD5 SSLv3 RSA(512) RSA RC4(40) MD5 export
NULL-SHA SSLv3 RSA RSA None SHA1
NULL-MD5 SSLv3 RSA RSA None MD5
Diffie-Hellman Ciphers:
ADH-DES-CBC3-SHA SSLv3 DH None 3DES(168) SHA1
ADH-DES-CBC-SHA SSLv3 DH None DES(56) SHA1
ADH-RC4-MD5 SSLv3 DH None RC4(128) MD5
EDH-RSA-DES-CBC3-SHA SSLv3 DH RSA 3DES(168) SHA1
EDH-DSS-DES-CBC3-SHA SSLv3 DH DSS 3DES(168) SHA1
EDH-RSA-DES-CBC-SHA SSLv3 DH RSA DES(56) SHA1
EDH-DSS-DES-CBC-SHA SSLv3 DH DSS DES(56) SHA1
EXP-EDH-RSA-DES-CBC-SHA SSLv3 DH(512) RSA DES(40) SHA1 export
EXP-EDH-DSS-DES-CBC-SHA SSLv3 DH(512) DSS DES(40) SHA1 export
EXP-ADH-DES-CBC-SHA SSLv3 DH(512) None DES(40) SHA1 export
EXP-ADH-RC4-MD5 SSLv3 DH(512) None RC4(40) MD5 export

10.108. APACHE MODULE MOD SSL 859

SSLCompression Directive

Description: Enable compression on the SSL level
Syntax: SSLCompression on|off
Default: SSLCompression off
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available in httpd 2.4.3 and later, if using OpenSSL 0.9.8 or later; virtual host scope available

if using OpenSSL 1.0.0 or later. The default used to be on in version 2.4.3.

This directive allows to enable compression on the SSL level.

! Enabling compression causes security issues in most setups (the so called CRIME attack).

SSLCryptoDevice Directive

Description: Enable use of a cryptographic hardware accelerator
Syntax: SSLCryptoDevice engine
Default: SSLCryptoDevice builtin
Context: server config
Status: Extension
Module: mod ssl

This directive enables use of a cryptographic hardware accelerator board to offload some of the SSL processing over-
head. This directive can only be used if the SSL toolkit is built with "engine" support; OpenSSL 0.9.7 and later
releases have "engine" support by default, the separate "-engine" releases of OpenSSL 0.9.6 must be used.

To discover which engine names are supported, run the command "openssl engine".

Example

For a Broadcom accelerator:
SSLCryptoDevice ubsec

SSLEngine Directive

Description: SSL Engine Operation Switch
Syntax: SSLEngine on|off|optional
Default: SSLEngine off
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive toggles the usage of the SSL/TLS Protocol Engine. This is should be used inside a <VIRTUALHOST>
section to enable SSL/TLS for a that virtual host. By default the SSL/TLS Protocol Engine is disabled for both the
main server and all configured virtual hosts.

Example

<VirtualHost _default_:443>
SSLEngine on
#...
</VirtualHost>

860 CHAPTER 10. APACHE MODULES

In Apache 2.1 and later, SSLENGINE can be set to optional. This enables support for RFC 281779, Upgrading to
TLS Within HTTP/1.1. At this time no web browsers support RFC 2817.

SSLFIPS Directive

Description: SSL FIPS mode Switch
Syntax: SSLFIPS on|off
Default: SSLFIPS off
Context: server config
Status: Extension
Module: mod ssl

This directive toggles the usage of the SSL library FIPS mode flag. It must be set in the global server context and
cannot be configured with conflicting settings (SSLFIPS on followed by SSLFIPS off or similar). The mode applies
to all SSL library operations.

If httpd was compiled against an SSL library which did not support the FIPS mode flag, SSLFIPS on will fail. Refer
to the FIPS 140-2 Security Policy document of the SSL provider library for specific requirements to use mod ssl in
a FIPS 140-2 approved mode of operation; note that mod ssl itself is not validated, but may be described as using
FIPS 140-2 validated cryptographic module, when all components are assembled and operated under the guidelines
imposed by the applicable Security Policy.

SSLHonorCipherOrder Directive

Description: Option to prefer the server’s cipher preference order
Syntax: SSLHonorCipherOrder on|off
Default: SSLHonorCipherOrder off
Context: server config, virtual host
Status: Extension
Module: mod ssl

When choosing a cipher during an SSLv3 or TLSv1 handshake, normally the client’s preference is used. If this
directive is enabled, the server’s preference will be used instead.

Example

SSLHonorCipherOrder on

SSLInsecureRenegotiation Directive

Description: Option to enable support for insecure renegotiation
Syntax: SSLInsecureRenegotiation on|off
Default: SSLInsecureRenegotiation off
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available in httpd 2.2.15 and later, if using OpenSSL 0.9.8m or later

As originally specified, all versions of the SSL and TLS protocols (up to and including TLS/1.2) were vulnerable
to a Man-in-the-Middle attack (CVE-2009-355580) during a renegotiation. This vulnerability allowed an attacker to

79http://www.ietf.org/rfc/rfc2817.txt
80http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555

http://www.ietf.org/rfc/rfc2817.txt
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555

10.108. APACHE MODULE MOD SSL 861

"prefix" a chosen plaintext to the HTTP request as seen by the web server. A protocol extension was developed which
fixed this vulnerability if supported by both client and server.

If MOD SSL is linked against OpenSSL version 0.9.8m or later, by default renegotiation is only supported with clients
supporting the new protocol extension. If this directive is enabled, renegotiation will be allowed with old (unpatched)
clients, albeit insecurely.

! Security warning
If this directive is enabled, SSL connections will be vulnerable to the Man-in-the-Middle prefix
attack as described in CVE-2009-3555a.

ahttp://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555

Example

SSLInsecureRenegotiation on

The SSL SECURE RENEG environment variable can be used from an SSI or CGI script to determine whether secure
renegotiation is supported for a given SSL connection.

SSLOCSPDefaultResponder Directive

Description: Set the default responder URI for OCSP validation
Syntax: SSLOCSDefaultResponder uri
Context: server config, virtual host
Status: Extension
Module: mod ssl

This option sets the default OCSP responder to use. If SSLOCSPOVERRIDERESPONDER is not enabled, the URI
given will be used only if no responder URI is specified in the certificate being verified.

SSLOCSPEnable Directive

Description: Enable OCSP validation of the client certificate chain
Syntax: SSLOCSPEnable on|off
Default: SSLOCSPEnable off
Context: server config, virtual host
Status: Extension
Module: mod ssl

This option enables OCSP validation of the client certificate chain. If this option is enabled, certificates in the client’s
certificate chain will be validated against an OCSP responder after normal verification (including CRL checks) have
taken place.

The OCSP responder used is either extracted from the certificate itself, or derived by configuration; see the SSLOC-
SPDEFAULTRESPONDER and SSLOCSPOVERRIDERESPONDER directives.

Example

SSLVerifyClient on
SSLOCSPEnable on
SSLOCSPDefaultResponder "http://responder.example.com:8888/responder"
SSLOCSPOverrideResponder on

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555

862 CHAPTER 10. APACHE MODULES

SSLOCSPOverrideResponder Directive

Description: Force use of the default responder URI for OCSP validation
Syntax: SSLOCSPOverrideResponder on|off
Default: SSLOCSPOverrideResponder off
Context: server config, virtual host
Status: Extension
Module: mod ssl

This option forces the configured default OCSP responder to be used during OCSP certificate validation, regardless of
whether the certificate being validated references an OCSP responder.

SSLOCSPResponderTimeout Directive

Description: Timeout for OCSP queries
Syntax: SSLOCSPResponderTimeout seconds
Default: SSLOCSPResponderTimeout 10
Context: server config, virtual host
Status: Extension
Module: mod ssl

This option sets the timeout for queries to OCSP responders, when SSLOCSPENABLE is turned on.

SSLOCSPResponseMaxAge Directive

Description: Maximum allowable age for OCSP responses
Syntax: SSLOCSPResponseMaxAge seconds
Default: SSLOCSPResponseMaxAge -1
Context: server config, virtual host
Status: Extension
Module: mod ssl

This option sets the maximum allowable age ("freshness") for OCSP responses. The default value (-1) does not
enforce a maximum age, which means that OCSP responses are considered valid as long as their nextUpdate field
is in the future.

SSLOCSPResponseTimeSkew Directive

Description: Maximum allowable time skew for OCSP response validation
Syntax: SSLOCSPResponseTimeSkew seconds
Default: SSLOCSPResponseTimeSkew 300
Context: server config, virtual host
Status: Extension
Module: mod ssl

This option sets the maximum allowable time skew for OCSP responses (when checking their thisUpdate and
nextUpdate fields).

10.108. APACHE MODULE MOD SSL 863

SSLOCSPUseRequestNonce Directive

Description: Use a nonce within OCSP queries
Syntax: SSLOCSPUseRequestNonce on|off
Default: SSLOCSPUseRequestNonce on
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available in httpd 2.4.10 and later

This option determines whether queries to OCSP responders should contain a nonce or not. By default, a query nonce
is always used and checked against the response’s one. When the responder does not use nonces (e.g. Microsoft OCSP
Responder), this option should be turned off.

SSLOpenSSLConfCmd Directive

Description: Configure OpenSSL parameters through its SSL CONF API
Syntax: SSLOpenSSLConfCmd command-name command-value
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available in httpd 2.4.8 and later, if using OpenSSL 1.0.2 or later

This directive exposes OpenSSL’s SSL CONF API to mod ssl, allowing a flexible configuration of OpenSSL parame-
ters without the need of implementing additional MOD SSL directives when new features are added to OpenSSL.

The set of available SSLOPENSSLCONFCMD commands depends on the OpenSSL version being used for MOD SSL
(at least version 1.0.2 is required). For a list of supported command names, see the section Supported configuration
file commands in the SSL CONF cmd(3)81 manual page for OpenSSL.

Some of the SSLOPENSSLCONFCMD commands can be used as an alternative to existing directives (such as SSL-
CIPHERSUITE or SSLPROTOCOL), though it should be noted that the syntax / allowable values for the parameters
may sometimes differ.

Examples

SSLOpenSSLConfCmd Options -SessionTicket,ServerPreference
SSLOpenSSLConfCmd ECDHParameters brainpoolP256r1
SSLOpenSSLConfCmd ServerInfoFile "/usr/local/apache2/conf/server-info.pem"
SSLOpenSSLConfCmd Protocol "-ALL, TLSv1.2"
SSLOpenSSLConfCmd SignatureAlgorithms RSA+SHA384:ECDSA+SHA256

SSLOptions Directive

Description: Configure various SSL engine run-time options
Syntax: SSLOptions [+|-]option ...
Context: server config, virtual host, directory, .htaccess
Override: Options
Status: Extension
Module: mod ssl

This directive can be used to control various run-time options on a per-directory basis. Normally, if multiple
SSLOptions could apply to a directory, then the most specific one is taken completely; the options are not merged.

81http://www.openssl.org/docs/ssl/SSL CONF cmd.html#SUPPORTED-CONFIGURATION-FILE-COMMANDS

http://www.openssl.org/docs/ssl/SSL_CONF_cmd.html#SUPPORTED-CONFIGURATION-FILE-COMMANDS

864 CHAPTER 10. APACHE MODULES

However if all the options on the SSLOptions directive are preceded by a plus (+) or minus (-) symbol, the options
are merged. Any options preceded by a + are added to the options currently in force, and any options preceded by a -
are removed from the options currently in force.

The available options are:

• StdEnvVars

When this option is enabled, the standard set of SSL related CGI/SSI environment variables are created. This
per default is disabled for performance reasons, because the information extraction step is a rather expensive
operation. So one usually enables this option for CGI and SSI requests only.

• ExportCertData

When this option is enabled, additional CGI/SSI environment variables are created: SSL SERVER CERT,
SSL CLIENT CERT and SSL CLIENT CERT CHAIN n (with n = 0,1,2,..). These contain the PEM-encoded
X.509 Certificates of server and client for the current HTTPS connection and can be used by CGI scripts for
deeper Certificate checking. Additionally all other certificates of the client certificate chain are provided, too.
This bloats up the environment a little bit which is why you have to use this option to enable it on demand.

• FakeBasicAuth

When this option is enabled, the Subject Distinguished Name (DN) of the Client X509 Certificate is translated
into a HTTP Basic Authorization username. This means that the standard Apache authentication methods can
be used for access control. The user name is just the Subject of the Client’s X509 Certificate (can be determined
by running OpenSSL’s openssl x509 command: openssl x509 -noout -subject -in certifi-
cate.crt). Note that no password is obtained from the user. Every entry in the user file needs this password:
“xxj31ZMTZzkVA”, which is the DES-encrypted version of the word ‘password”. Those who live under
MD5-based encryption (for instance under FreeBSD or BSD/OS, etc.) should use the following MD5 hash of
the same word: “1OXLyS...$Owx8s2/m9/gfkcRVXzgoE/”.

Note that the AUTHBASICFAKE directive within MOD AUTH BASIC can be used as a more general mechanism
for faking basic authentication, giving control over the structure of both the username and password.

• StrictRequire

This forces forbidden access when SSLRequireSSL or SSLRequire successfully decided that access should
be forbidden. Usually the default is that in the case where a “Satisfy any” directive is used, and other
access restrictions are passed, denial of access due to SSLRequireSSL or SSLRequire is overridden (be-
cause that’s how the Apache Satisfy mechanism should work.) But for strict access restriction you can
use SSLRequireSSL and/or SSLRequire in combination with an “SSLOptions +StrictRequire”.
Then an additional “Satisfy Any” has no chance once mod ssl has decided to deny access.

• OptRenegotiate

This enables optimized SSL connection renegotiation handling when SSL directives are used in per-directory
context. By default a strict scheme is enabled where every per-directory reconfiguration of SSL parameters
causes a full SSL renegotiation handshake. When this option is used mod ssl tries to avoid unnecessary hand-
shakes by doing more granular (but still safe) parameter checks. Nevertheless these granular checks sometimes
may not be what the user expects, so enable this on a per-directory basis only, please.

• LegacyDNStringFormat

This option influences how values of the SSL {CLIENT,SERVER} {I,S} DN variables are formatted. Since
version 2.3.11, Apache HTTPD uses a RFC 2253 compatible format by default. This uses commas as delimiters
between the attributes, allows the use of non-ASCII characters (which are converted to UTF8), escapes various
special characters with backslashes, and sorts the attributes with the "C" attribute last.

If LegacyDNStringFormat is set, the old format will be used which sorts the "C" attribute first, uses
slashes as separators, and does not handle non-ASCII and special characters in any consistent way.

10.108. APACHE MODULE MOD SSL 865

Example

SSLOptions +FakeBasicAuth -StrictRequire
<Files ˜ "\.(cgi|shtml)$">

SSLOptions +StdEnvVars -ExportCertData
<Files>

SSLPassPhraseDialog Directive

Description: Type of pass phrase dialog for encrypted private keys
Syntax: SSLPassPhraseDialog type
Default: SSLPassPhraseDialog builtin
Context: server config
Status: Extension
Module: mod ssl

When Apache starts up it has to read the various Certificate (see SSLCERTIFICATEFILE) and Private Key (see
SSLCERTIFICATEKEYFILE) files of the SSL-enabled virtual servers. Because for security reasons the Private Key
files are usually encrypted, mod ssl needs to query the administrator for a Pass Phrase in order to decrypt those files.
This query can be done in two ways which can be configured by type:

• builtin

This is the default where an interactive terminal dialog occurs at startup time just before Apache detaches from
the terminal. Here the administrator has to manually enter the Pass Phrase for each encrypted Private Key file.
Because a lot of SSL-enabled virtual hosts can be configured, the following reuse-scheme is used to minimize
the dialog: When a Private Key file is encrypted, all known Pass Phrases (at the beginning there are none, of
course) are tried. If one of those known Pass Phrases succeeds no dialog pops up for this particular Private
Key file. If none succeeded, another Pass Phrase is queried on the terminal and remembered for the next round
(where it perhaps can be reused).

This scheme allows mod ssl to be maximally flexible (because for N encrypted Private Key files you can use N
different Pass Phrases - but then you have to enter all of them, of course) while minimizing the terminal dialog
(i.e. when you use a single Pass Phrase for all N Private Key files this Pass Phrase is queried only once).

• |/path/to/program [args...]

This mode allows an external program to be used which acts as a pipe to a particular input device; the program is
sent the standard prompt text used for the builtin mode on stdin, and is expected to write password strings
on stdout. If several passwords are needed (or an incorrect password is entered), additional prompt text will
be written subsequent to the first password being returned, and more passwords must then be written back.

• exec:/path/to/program

Here an external program is configured which is called at startup for each encrypted Private Key file. It is
called with two arguments (the first is of the form “servername:portnumber”, the second is either “RSA”,
“DSA”, “ECC” or an integer index starting at 3 if more than three keys are configured), which indicate for which
server and algorithm it has to print the corresponding Pass Phrase to stdout. In versions 2.4.8 (unreleased)
and 2.4.9, it is called with one argument, a string of the form “servername:portnumber:index” (with
index being a zero-based integer number), which indicate the server, TCP port and certificate number. The
intent is that this external program first runs security checks to make sure that the system is not compromised
by an attacker, and only when these checks were passed successfully it provides the Pass Phrase.

Both these security checks, and the way the Pass Phrase is determined, can be as complex as you like. Mod ssl
just defines the interface: an executable program which provides the Pass Phrase on stdout. Nothing more
or less! So, if you’re really paranoid about security, here is your interface. Anything else has to be left as an
exercise to the administrator, because local security requirements are so different.

The reuse-algorithm above is used here, too. In other words: The external program is called only once per
unique Pass Phrase.

866 CHAPTER 10. APACHE MODULES

Example

SSLPassPhraseDialog "exec:/usr/local/apache/sbin/pp-filter"

SSLProtocol Directive

Description: Configure usable SSL/TLS protocol versions
Syntax: SSLProtocol [+|-]protocol ...
Default: SSLProtocol all
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive can be used to control which versions of the SSL/TLS protocol will be accepted in new connections.

The available (case-insensitive) protocols are:

• SSLv3

This is the Secure Sockets Layer (SSL) protocol, version 3.0, from the Netscape Corporation. It is the successor
to SSLv2 and the predecessor to TLSv1.

• TLSv1

This is the Transport Layer Security (TLS) protocol, version 1.0. It is the successor to SSLv3 and is defined in
RFC 224682. It is supported by nearly every client.

• TLSv1.1 (when using OpenSSL 1.0.1 and later)

A revision of the TLS 1.0 protocol, as defined in RFC 434683.

• TLSv1.2 (when using OpenSSL 1.0.1 and later)

A revision of the TLS 1.1 protocol, as defined in RFC 524684.

• all

This is a shortcut for “+SSLv3 +TLSv1” or - when using OpenSSL 1.0.1 and later - “+SSLv3 +TLSv1
+TLSv1.1 +TLSv1.2, respectively.

Example

SSLProtocol TLSv1

SSLProxyCACertificateFile Directive

Description: File of concatenated PEM-encoded CA Certificates for Remote Server Auth
Syntax: SSLProxyCACertificateFile file-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive sets the all-in-one file where you can assemble the Certificates of Certification Authorities (CA) whose
remote servers you deal with. These are used for Remote Server Authentication. Such a file is simply the concatenation
of the various PEM-encoded Certificate files, in order of preference. This can be used alternatively and/or additionally
to SSLPROXYCACERTIFICATEPATH.

82http://www.ietf.org/rfc/rfc2246.txt
83http://www.ietf.org/rfc/rfc4346.txt
84http://www.ietf.org/rfc/rfc5246.txt

http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt

10.108. APACHE MODULE MOD SSL 867

Example

SSLProxyCACertificateFile "/usr/local/apache2/conf/ssl.crt/ca-bundle-remote-server.crt"

SSLProxyCACertificatePath Directive

Description: Directory of PEM-encoded CA Certificates for Remote Server Auth
Syntax: SSLProxyCACertificatePath directory-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive sets the directory where you keep the Certificates of Certification Authorities (CAs) whose remote
servers you deal with. These are used to verify the remote server certificate on Remote Server Authentication.

The files in this directory have to be PEM-encoded and are accessed through hash filenames. So usually you can’t just
place the Certificate files there: you also have to create symbolic links named hash-value.N. And you should always
make sure this directory contains the appropriate symbolic links.

Example

SSLProxyCACertificatePath "/usr/local/apache2/conf/ssl.crt/"

SSLProxyCARevocationCheck Directive

Description: Enable CRL-based revocation checking for Remote Server Auth
Syntax: SSLProxyCARevocationCheck chain|leaf|none
Default: SSLProxyCARevocationCheck none
Context: server config, virtual host
Status: Extension
Module: mod ssl

Enables certificate revocation list (CRL) checking for the remote servers you deal with. At least one of SSLPROX-
YCAREVOCATIONFILE or SSLPROXYCAREVOCATIONPATH must be configured. When set to chain (recom-
mended setting), CRL checks are applied to all certificates in the chain, while setting it to leaf limits the checks to
the end-entity cert.

=⇒When set to chain or leaf, CRLs must be available for successful validation

Prior to version 2.3.15, CRL checking in mod ssl also succeeded when no CRL(s) were found
in any of the locations configured with SSLPROXYCAREVOCATIONFILE or SSLPROXY-
CAREVOCATIONPATH. With the introduction of this directive, the behavior has been changed:
when checking is enabled, CRLs must be present for the validation to succeed - otherwise it
will fail with an "unable to get certificate CRL" error.

Example

SSLProxyCARevocationCheck chain

868 CHAPTER 10. APACHE MODULES

SSLProxyCARevocationFile Directive

Description: File of concatenated PEM-encoded CA CRLs for Remote Server Auth
Syntax: SSLProxyCARevocationFile file-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive sets the all-in-one file where you can assemble the Certificate Revocation Lists (CRL) of Certification
Authorities (CA) whose remote servers you deal with. These are used for Remote Server Authentication. Such a file is
simply the concatenation of the various PEM-encoded CRL files, in order of preference. This can be used alternatively
and/or additionally to SSLPROXYCAREVOCATIONPATH.

Example

SSLProxyCARevocationFile "/usr/local/apache2/conf/ssl.crl/ca-bundle-remote-server.crl"

SSLProxyCARevocationPath Directive

Description: Directory of PEM-encoded CA CRLs for Remote Server Auth
Syntax: SSLProxyCARevocationPath directory-path
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive sets the directory where you keep the Certificate Revocation Lists (CRL) of Certification Authorities
(CAs) whose remote servers you deal with. These are used to revoke the remote server certificate on Remote Server
Authentication.

The files in this directory have to be PEM-encoded and are accessed through hash filenames. So usually you have not
only to place the CRL files there. Additionally you have to create symbolic links named hash-value.rN. And you
should always make sure this directory contains the appropriate symbolic links.

Example

SSLProxyCARevocationPath "/usr/local/apache2/conf/ssl.crl/"

SSLProxyCheckPeerCN Directive

Description: Whether to check the remote server certificate’s CN field
Syntax: SSLProxyCheckPeerCN on|off
Default: SSLProxyCheckPeerCN on
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive sets whether the remote server certificate’s CN field is compared against the hostname of the request
URL. If both are not equal a 502 status code (Bad Gateway) is sent.

In 2.4.5 and later, SSLProxyCheckPeerCN has been superseded by SSLPROXYCHECKPEERNAME, and its setting is
only taken into account when SSLProxyCheckPeerName off is specified at the same time.

Example

SSLProxyCheckPeerCN on

10.108. APACHE MODULE MOD SSL 869

SSLProxyCheckPeerExpire Directive

Description: Whether to check if remote server certificate is expired
Syntax: SSLProxyCheckPeerExpire on|off
Default: SSLProxyCheckPeerExpire on
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive sets whether it is checked if the remote server certificate is expired or not. If the check fails a 502 status
code (Bad Gateway) is sent.

Example

SSLProxyCheckPeerExpire on

SSLProxyCheckPeerName Directive

Description: Configure host name checking for remote server certificates
Syntax: SSLProxyCheckPeerName on|off
Default: SSLProxyCheckPeerName on
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Apache HTTP Server 2.4.5 and later

This directive configures host name checking for server certificates when mod ssl is acting as an SSL client. The
check will succeed if the host name from the request URI is found in either the subjectAltName extension or (one of)
the CN attribute(s) in the certificate’s subject. If the check fails, the SSL request is aborted and a 502 status code (Bad
Gateway) is returned. The directive supersedes SSLPROXYCHECKPEERCN, which only checks for the expected host
name in the first CN attribute.

Wildcard matching is supported in one specific flavor: subjectAltName entries of type dNSName or CN attributes start-
ing with *. will match for any DNS name with the same number of labels and the same suffix (i.e., *.example.org
matches for foo.example.org, but not for foo.bar.example.org).

SSLProxyCipherSuite Directive

Description: Cipher Suite available for negotiation in SSL proxy handshake
Syntax: SSLProxyCipherSuite cipher-spec
Default: SSLProxyCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+EXP
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod ssl

Equivalent to SSLCipherSuite, but for the proxy connection. Please refer to SSLCIPHERSUITE for additional
information.

870 CHAPTER 10. APACHE MODULES

SSLProxyEngine Directive

Description: SSL Proxy Engine Operation Switch
Syntax: SSLProxyEngine on|off
Default: SSLProxyEngine off
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive toggles the usage of the SSL/TLS Protocol Engine for proxy. This is usually used inside a <VIRTU-
ALHOST> section to enable SSL/TLS for proxy usage in a particular virtual host. By default the SSL/TLS Protocol
Engine is disabled for proxy both for the main server and all configured virtual hosts.

Note that the SSLProxyEngine directive should not, in general, be included in a virtual host that will be acting as a
forward proxy (using <Proxy> or <ProxyRequest> directives. SSLProxyEngine is not required to enable a forward
proxy server to proxy SSL/TLS requests.

Example

<VirtualHost _default_:443>
SSLProxyEngine on
#...

</VirtualHost>

SSLProxyMachineCertificateChainFile Directive

Description: File of concatenated PEM-encoded CA certificates to be used by the proxy for choosing a
certificate

Syntax: SSLProxyMachineCertificateChainFile filename
Context: server config
Override: Not applicable
Status: Extension
Module: mod ssl

This directive sets the all-in-one file where you keep the certificate chain for all of the client certs in use. This directive
will be needed if the remote server presents a list of CA certificates that are not direct signers of one of the configured
client certificates.

This referenced file is simply the concatenation of the various PEM-encoded certificate files. Upon startup, each client
certificate configured will be examined and a chain of trust will be constructed.

! Security warning
If this directive is enabled, all of the certificates in the file will be trusted as if they were also
in SSLPROXYCACERTIFICATEFILE.

Example

SSLProxyMachineCertificateChainFile "/usr/local/apache2/conf/ssl.crt/proxyCA.pem"

10.108. APACHE MODULE MOD SSL 871

SSLProxyMachineCertificateFile Directive

Description: File of concatenated PEM-encoded client certificates and keys to be used by the proxy
Syntax: SSLProxyMachineCertificateFile filename
Context: server config
Override: Not applicable
Status: Extension
Module: mod ssl

This directive sets the all-in-one file where you keep the certificates and keys used for authentication of the proxy
server to remote servers.

This referenced file is simply the concatenation of the various PEM-encoded certificate files, in order of preference.
Use this directive alternatively or additionally to SSLProxyMachineCertificatePath.

! Currently there is no support for encrypted private keys

Example

SSLProxyMachineCertificateFile "/usr/local/apache2/conf/ssl.crt/proxy.pem"

SSLProxyMachineCertificatePath Directive

Description: Directory of PEM-encoded client certificates and keys to be used by the proxy
Syntax: SSLProxyMachineCertificatePath directory
Context: server config
Override: Not applicable
Status: Extension
Module: mod ssl

This directive sets the directory where you keep the certificates and keys used for authentication of the proxy server to
remote servers.

The files in this directory must be PEM-encoded and are accessed through hash filenames. Additionally, you must cre-
ate symbolic links named hash-value.N. And you should always make sure this directory contains the appropriate
symbolic links.

! Currently there is no support for encrypted private keys

Example

SSLProxyMachineCertificatePath "/usr/local/apache2/conf/proxy.crt/"

SSLProxyProtocol Directive

Description: Configure usable SSL protocol flavors for proxy usage
Syntax: SSLProxyProtocol [+|-]protocol ...
Default: SSLProxyProtocol all
Context: server config, virtual host
Override: Options
Status: Extension
Module: mod ssl

872 CHAPTER 10. APACHE MODULES

This directive can be used to control the SSL protocol flavors mod ssl should use when establishing its server environ-
ment for proxy . It will only connect to servers using one of the provided protocols.

Please refer to SSLPROTOCOL for additional information.

SSLProxyVerify Directive

Description: Type of remote server Certificate verification
Syntax: SSLProxyVerify level
Default: SSLProxyVerify none
Context: server config, virtual host
Status: Extension
Module: mod ssl

When a proxy is configured to forward requests to a remote SSL server, this directive can be used to configure certifi-
cate verification of the remote server.

The following levels are available for level:

• none: no remote server Certificate is required at all

• optional: the remote server may present a valid Certificate

• require: the remote server has to present a valid Certificate

• optional no ca: the remote server may present a valid Certificate
but it need not to be (successfully) verifiable.

In practice only levels none and require are really interesting, because level optional doesn’t work with all servers
and level optional no ca is actually against the idea of authentication (but can be used to establish SSL test pages,
etc.)

Example

SSLProxyVerify require

SSLProxyVerifyDepth Directive

Description: Maximum depth of CA Certificates in Remote Server Certificate verification
Syntax: SSLProxyVerifyDepth number
Default: SSLProxyVerifyDepth 1
Context: server config, virtual host
Status: Extension
Module: mod ssl

This directive sets how deeply mod ssl should verify before deciding that the remote server does not have a valid
certificate.

The depth actually is the maximum number of intermediate certificate issuers, i.e. the number of CA certificates
which are max allowed to be followed while verifying the remote server certificate. A depth of 0 means that self-
signed remote server certificates are accepted only, the default depth of 1 means the remote server certificate can
be self-signed or has to be signed by a CA which is directly known to the server (i.e. the CA’s certificate is under
SSLPROXYCACERTIFICATEPATH), etc.

Example

SSLProxyVerifyDepth 10

10.108. APACHE MODULE MOD SSL 873

SSLRandomSeed Directive

Description: Pseudo Random Number Generator (PRNG) seeding source
Syntax: SSLRandomSeed context source [bytes]
Context: server config
Status: Extension
Module: mod ssl

This configures one or more sources for seeding the Pseudo Random Number Generator (PRNG) in OpenSSL at
startup time (context is startup) and/or just before a new SSL connection is established (context is connect).
This directive can only be used in the global server context because the PRNG is a global facility.

The following source variants are available:

• builtin This is the always available builtin seeding source. Its usage consumes minimum CPU cycles under
runtime and hence can be always used without drawbacks. The source used for seeding the PRNG contains
of the current time, the current process id and (when applicable) a randomly chosen 1KB extract of the inter-
process scoreboard structure of Apache. The drawback is that this is not really a strong source and at startup
time (where the scoreboard is still not available) this source just produces a few bytes of entropy. So you should
always, at least for the startup, use an additional seeding source.

• file:/path/to/source

This variant uses an external file /path/to/source as the source for seeding the PRNG. When bytes is spec-
ified, only the first bytes number of bytes of the file form the entropy (and bytes is given to /path/to/source
as the first argument). When bytes is not specified the whole file forms the entropy (and 0 is given to
/path/to/source as the first argument). Use this especially at startup time, for instance with an avail-
able /dev/random and/or /dev/urandom devices (which usually exist on modern Unix derivatives like
FreeBSD and Linux).

But be careful: Usually /dev/random provides only as much entropy data as it actually has, i.e. when you
request 512 bytes of entropy, but the device currently has only 100 bytes available two things can happen: On
some platforms you receive only the 100 bytes while on other platforms the read blocks until enough bytes
are available (which can take a long time). Here using an existing /dev/urandom is better, because it never
blocks and actually gives the amount of requested data. The drawback is just that the quality of the received
data may not be the best.

• exec:/path/to/program

This variant uses an external executable /path/to/program as the source for seeding the PRNG. When
bytes is specified, only the first bytes number of bytes of its stdout contents form the entropy. When bytes is
not specified, the entirety of the data produced on stdout form the entropy. Use this only at startup time when
you need a very strong seeding with the help of an external program (for instance as in the example above with
the truerand utility you can find in the mod ssl distribution which is based on the AT&T truerand library).
Using this in the connection context slows down the server too dramatically, of course. So usually you should
avoid using external programs in that context.

• egd:/path/to/egd-socket (Unix only)

This variant uses the Unix domain socket of the external Entropy Gathering Daemon (EGD) (see
http://www.lothar.com/tech /crypto/85) to seed the PRNG. Use this if no random device exists on your platform.

85http://www.lothar.com/tech/crypto/

http://www.lothar.com/tech/crypto/

874 CHAPTER 10. APACHE MODULES

Example

SSLRandomSeed startup builtin
SSLRandomSeed startup "file:/dev/random"
SSLRandomSeed startup "file:/dev/urandom" 1024
SSLRandomSeed startup "exec:/usr/local/bin/truerand" 16
SSLRandomSeed connect builtin
SSLRandomSeed connect "file:/dev/random"
SSLRandomSeed connect "file:/dev/urandom" 1024

SSLRenegBufferSize Directive

Description: Set the size for the SSL renegotiation buffer
Syntax: SSLRenegBufferSize bytes
Default: SSLRenegBufferSize 131072
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod ssl

If an SSL renegotiation is required in per-location context, for example, any use of SSLVERIFYCLIENT in a Directory
or Location block, then MOD SSL must buffer any HTTP request body into memory until the new SSL handshake can
be performed. This directive can be used to set the amount of memory that will be used for this buffer.

! Note that in many configurations, the client sending the request body will be untrusted so a
denial of service attack by consumption of memory must be considered when changing this
configuration setting.

Example

SSLRenegBufferSize 262144

SSLRequire Directive

Description: Allow access only when an arbitrarily complex boolean expression is true
Syntax: SSLRequire expression
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod ssl

=⇒SSLRequire is deprecated
SSLRequire is deprecated and should in general be replaced by Require expr (p. 487)
. The so called ap expr (p. 89) syntax of Require expr is a superset of the syntax of
SSLRequire, with the following exception:
In SSLRequire, the comparison operators <, <=, ... are completely equivalent to the oper-
ators lt, le, ... and work in a somewhat peculiar way that first compares the length of two
strings and then the lexical order. On the other hand, ap expr (p. 89) has two sets of compari-
son operators: The operators <, <=, ... do lexical string comparison, while the operators -lt,
-le, ... do integer comparison. For the latter, there are also aliases without the leading dashes:
lt, le, ...

10.108. APACHE MODULE MOD SSL 875

This directive specifies a general access requirement which has to be fulfilled in order to allow access. It is a very
powerful directive because the requirement specification is an arbitrarily complex boolean expression containing any
number of access checks.

The expression must match the following syntax (given as a BNF grammar notation):

expr ::= "true" | "false"
| "!" expr
| expr "&&" expr
| expr "||" expr
| "(" expr ")"
| comp

comp ::= word "==" word | word "eq" word
| word "!=" word | word "ne" word
| word "<" word | word "lt" word
| word "<=" word | word "le" word
| word ">" word | word "gt" word
| word ">=" word | word "ge" word
| word "in" "{" wordlist "}"
| word "in" "PeerExtList(" word ")"
| word "=˜" regex
| word "!˜" regex

wordlist ::= word
| wordlist "," word

word ::= digit
| cstring
| variable
| function

digit ::= [0-9]+
cstring ::= "..."
variable ::= "%{" varname "}"
function ::= funcname "(" funcargs ")"

For varname any of the variables described in Environment Variables can be used. For funcname the available
functions are listed in the ap expr documentation (p. 89) .

The expression is parsed into an internal machine representation when the configuration is loaded, and then evaluated
during request processing. In .htaccess context, the expression is both parsed and executed each time the .htaccess file
is encountered during request processing.

Example

SSLRequire (%{SSL_CIPHER} !˜ m/ˆ(EXP|NULL)-/ \
and %{SSL_CLIENT_S_DN_O} eq "Snake Oil, Ltd." \
and %{SSL_CLIENT_S_DN_OU} in {"Staff", "CA", "Dev"} \
and %{TIME_WDAY} -ge 1 and %{TIME_WDAY} -le 5 \
and %{TIME_HOUR} -ge 8 and %{TIME_HOUR} -le 20) \

or %{REMOTE_ADDR} =˜ m/ˆ192\.76\.162\.[0-9]+$/

The PeerExtList(object-ID) function expects to find zero or more instances of the X.509 certificate extension
identified by the given object ID (OID) in the client certificate. The expression evaluates to true if the left-hand side

876 CHAPTER 10. APACHE MODULES

string matches exactly against the value of an extension identified with this OID. (If multiple extensions with the same
OID are present, at least one extension must match).

Example

SSLRequire "foobar" in PeerExtList("1.2.3.4.5.6")

=⇒Notes on the PeerExtList function

• The object ID can be specified either as a descriptive name recognized by the SSL library,
such as "nsComment", or as a numeric OID, such as "1.2.3.4.5.6".

• Expressions with types known to the SSL library are rendered to a string before compar-
ison. For an extension with a type not recognized by the SSL library, mod ssl will parse
the value if it is one of the primitive ASN.1 types UTF8String, IA5String, VisibleString,
or BMPString. For an extension of one of these types, the string value will be converted
to UTF-8 if necessary, then compared against the left-hand-side expression.

See also

• Environment Variables in Apache HTTP Server (p. 82) , for additional examples.

• Require expr (p. 487)

• Generic expression syntax in Apache HTTP Server (p. 89)

SSLRequireSSL Directive

Description: Deny access when SSL is not used for the HTTP request
Syntax: SSLRequireSSL
Context: directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod ssl

This directive forbids access unless HTTP over SSL (i.e. HTTPS) is enabled for the current connection. This is very
handy inside the SSL-enabled virtual host or directories for defending against configuration errors that expose stuff
that should be protected. When this directive is present all requests are denied which are not using SSL.

Example

SSLRequireSSL

SSLSessionCache Directive

Description: Type of the global/inter-process SSL Session Cache
Syntax: SSLSessionCache type
Default: SSLSessionCache none
Context: server config
Status: Extension
Module: mod ssl

This configures the storage type of the global/inter-process SSL Session Cache. This cache is an optional facility
which speeds up parallel request processing. For requests to the same server process (via HTTP keep-alive), OpenSSL

10.108. APACHE MODULE MOD SSL 877

already caches the SSL session information locally. But because modern clients request inlined images and other data
via parallel requests (usually up to four parallel requests are common) those requests are served by different pre-forked
server processes. Here an inter-process cache helps to avoid unnecessary session handshakes.

The following five storage types are currently supported:

• none

This disables the global/inter-process Session Cache. This will incur a noticeable speed penalty and may cause
problems if using certain browsers, particularly if client certificates are enabled. This setting is not recom-
mended.

• nonenotnull

This disables any global/inter-process Session Cache. However it does force OpenSSL to send a non-null session
ID to accommodate buggy clients that require one.

• dbm:/path/to/datafile

This makes use of a DBM hashfile on the local disk to synchronize the local OpenSSL memory caches of the
server processes. This session cache may suffer reliability issues under high load. To use this, ensure that
MOD SOCACHE DBM is loaded.

• shmcb:/path/to/datafile[(size)]

This makes use of a high-performance cyclic buffer (approx. size bytes in size) inside a shared memory segment
in RAM (established via /path/to/datafile) to synchronize the local OpenSSL memory caches of the
server processes. This is the recommended session cache. To use this, ensure that MOD SOCACHE SHMCB is
loaded.

• dc:UNIX:/path/to/socket

This makes use of the distcache86 distributed session caching libraries. The argument should specify the location
of the server or proxy to be used using the distcache address syntax; for example, UNIX:/path/to/socket
specifies a UNIX domain socket (typically a local dc client proxy); IP:server.example.com:9001 spec-
ifies an IP address. To use this, ensure that MOD SOCACHE DC is loaded.

Examples

SSLSessionCache "dbm:/usr/local/apache/logs/ssl_gcache_data"
SSLSessionCache "shmcb:/usr/local/apache/logs/ssl_gcache_data(512000)"

The ssl-cache mutex is used to serialize access to the session cache to prevent corruption. This mutex can be
configured using the MUTEX directive.

SSLSessionCacheTimeout Directive

Description: Number of seconds before an SSL session expires in the Session Cache
Syntax: SSLSessionCacheTimeout seconds
Default: SSLSessionCacheTimeout 300
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Applies also to RFC 5077 TLS session resumption in Apache 2.4.10 and later

This directive sets the timeout in seconds for the information stored in the global/inter-process SSL Session Cache,
the OpenSSL internal memory cache and for sessions resumed by TLS session resumption (RFC 5077). It can be set
as low as 15 for testing, but should be set to higher values like 300 in real life.

86http://www.distcache.org/

http://www.distcache.org/

878 CHAPTER 10. APACHE MODULES

Example

SSLSessionCacheTimeout 600

SSLSessionTicketKeyFile Directive

Description: Persistent encryption/decryption key for TLS session tickets
Syntax: SSLSessionTicketKeyFile file-path
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available in httpd 2.4.0 and later, if using OpenSSL 0.9.8h or later

Optionally configures a secret key for encrypting and decrypting TLS session tickets, as defined in RFC 507787.
Primarily suitable for clustered environments where TLS sessions information should be shared between multiple
nodes. For single-instance httpd setups, it is recommended to not configure a ticket key file, but to rely on (random)
keys generated by mod ssl at startup, instead.

The ticket key file must contain 48 bytes of random data, preferrably created from a high-entropy source. On a
Unix-based system, a ticket key file can be created as follows:

dd if=/dev/random of=/path/to/file.tkey bs=1 count=48

Ticket keys should be rotated (replaced) on a frequent basis, as this is the only way to invalidate an existing session
ticket - OpenSSL currently doesn’t allow to specify a limit for ticket lifetimes. A new ticket key only gets used after
restarting the web server. All existing session tickets become invalid after a restart.

! The ticket key file contains sensitive keying material and should be protected with file permis-
sions similar to those used for SSLCERTIFICATEKEYFILE.

SSLSessionTickets Directive

Description: Enable or disable use of TLS session tickets
Syntax: SSLSessionTickets on|off
Default: SSLSessionTickets on
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available in httpd 2.4.11 and later, if using OpenSSL 0.9.8f or later.

This directive allows to enable or disable the use of TLS session tickets (RFC 5077).

! TLS session tickets are enabled by default. Using them without restarting the web server with
an appropriate frequency (e.g. daily) compromises perfect forward secrecy.

87http://www.ietf.org/rfc/rfc5077.txt

http://www.ietf.org/rfc/rfc5077.txt

10.108. APACHE MODULE MOD SSL 879

SSLSRPUnknownUserSeed Directive

Description: SRP unknown user seed
Syntax: SSLSRPUnknownUserSeed secret-string
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available in httpd 2.4.4 and later, if using OpenSSL 1.0.1 or later

This directive sets the seed used to fake SRP user parameters for unknown users, to avoid leaking whether a given user
exists. Specify a secret string. If this directive is not used, then Apache will return the UNKNOWN PSK IDENTITY
alert to clients who specify an unknown username.

Example
SSLSRPUnknownUserSeed "secret"

SSLSRPVerifierFile Directive

Description: Path to SRP verifier file
Syntax: SSLSRPVerifierFile file-path
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available in httpd 2.4.4 and later, if using OpenSSL 1.0.1 or later

This directive enables TLS-SRP and sets the path to the OpenSSL SRP (Secure Remote Password) verifier file con-
taining TLS-SRP usernames, verifiers, salts, and group parameters.

Example
SSLSRPVerifierFile "/path/to/file.srpv"

The verifier file can be created with the openssl command line utility:

Creating the SRP verifier file
openssl srp -srpvfile passwd.srpv -userinfo "some info" -add username

The value given with the optional -userinfo parameter is avalable in the SSL SRP USERINFO request environ-
ment variable.

SSLStaplingCache Directive

Description: Configures the OCSP stapling cache
Syntax: SSLStaplingCache type
Context: server config
Status: Extension
Module: mod ssl
Compatibility: Available if using OpenSSL 0.9.8h or later

Configures the cache used to store OCSP responses which get included in the TLS handshake if SSLUSESTAPLING is
enabled. Configuration of a cache is mandatory for OCSP stapling. With the exception of none and nonenotnull,
the same storage types are supported as with SSLSESSIONCACHE.

880 CHAPTER 10. APACHE MODULES

SSLStaplingErrorCacheTimeout Directive

Description: Number of seconds before expiring invalid responses in the OCSP stapling cache
Syntax: SSLStaplingErrorCacheTimeout seconds
Default: SSLStaplingErrorCacheTimeout 600
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available if using OpenSSL 0.9.8h or later

Sets the timeout in seconds before invalid responses in the OCSP stapling cache (configured through SSLSTAPLING-
CACHE) will expire. To set the cache timeout for valid responses, see SSLSTAPLINGSTANDARDCACHETIMEOUT.

SSLStaplingFakeTryLater Directive

Description: Synthesize "tryLater" responses for failed OCSP stapling queries
Syntax: SSLStaplingFakeTryLater on|off
Default: SSLStaplingFakeTryLater on
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available if using OpenSSL 0.9.8h or later

When enabled and a query to an OCSP responder for stapling purposes fails, mod ssl will synthesize a "tryLater"
response for the client. Only effective if SSLSTAPLINGRETURNRESPONDERERRORS is also enabled.

SSLStaplingForceURL Directive

Description: Override the OCSP responder URI specified in the certificate’s AIA extension
Syntax: SSLStaplingForceURL uri
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available if using OpenSSL 0.9.8h or later

This directive overrides the URI of an OCSP responder as obtained from the authorityInfoAccess (AIA) extension of
the certificate. One potential use is when a proxy is used for retrieving OCSP queries.

SSLStaplingResponderTimeout Directive

Description: Timeout for OCSP stapling queries
Syntax: SSLStaplingResponderTimeout seconds
Default: SSLStaplingResponderTimeout 10
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available if using OpenSSL 0.9.8h or later

This option sets the timeout for queries to OCSP responders when SSLUSESTAPLING is enabled and mod ssl is
querying a responder for OCSP stapling purposes.

10.108. APACHE MODULE MOD SSL 881

SSLStaplingResponseMaxAge Directive

Description: Maximum allowable age for OCSP stapling responses
Syntax: SSLStaplingResponseMaxAge seconds
Default: SSLStaplingResponseMaxAge -1
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available if using OpenSSL 0.9.8h or later

This option sets the maximum allowable age ("freshness") when considering OCSP responses for stapling purposes,
i.e. when SSLUSESTAPLING is turned on. The default value (-1) does not enforce a maximum age, which means
that OCSP responses are considered valid as long as their nextUpdate field is in the future.

SSLStaplingResponseTimeSkew Directive

Description: Maximum allowable time skew for OCSP stapling response validation
Syntax: SSLStaplingResponseTimeSkew seconds
Default: SSLStaplingResponseTimeSkew 300
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available if using OpenSSL 0.9.8h or later

This option sets the maximum allowable time skew when mod ssl checks the thisUpdate and nextUpdate fields
of OCSP responses which get included in the TLS handshake (OCSP stapling). Only applicable if SSLUSESTAPLING
is turned on.

SSLStaplingReturnResponderErrors Directive

Description: Pass stapling related OCSP errors on to client
Syntax: SSLStaplingReturnResponderErrors on|off
Default: SSLStaplingReturnResponderErrors on
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available if using OpenSSL 0.9.8h or later

When enabled, mod ssl will pass responses from unsuccessful stapling related OCSP queries (such as status errors,
expired responses etc.) on to the client. If set to off, no stapled responses for failed queries will be included in the
TLS handshake.

SSLStaplingStandardCacheTimeout Directive

Description: Number of seconds before expiring responses in the OCSP stapling cache
Syntax: SSLStaplingStandardCacheTimeout seconds
Default: SSLStaplingStandardCacheTimeout 3600
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available if using OpenSSL 0.9.8h or later

882 CHAPTER 10. APACHE MODULES

Sets the timeout in seconds before responses in the OCSP stapling cache (configured through SSLSTAPLINGCACHE)
will expire. This directive applies to valid responses, while SSLSTAPLINGERRORCACHETIMEOUT is used for con-
trolling the timeout for invalid/unavailable responses.

SSLStrictSNIVHostCheck Directive

Description: Whether to allow non-SNI clients to access a name-based virtual host.
Syntax: SSLStrictSNIVHostCheck on|off
Default: SSLStrictSNIVHostCheck off
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available in Apache 2.2.12 and later

This directive sets whether a non-SNI client is allowed to access a name-based virtual host. If set to on in the default
name-based virtual host, clients that are SNI unaware will not be allowed to access any virtual host, belonging to this
particular IP / port combination. If set to on in any other virtual host, SNI unaware clients are not allowed to access
this particular virtual host.

! This option is only available if httpd was compiled against an SNI capable version of OpenSSL.

Example

SSLStrictSNIVHostCheck on

SSLUserName Directive

Description: Variable name to determine user name
Syntax: SSLUserName varname
Context: server config, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod ssl

This directive sets the "user" field in the Apache request object. This is used by lower modules to identify the user
with a character string. In particular, this may cause the environment variable REMOTE USER to be set. The varname
can be any of the SSL environment variables.

Note that this directive has no effect if the FakeBasicAuth option is used (see SSLOptions).

Example

SSLUserName SSL_CLIENT_S_DN_CN

SSLUseStapling Directive

Description: Enable stapling of OCSP responses in the TLS handshake
Syntax: SSLUseStapling on|off
Default: SSLUseStapling off
Context: server config, virtual host
Status: Extension
Module: mod ssl
Compatibility: Available if using OpenSSL 0.9.8h or later

10.108. APACHE MODULE MOD SSL 883

This option enables OCSP stapling, as defined by the "Certificate Status Request" TLS extension specified in RFC
6066. If enabled (and requested by the client), mod ssl will include an OCSP response for its own certificate in the
TLS handshake. Configuring an SSLSTAPLINGCACHE is a prerequisite for enabling OCSP stapling.

OCSP stapling relieves the client of querying the OCSP responder on its own, but it should be noted that with the
RFC 6066 specification, the server’s CertificateStatus reply may only include an OCSP response for a single
cert. For server certificates with intermediate CA certificates in their chain (the typical case nowadays), stapling in
its current implementation therefore only partially achieves the stated goal of "saving roundtrips and resources" - see
also RFC 696188 (TLS Multiple Certificate Status Extension).

When OCSP stapling is enabled, the ssl-stapling mutex is used to control access to the OCSP stapling cache
in order to prevent corruption, and the sss-stapling-refresh mutex is used to control refreshes of OCSP
responses. These mutexes can be configured using the MUTEX directive.

SSLVerifyClient Directive

Description: Type of Client Certificate verification
Syntax: SSLVerifyClient level
Default: SSLVerifyClient none
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod ssl

This directive sets the Certificate verification level for the Client Authentication. Notice that this directive can be used
both in per-server and per-directory context. In per-server context it applies to the client authentication process used in
the standard SSL handshake when a connection is established. In per-directory context it forces a SSL renegotiation
with the reconfigured client verification level after the HTTP request was read but before the HTTP response is sent.

The following levels are available for level:

• none: no client Certificate is required at all

• optional: the client may present a valid Certificate

• require: the client has to present a valid Certificate

• optional no ca: the client may present a valid Certificate
but it need not to be (successfully) verifiable.

In practice only levels none and require are really interesting, because level optional doesn’t work with all browsers
and level optional no ca is actually against the idea of authentication (but can be used to establish SSL test pages,
etc.)

Example

SSLVerifyClient require

88http://www.ietf.org/rfc/rfc6961.txt

http://www.ietf.org/rfc/rfc6961.txt

884 CHAPTER 10. APACHE MODULES

SSLVerifyDepth Directive

Description: Maximum depth of CA Certificates in Client Certificate verification
Syntax: SSLVerifyDepth number
Default: SSLVerifyDepth 1
Context: server config, virtual host, directory, .htaccess
Override: AuthConfig
Status: Extension
Module: mod ssl

This directive sets how deeply mod ssl should verify before deciding that the clients don’t have a valid certificate.
Notice that this directive can be used both in per-server and per-directory context. In per-server context it applies to
the client authentication process used in the standard SSL handshake when a connection is established. In per-directory
context it forces a SSL renegotiation with the reconfigured client verification depth after the HTTP request was read
but before the HTTP response is sent.

The depth actually is the maximum number of intermediate certificate issuers, i.e. the number of CA certificates
which are max allowed to be followed while verifying the client certificate. A depth of 0 means that self-signed client
certificates are accepted only, the default depth of 1 means the client certificate can be self-signed or has to be signed
by a CA which is directly known to the server (i.e. the CA’s certificate is under SSLCACERTIFICATEPATH), etc.

Example

SSLVerifyDepth 10

10.109. APACHE MODULE MOD STATUS 885

10.109 Apache Module mod status

Description: Provides information on server activity and performance
Status: Base
ModuleIdentifier: status module
SourceFile: mod status.c

Summary

The Status module allows a server administrator to find out how well their server is performing. A HTML page is
presented that gives the current server statistics in an easily readable form. If required this page can be made to
automatically refresh (given a compatible browser). Another page gives a simple machine-readable list of the current
server state.

The details given are:

• The number of worker serving requests

• The number of idle worker

• The status of each worker, the number of requests that worker has performed and the total number of bytes
served by the worker (*)

• A total number of accesses and byte count served (*)

• The time the server was started/restarted and the time it has been running for

• Averages giving the number of requests per second, the number of bytes served per second and the average
number of bytes per request (*)

• The current percentage CPU used by each worker and in total by all workers combined (*)

• The current hosts and requests being processed (*)

The lines marked "(*)" are only available if EXTENDEDSTATUS is On. In version 2.3.6, loading mod status will
toggle EXTENDEDSTATUS On by default.

Directives This module provides no directives.

Enabling Status Support

To enable status reports only for browsers from the example.com domain add this code to your httpd.conf config-
uration file

<Location "/server-status">
SetHandler server-status
Require host example.com

</Location>

You can now access server statistics by using a Web browser to access the page
http://your.server.name/server-status

Automatic Updates

You can get the status page to update itself automatically if you have a browser that supports "refresh". Access the
page http://your.server.name/server-status?refresh=N to refresh the page every N seconds.

886 CHAPTER 10. APACHE MODULES

Machine Readable Status File

A machine-readable version of the status file is available by accessing the page
http://your.server.name/server-status?auto. This is useful when automatically run, see
the Perl program log server status, which you will find in the /support directory of your Apache HTTP
Server installation.

=⇒It should be noted that if MOD STATUS is loaded into the server, its handler capability is
available in all configuration files, including per-directory files (e.g., .htaccess). This
may have security-related ramifications for your site.

Using server-status to troubleshoot

The server-status page may be used as a starting place for troubleshooting a situation where your server is
consuming all available resources (CPU or memory), and you wish to identify which requests or clients are causing
the problem.

First, ensure that you have EXTENDEDSTATUS set on, so that you can see the full request and client information for
each child or thread.

Now look in your process list (using top, or similar process viewing utility) to identify the specific processes that
are the main culprits. Order the output of top by CPU usage, or memory usage, depending on what problem you’re
trying to address.

Reload the server-status page, and look for those process ids, and you’ll be able to see what request is being
served by that process, for what client. Requests are transient, so you may need to try several times before you catch
it in the act, so to speak.

This process should give you some idea what client, or what type of requests, are primarily responsible for your
load problems. Often you will identify a particular web application that is misbehaving, or a particular client that is
attacking your site.

10.110. APACHE MODULE MOD SUBSTITUTE 887

10.110 Apache Module mod substitute

Description: Perform search and replace operations on response bodies
Status: Extension
ModuleIdentifier: substitute module
SourceFile: mod substitute.c
Compatibility: Available in Apache HTTP Server 2.2.7 and later

Summary

MOD SUBSTITUTE provides a mechanism to perform both regular expression and fixed string substitutions on response
bodies.

Directives

• Substitute

• SubstituteMaxLineLength

Substitute Directive

Description: Pattern to filter the response content
Syntax: Substitute s/pattern/substitution/[infq]
Context: directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod substitute

The SUBSTITUTE directive specifies a search and replace pattern to apply to the response body.

The meaning of the pattern can be modified by using any combination of these flags:

i Perform a case-insensitive match.

n By default the pattern is treated as a regular expression. Using the n flag forces the pattern to be treated as a fixed
string.

f The f flag causes mod substitute to flatten the result of a substitution allowing for later substitutions to take place
on the boundary of this one. This is the default.

q The q flag causes mod substitute to not flatten the buckets after each substitution. This can result in much faster
response and a decrease in memory utilization, but should only be used if there is no possibility that the result
of one substitution will ever match a pattern or regex of a subsequent one.

Example

<Location "/">
AddOutputFilterByType SUBSTITUTE text/html
Substitute "s/foo/bar/ni"

</Location>

If either the pattern or the substitution contain a slash character then an alternative delimiter should be used:

888 CHAPTER 10. APACHE MODULES

Example of using an alternate delimiter

<Location "/">
AddOutputFilterByType SUBSTITUTE text/html
Substitute "s|<BR */?>|
|i"

</Location>

Backreferences can be used in the comparison and in the substitution, when regular expressions are used, as illustrated
in the following example:

Example of using backreferences and captures

<Location "/">
AddOutputFilterByType SUBSTITUTE text/html
"foo=k,bar=k" -> "foo/bar=k"
Substitute "s|foo=(\w+),bar=\1|foo/bar=$1"

</Location>

A common use scenario for mod substitute is the situation in which a front-end server proxies requests to a
back-end server which returns HTML with hard-coded embedded URLs that refer to the back-end server. These URLs
don’t work for the end-user, since the back-end server is unreachable.

In this case, mod substutite can be used to rewrite those URLs into something that will work from the front end:

Rewriting URLs embedded in proxied content

ProxyPass "/blog/" "http://internal.blog.example.com"
ProxyPassReverse "/blog/" "http://internal.blog.example.com/"

Substitute "s|http://internal.blog.example.com/|http://www.example.com/blog/|i"

PROXYPASSREVERSE modifies any Location (redirect) headers that are sent by the back-end server, and, in this
example, Substitute takes care of the rest of the problem by fixing up the HTML response as well.

SubstituteMaxLineLength Directive

Description: Set the maximum line size
Syntax: SubstituteMaxLineLength bytes(b|B|k|K|m|M|g|G)
Default: SubstituteMaxLineLength 1m
Context: directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod substitute
Compatibility: Available in httpd 2.4.11 and later

The maximum line size handled by MOD SUBSTITUTE is limited to restrict memory use. The limit can be configured
using SUBSTITUTEMAXLINELENGTH. The value can be given as the number of bytes and can be suffixed with a
single letter b, B, k, K, m, M, g, G to provide the size in bytes, kilobytes, megabytes or gigabytes respectively.

Example

<Location "/">
AddOutputFilterByType SUBSTITUTE text/html
SubstituteMaxLineLength 10m
Substitute "s/foo/bar/ni"

</Location>

10.111. APACHE MODULE MOD SUEXEC 889

10.111 Apache Module mod suexec

Description: Allows CGI scripts to run as a specified user and Group
Status: Extension
ModuleIdentifier: suexec module
SourceFile: mod suexec.c

Summary

This module, in combination with the suexec support program allows CGI scripts to run as a specified user and
Group.

Directives

• SuexecUserGroup

See also

• SuEXEC support (p. 105)

SuexecUserGroup Directive

Description: User and group for CGI programs to run as
Syntax: SuexecUserGroup User Group
Context: server config, virtual host
Status: Extension
Module: mod suexec

The SUEXECUSERGROUP directive allows you to specify a user and group for CGI programs to run as. Non-CGI
requests are still processed with the user specified in the USER directive.

Example

SuexecUserGroup nobody nogroup

Startup will fail if this directive is specified but the suEXEC feature is disabled.

See also

• SUEXEC

890 CHAPTER 10. APACHE MODULES

10.112 Apache Module mod unique id

Description: Provides an environment variable with a unique identifier for each request
Status: Extension
ModuleIdentifier: unique id module
SourceFile: mod unique id.c

Summary

This module provides a magic token for each request which is guaranteed to be unique across "all" requests under
very specific conditions. The unique identifier is even unique across multiple machines in a properly configured cluster
of machines. The environment variable UNIQUE ID is set to the identifier for each request. Unique identifiers are
useful for various reasons which are beyond the scope of this document.

Directives This module provides no directives.

Theory

First a brief recap of how the Apache server works on Unix machines. This feature currently isn’t supported on
Windows NT. On Unix machines, Apache creates several children, the children process requests one at a time. Each
child can serve multiple requests in its lifetime. For the purpose of this discussion, the children don’t share any data
with each other. We’ll refer to the children as httpd processes.

Your website has one or more machines under your administrative control, together we’ll call them a cluster of ma-
chines. Each machine can possibly run multiple instances of Apache. All of these collectively are considered "the
universe", and with certain assumptions we’ll show that in this universe we can generate unique identifiers for each
request, without extensive communication between machines in the cluster.

The machines in your cluster should satisfy these requirements. (Even if you have only one machine you should
synchronize its clock with NTP.)

• The machines’ times are synchronized via NTP or other network time protocol.

• The machines’ hostnames all differ, such that the module can do a hostname lookup on the hostname and receive
a different IP address for each machine in the cluster.

As far as operating system assumptions go, we assume that pids (process ids) fit in 32-bits. If the operating system
uses more than 32-bits for a pid, the fix is trivial but must be performed in the code.

Given those assumptions, at a single point in time we can identify any httpd process on any machine in the cluster
from all other httpd processes. The machine’s IP address and the pid of the httpd process are sufficient to do this.
A httpd process can handle multiple requests simultaneously if you use a multi-threaded MPM. In order to identify
threads, we use a thread index Apache httpd uses internally. So in order to generate unique identifiers for requests we
need only distinguish between different points in time.

To distinguish time we will use a Unix timestamp (seconds since January 1, 1970 UTC), and a 16-bit counter. The
timestamp has only one second granularity, so the counter is used to represent up to 65536 values during a single
second. The quadruple (ip addr, pid, time stamp, counter) is sufficient to enumerate 65536 requests per second per
httpd process. There are issues however with pid reuse over time, and the counter is used to alleviate this issue.

When an httpd child is created, the counter is initialized with (current microseconds divided by 10) modulo 65536
(this formula was chosen to eliminate some variance problems with the low order bits of the microsecond timers on
some systems). When a unique identifier is generated, the time stamp used is the time the request arrived at the web
server. The counter is incremented every time an identifier is generated (and allowed to roll over).

10.112. APACHE MODULE MOD UNIQUE ID 891

The kernel generates a pid for each process as it forks the process, and pids are allowed to roll over (they’re 16-bits
on many Unixes, but newer systems have expanded to 32-bits). So over time the same pid will be reused. However
unless it is reused within the same second, it does not destroy the uniqueness of our quadruple. That is, we assume the
system does not spawn 65536 processes in a one second interval (it may even be 32768 processes on some Unixes, but
even this isn’t likely to happen).

Suppose that time repeats itself for some reason. That is, suppose that the system’s clock is screwed up and it revisits
a past time (or it is too far forward, is reset correctly, and then revisits the future time). In this case we can easily show
that we can get pid and time stamp reuse. The choice of initializer for the counter is intended to help defeat this. Note
that we really want a random number to initialize the counter, but there aren’t any readily available numbers on most
systems (i.e., you can’t use rand() because you need to seed the generator, and can’t seed it with the time because time,
at least at one second resolution, has repeated itself). This is not a perfect defense.

How good a defense is it? Suppose that one of your machines serves at most 500 requests per second (which is
a very reasonable upper bound at this writing, because systems generally do more than just shovel out static files).
To do that it will require a number of children which depends on how many concurrent clients you have. But we’ll
be pessimistic and suppose that a single child is able to serve 500 requests per second. There are 1000 possible
starting counter values such that two sequences of 500 requests overlap. So there is a 1.5% chance that if time (at one
second resolution) repeats itself this child will repeat a counter value, and uniqueness will be broken. This was a very
pessimistic example, and with real world values it’s even less likely to occur. If your system is such that it’s still likely
to occur, then perhaps you should make the counter 32 bits (by editing the code).

You may be concerned about the clock being "set back" during summer daylight savings. However this isn’t an issue
because the times used here are UTC, which "always" go forward. Note that x86 based Unixes may need proper
configuration for this to be true – they should be configured to assume that the motherboard clock is on UTC and
compensate appropriately. But even still, if you’re running NTP then your UTC time will be correct very shortly after
reboot.

The UNIQUE ID environment variable is constructed by encoding the 144-bit (32-bit IP address, 32 bit pid, 32 bit
time stamp, 16 bit counter, 32 bit thread index) quadruple using the alphabet [A-Za-z0-9@-] in a manner similar to
MIME base64 encoding, producing 24 characters. The MIME base64 alphabet is actually [A-Za-z0-9+/] however
+ and / need to be specially encoded in URLs, which makes them less desirable. All values are encoded in network
byte ordering so that the encoding is comparable across architectures of different byte ordering. The actual ordering
of the encoding is: time stamp, IP address, pid, counter. This ordering has a purpose, but it should be emphasized that
applications should not dissect the encoding. Applications should treat the entire encoded UNIQUE ID as an opaque
token, which can be compared against other UNIQUE IDs for equality only.

The ordering was chosen such that it’s possible to change the encoding in the future without worrying about collision
with an existing database of UNIQUE IDs. The new encodings should also keep the time stamp as the first element,
and can otherwise use the same alphabet and bit length. Since the time stamps are essentially an increasing sequence,
it’s sufficient to have a flag second in which all machines in the cluster stop serving any request, and stop using the old
encoding format. Afterwards they can resume requests and begin issuing the new encodings.

This we believe is a relatively portable solution to this problem. The identifiers generated have essentially an infinite
life-time because future identifiers can be made longer as required. Essentially no communication is required between
machines in the cluster (only NTP synchronization is required, which is low overhead), and no communication between
httpd processes is required (the communication is implicit in the pid value assigned by the kernel). In very specific
situations the identifier can be shortened, but more information needs to be assumed (for example the 32-bit IP address
is overkill for any site, but there is no portable shorter replacement for it).

892 CHAPTER 10. APACHE MODULES

10.113 Apache Module mod unixd

Description: Basic (required) security for Unix-family platforms.
Status: Base
ModuleIdentifier: unixd module
SourceFile: mod unixd.c

Directives

• ChrootDir

• Group

• Suexec

• User

See also

• suEXEC support (p. 105)

ChrootDir Directive

Description: Directory for apache to run chroot(8) after startup.
Syntax: ChrootDir /path/to/directory
Default: none
Context: server config
Status: Base
Module: MOD UNIXD
Compatibility: Available in Apache 2.2.10 and later

This directive tells the server to chroot(8) to the specified directory after startup, but before accepting requests over
the ’net.

Note that running the server under chroot is not simple, and requires additional setup, particularly if you are running
scripts such as CGI or PHP. Please make sure you are properly familiar with the operation of chroot before attempting
to use this feature.

Group Directive

Description: Group under which the server will answer requests
Syntax: Group unix-group
Default: Group #-1
Context: server config
Status: Base
Module: mod unixd

The GROUP directive sets the group under which the server will answer requests. In order to use this directive, the
server must be run initially as root. If you start the server as a non-root user, it will fail to change to the specified
group, and will instead continue to run as the group of the original user. Unix-group is one of:

A group name Refers to the given group by name.

followed by a group number. Refers to a group by its number.

10.113. APACHE MODULE MOD UNIXD 893

Example

Group www-group

It is recommended that you set up a new group specifically for running the server. Some admins use user nobody,
but this is not always possible or desirable.

! Security
Don’t set GROUP (or USER) to root unless you know exactly what you are doing, and what
the dangers are.

See also

• VHOSTGROUP

• SUEXECUSERGROUP

Suexec Directive

Description: Enable or disable the suEXEC feature
Syntax: Suexec On|Off
Default: On if suexec binary exists with proper owner and mode, Off

otherwise
Context: server config
Status: Base
Module: mod unixd

When On, startup will fail if the suexec binary doesn’t exist or has an invalid owner or file mode.

When Off, suEXEC will be disabled even if the suexec binary exists and has a valid owner and file mode.

User Directive

Description: The userid under which the server will answer requests
Syntax: User unix-userid
Default: User #-1
Context: server config
Status: Base
Module: mod unixd

The USER directive sets the user ID as which the server will answer requests. In order to use this directive, the server
must be run initially as root. If you start the server as a non-root user, it will fail to change to the lesser privileged
user, and will instead continue to run as that original user. If you do start the server as root, then it is normal for the
parent process to remain running as root. Unix-userid is one of:

A username Refers to the given user by name.

followed by a user number. Refers to a user by its number.

The user should have no privileges that result in it being able to access files that are not intended to be visible to the
outside world, and similarly, the user should not be able to execute code that is not meant for HTTP requests. It is
recommended that you set up a new user and group specifically for running the server. Some admins use user nobody,
but this is not always desirable, since the nobody user can have other uses on the system.

894 CHAPTER 10. APACHE MODULES

! Security
Don’t set USER (or GROUP) to root unless you know exactly what you are doing, and what
the dangers are.

See also

• VHOSTUSER

• SUEXECUSERGROUP

10.114. APACHE MODULE MOD USERDIR 895

10.114 Apache Module mod userdir

Description: User-specific directories
Status: Base
ModuleIdentifier: userdir module
SourceFile: mod userdir.c

Summary

This module allows user-specific directories to be accessed using the http://example.com/˜user/ syntax.

Directives

• UserDir

See also

• Mapping URLs to the Filesystem (p. 61)

• public html tutorial (p. 245)

UserDir Directive

Description: Location of the user-specific directories
Syntax: UserDir directory-filename [directory-filename] ...
Context: server config, virtual host
Status: Base
Module: mod userdir

The USERDIR directive sets the real directory in a user’s home directory to use when a request for a document for a
user is received. Directory-filename is one of the following:

• The name of a directory or a pattern such as those shown below.

• The keyword disabled. This turns off all username-to-directory translations except those explicitly named
with the enabled keyword (see below).

• The keyword disabled followed by a space-delimited list of usernames. Usernames that appear in such a list
will never have directory translation performed, even if they appear in an enabled clause.

• The keyword enabled followed by a space-delimited list of usernames. These usernames will have directory
translation performed even if a global disable is in effect, but not if they also appear in a disabled clause.

If neither the enabled nor the disabled keywords appear in the Userdir directive, the argument is
treated as a filename pattern, and is used to turn the name into a directory specification. A request for
http://www.example.com/˜bob/one/two.html will be translated to:

UserDir directive used Translated path
UserDir public html ˜bob/public html/one/two.html
UserDir /usr/web /usr/web/bob/one/two.html
UserDir /home/*/www /home/bob/www/one/two.html

The following directives will send redirects to the client:

UserDir directive used Translated path
UserDir http://www.example.com/users http://www.example.com/users/bob/one/two.html
UserDir http://www.example.com/*/usr http://www.example.com/bob/usr/one/two.html
UserDir http://www.example.com/˜*/ http://www.example.com/˜bob/one/two.html

896 CHAPTER 10. APACHE MODULES

=⇒Be careful when using this directive; for instance, "UserDir ./" would map
"/˜root" to "/" - which is probably undesirable. It is strongly recommended that
your configuration include a "UserDir disabled root" declaration. See also the
DIRECTORY directive and the Security Tips (p. 338) page for more information.

Additional examples:

To allow a few users to have UserDir directories, but not anyone else, use the following:

UserDir disabled
UserDir enabled user1 user2 user3

To allow most users to have UserDir directories, but deny this to a few, use the following:

UserDir disabled user4 user5 user6

It is also possible to specify alternative user directories. If you use a command like:

UserDir public_html /usr/web http://www.example.com/

With a request for http://www.example.com/˜bob/one/two.html, will try to find the page at
˜bob/public html/one/two.html first, then /usr/web/bob/one/two.html, and finally it will send
a redirect to http://www.example.com/bob/one/two.html.

If you add a redirect, it must be the last alternative in the list. Apache httpd cannot determine if the redirect succeeded
or not, so if you have the redirect earlier in the list, that will always be the alternative that is used.

User directory substitution is not active by default in versions 2.1.4 and later. In earlier versions, UserDir
public html was assumed if no USERDIR directive was present.

=⇒Merging details
Lists of specific enabled and disabled users are replaced, not merged, from global to virtual
host scope

See also

• Per-user web directories tutorial (p. 245)

10.115. APACHE MODULE MOD USERTRACK 897

10.115 Apache Module mod usertrack

Description: Clickstream logging of user activity on a site
Status: Extension
ModuleIdentifier: usertrack module
SourceFile: mod usertrack.c

Summary

Provides tracking of a user through your website via browser cookies.

Directives

• CookieDomain

• CookieExpires

• CookieName

• CookieStyle

• CookieTracking

Logging

MOD USERTRACK sets a cookie which can be logged via MOD LOG CONFIG configurable logging formats:

LogFormat "%{Apache}n %r %t" usertrack
CustomLog logs/clickstream.log usertrack

CookieDomain Directive

Description: The domain to which the tracking cookie applies
Syntax: CookieDomain domain
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod usertrack

This directive controls the setting of the domain to which the tracking cookie applies. If not present, no domain is
included in the cookie header field.

The domain string must begin with a dot, and must include at least one embedded dot. That is, .example.com is
legal, but www.example.com and .com are not.

=⇒Most browsers in use today will not allow cookies to be set for a two-part top level domain,
such as .co.uk, although such a domain ostensibly fulfills the requirements above.

These domains are equivalent to top level domains such as .com, and allowing such cook-
ies may be a security risk. Thus, if you are under a two-part top level domain, you should
still use your actual domain, as you would with any other top level domain (for example
.example.co.uk).

CookieDomain .example.com

898 CHAPTER 10. APACHE MODULES

CookieExpires Directive

Description: Expiry time for the tracking cookie
Syntax: CookieExpires expiry-period
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod usertrack

When used, this directive sets an expiry time on the cookie generated by the usertrack module. The expiry-period can
be given either as a number of seconds, or in the format such as "2 weeks 3 days 7 hours". Valid denominations are:
years, months, weeks, days, hours, minutes and seconds. If the expiry time is in any format other than one number
indicating the number of seconds, it must be enclosed by double quotes.

If this directive is not used, cookies last only for the current browser session.

CookieExpires "3 weeks"

CookieName Directive

Description: Name of the tracking cookie
Syntax: CookieName token
Default: CookieName Apache
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod usertrack

This directive allows you to change the name of the cookie this module uses for its tracking purposes. By default the
cookie is named "Apache".

You must specify a valid cookie name; results are unpredictable if you use a name containing unusual characters. Valid
characters include A-Z, a-z, 0-9, " ", and "-".

CookieName clicktrack

CookieStyle Directive

Description: Format of the cookie header field
Syntax: CookieStyle Netscape|Cookie|Cookie2|RFC2109|RFC2965
Default: CookieStyle Netscape
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod usertrack

This directive controls the format of the cookie header field. The three formats allowed are:

• Netscape, which is the original but now deprecated syntax. This is the default, and the syntax Apache has
historically used.

• Cookie or RFC2109, which is the syntax that superseded the Netscape syntax.

• Cookie2 or RFC2965, which is the most current cookie syntax.

10.115. APACHE MODULE MOD USERTRACK 899

Not all clients can understand all of these formats, but you should use the newest one that is generally acceptable to
your users’ browsers. At the time of writing, most browsers support all three of these formats, with Cookie2 being
the preferred format.

CookieStyle Cookie2

CookieTracking Directive

Description: Enables tracking cookie
Syntax: CookieTracking on|off
Default: CookieTracking off
Context: server config, virtual host, directory, .htaccess
Override: FileInfo
Status: Extension
Module: mod usertrack

When MOD USERTRACK is loaded, and CookieTracking on is set, Apache will send a user-tracking cookie for
all new requests. This directive can be used to turn this behavior on or off on a per-server or per-directory basis. By
default, enabling MOD USERTRACK will not activate cookies.

CookieTracking on

900 CHAPTER 10. APACHE MODULES

10.116 Apache Module mod version

Description: Version dependent configuration
Status: Extension
ModuleIdentifier: version module
SourceFile: mod version.c

Summary

This module is designed for the use in test suites and large networks which have to deal with different httpd versions
and different configurations. It provides a new container – <IFVERSION>, which allows a flexible version checking
including numeric comparisons and regular expressions.

Examples

<IfVersion 2.4.2>
current httpd version is exactly 2.4.2

</IfVersion>

<IfVersion >= 2.5>
use really new features :-)

</IfVersion>

See below for further possibilities.

Directives

• <IfVersion>

IfVersion Directive

Description: contains version dependent configuration
Syntax: <IfVersion [[!]operator] version> ... </IfVersion>
Context: server config, virtual host, directory, .htaccess
Override: All
Status: Extension
Module: mod version

The <IFVERSION> section encloses configuration directives which are executed only if the httpd ver-
sion matches the desired criteria. For normal (numeric) comparisons the version argument has the format
major[.minor[.patch]], e.g. 2.1.0 or 2.2. minor and patch are optional. If these numbers are omitted,
they are assumed to be zero. The following numerical operators are possible:

operator description
= or == httpd version is equal
> httpd version is greater than
>= httpd version is greater or equal
< httpd version is less than
<= httpd version is less or equal

Example

<IfVersion >= 2.3>
this happens only in versions greater or
equal 2.3.0.

</IfVersion>

10.116. APACHE MODULE MOD VERSION 901

Besides the numerical comparison it is possible to match a regular expression against the httpd version. There are two
ways to write it:

operator description
= or == version has the form /regex/

˜ version has the form regex

Example

<IfVersion = /ˆ2.4.[01234]$/>
e.g. workaround for buggy versions

</IfVersion>

In order to reverse the meaning, all operators can be preceded by an exclamation mark (!):

<IfVersion !˜ ˆ2.4.[01234]$>
not for those versions

</IfVersion>

If the operator is omitted, it is assumed to be =.

902 CHAPTER 10. APACHE MODULES

10.117 Apache Module mod vhost alias

Description: Provides for dynamically configured mass virtual hosting
Status: Extension
ModuleIdentifier: vhost alias module
SourceFile: mod vhost alias.c

Summary

This module creates dynamically configured virtual hosts, by allowing the IP address and/or the Host: header of the
HTTP request to be used as part of the pathname to determine what files to serve. This allows for easy use of a huge
number of virtual hosts with similar configurations.

=⇒Note
If MOD ALIAS or MOD USERDIR are used for translating URIs to filenames,
they will override the directives of MOD VHOST ALIAS described below. For
example, the following configuration will map /cgi-bin/script.pl to
/usr/local/apache2/cgi-bin/script.pl in all cases:

ScriptAlias "/cgi-bin/" "/usr/local/apache2/cgi-bin/"
VirtualScriptAlias "/never/found/%0/cgi-bin/"

Directives

• VirtualDocumentRoot

• VirtualDocumentRootIP

• VirtualScriptAlias

• VirtualScriptAliasIP

See also

• USECANONICALNAME

• Dynamically configured mass virtual hosting (p. 120)

Directory Name Interpolation

All the directives in this module interpolate a string into a pathname. The interpolated string (henceforth called
the "name") may be either the server name (see the USECANONICALNAME directive for details on how this is
determined) or the IP address of the virtual host on the server in dotted-quad format. The interpolation is controlled
by specifiers inspired by printf which have a number of formats:

%% insert a %
%p insert the port number of the virtual host
%N.M insert (part of) the name

N and M are used to specify substrings of the name. N selects from the dot-separated components of the name, and M
selects characters within whatever N has selected. M is optional and defaults to zero if it isn’t present; the dot must be
present if and only if M is present. The interpretation is as follows:

10.117. APACHE MODULE MOD VHOST ALIAS 903

0 the whole name
1 the first part
2 the second part
-1 the last part
-2 the penultimate part
2+ the second and all subsequent parts
-2+ the penultimate and all preceding parts
1+ and -1+ the same as 0

If N or M is greater than the number of parts available a single underscore is interpolated.

Examples

For simple name-based virtual hosts you might use the following directives in your server configuration file:

UseCanonicalName Off
VirtualDocumentRoot "/usr/local/apache/vhosts/%0"

A request for http://www.example.com/directory/file.html will be satisfied by the file
/usr/local/apache/vhosts/www.example.com/directory/file.html.

For a very large number of virtual hosts it is a good idea to arrange the files to reduce the size of the vhosts directory.
To do this you might use the following in your configuration file:

UseCanonicalName Off
VirtualDocumentRoot "/usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2"

A request for http://www.domain.example.com/directory/file.html will be satisfied by the file
/usr/local/apache/vhosts/example.com/d/o/m/domain/directory/file.html.

A more even spread of files can be achieved by hashing from the end of the name, for example:

VirtualDocumentRoot "/usr/local/apache/vhosts/%3+/%2.-1/%2.-2/%2.-3/%2"

The example request would come from /usr/local/apache/vhosts/example.com/n/i/a/domain/directory/file.html.

Alternatively you might use:

VirtualDocumentRoot "/usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2.4+"

The example request would come from /usr/local/apache/vhosts/example.com/d/o/m/ain/directory/file.html.

A very common request by users is the ability to point multiple domains to multiple document roots without hav-
ing to worry about the length or number of parts of the hostname being requested. If the requested hostname is
sub.www.domain.example.com instead of simply www.domain.example.com, then using %3+ will re-
sult in the document root being /usr/local/apache/vhosts/domain.example.com/... instead of the
intended example.com directory. In such cases, it can be beneficial to use the combination %-2.0.%-1.0, which
will always yield the domain name and the tld, for example example.com regardless of the number of subdomains
appended to the hostname. As such, one can make a configuration that will direct all first, second or third level
subdomains to the same directory:

VirtualDocumentRoot "/usr/local/apache/vhosts/%-2.0.%-1.0"

904 CHAPTER 10. APACHE MODULES

In the example above, both www.example.com as well as www.sub.example.com or example.com will all
point to /usr/local/apache/vhosts/example.com.

For IP-based virtual hosting you might use the following in your configuration file:

UseCanonicalName DNS
VirtualDocumentRootIP "/usr/local/apache/vhosts/%1/%2/%3/%4/docs"
VirtualScriptAliasIP "/usr/local/apache/vhosts/%1/%2/%3/%4/cgi-bin"

A request for http://www.domain.example.com/directory/file.html would be satis-
fied by the file /usr/local/apache/vhosts/10/20/30/40/docs/directory/file.html
if the IP address of www.domain.example.com were 10.20.30.40. A request for
http://www.domain.example.com/cgi-bin/script.pl would be satisfied by executing the
program /usr/local/apache/vhosts/10/20/30/40/cgi-bin/script.pl.

If you want to include the . character in a VirtualDocumentRoot directive, but it clashes with a % directive, you
can work around the problem in the following way:

VirtualDocumentRoot "/usr/local/apache/vhosts/%2.0.%3.0"

A request for http://www.domain.example.com/directory/file.html will be satisfied by the file
/usr/local/apache/vhosts/domain.example/directory/file.html.

The LOGFORMAT directives %V and %A are useful in conjunction with this module.

VirtualDocumentRoot Directive

Description: Dynamically configure the location of the document root for a given virtual host
Syntax: VirtualDocumentRoot interpolated-directory|none
Default: VirtualDocumentRoot none
Context: server config, virtual host
Status: Extension
Module: mod vhost alias

The VIRTUALDOCUMENTROOT directive allows you to determine where Apache HTTP Server will find your docu-
ments based on the value of the server name. The result of expanding interpolated-directory is used as the root of the
document tree in a similar manner to the DOCUMENTROOT directive’s argument. If interpolated-directory is none
then VIRTUALDOCUMENTROOT is turned off. This directive cannot be used in the same context as VIRTUALDOCU-
MENTROOTIP.

! Note
VIRTUALDOCUMENTROOT will override any DOCUMENTROOT directives you may have put
in the same context or child contexts. Putting a VIRTUALDOCUMENTROOT in the global
server scope will effectively override DOCUMENTROOT directives in any virtual hosts defined
later on, unless you set VIRTUALDOCUMENTROOT to None in each virtual host.

VirtualDocumentRootIP Directive

Description: Dynamically configure the location of the document root for a given virtual host
Syntax: VirtualDocumentRootIP interpolated-directory|none
Default: VirtualDocumentRootIP none
Context: server config, virtual host
Status: Extension
Module: mod vhost alias

10.117. APACHE MODULE MOD VHOST ALIAS 905

The VIRTUALDOCUMENTROOTIP directive is like the VIRTUALDOCUMENTROOT directive, except that it uses the
IP address of the server end of the connection for directory interpolation instead of the server name.

VirtualScriptAlias Directive

Description: Dynamically configure the location of the CGI directory for a given virtual host
Syntax: VirtualScriptAlias interpolated-directory|none
Default: VirtualScriptAlias none
Context: server config, virtual host
Status: Extension
Module: mod vhost alias

The VIRTUALSCRIPTALIAS directive allows you to determine where Apache httpd will find CGI scripts in a similar
manner to VIRTUALDOCUMENTROOT does for other documents. It matches requests for URIs starting /cgi-bin/,
much like SCRIPTALIAS /cgi-bin/ would.

VirtualScriptAliasIP Directive

Description: Dynamically configure the location of the CGI directory for a given virtual host
Syntax: VirtualScriptAliasIP interpolated-directory|none
Default: VirtualScriptAliasIP none
Context: server config, virtual host
Status: Extension
Module: mod vhost alias

The VIRTUALSCRIPTALIASIP directive is like the VIRTUALSCRIPTALIAS directive, except that it uses the IP address
of the server end of the connection for directory interpolation instead of the server name.

906 CHAPTER 10. APACHE MODULES

10.118 Apache Module mod watchdog

Description: provides infrastructure for other modules to periodically run tasks
Status: Base
ModuleIdentifier: watchdog module
SourceFile: mod watchdog.c
Compatibility: Available in Apache 2.3 and later

Summary

MOD WATCHDOG defines programmatic hooks for other modules to periodically run tasks. These modules can register
handlers for MOD WATCHDOG hooks. Currently, the following modules in the Apache distribution use this function-
ality:

• MOD HEARTBEAT

• MOD HEARTMONITOR

! To allow a module to use MOD WATCHDOG functionality, MOD WATCHDOG itself must be
statically linked to the server core or, if a dynamic module, be loaded before the calling module.

Directives

• WatchdogInterval

WatchdogInterval Directive

Description: Watchdog interval in seconds
Syntax: WatchdogInterval number-of-seconds
Default: WatchdogInterval 1
Context: server config
Status: Base
Module: mod watchdog

Sets the interval at which the watchdog step hook runs. Default is to run every second.

10.119. APACHE MODULE MOD XML2ENC 907

10.119 Apache Module mod xml2enc

Description: Enhanced charset/internationalisation support for libxml2-based filter modules
Status: Base
ModuleIdentifier: xml2enc module
SourceFile: mod xml2enc.c
Compatibility: Version 2.4 and later. Available as a third-party module for 2.2.x versions

Summary

This module provides enhanced internationalisation support for markup-aware filter modules such as
MOD PROXY HTML. It can automatically detect the encoding of input data and ensure they are correctly processed
by the libxml289 parser, including converting to Unicode (UTF-8) where necessary. It can also convert data to an
encoding of choice after markup processing, and will ensure the correct charset value is set in the HTTP Content-Type
header.

Directives

• xml2EncAlias

• xml2EncDefault

• xml2StartParse

Usage

There are two usage scenarios: with modules programmed to work with mod xml2enc, and with those that are not
aware of it:

Filter modules enabled for mod xml2enc Modules such as MOD PROXY HTML version 3.1 and up use the
xml2enc charset optional function to retrieve the charset argument to pass to the libxml2 parser, and may
use the xml2enc filter optional function to postprocess to another encoding. Using mod xml2enc with an
enabled module, no configuration is necessary: the other module will configure mod xml2enc for you (though
you may still want to customise it using the configuration directives below).

Non-enabled modules To use it with a libxml2-based module that isn’t explicitly enabled for mod xml2enc, you will
have to configure the filter chain yourself. So to use it with a filter foo provided by a module mod foo to improve
the latter’s i18n support with HTML and XML, you could use

FilterProvider iconv xml2enc Content-Type $text/html
FilterProvider iconv xml2enc Content-Type $xml
FilterProvider markup foo Content-Type $text/html
FilterProvider markup foo Content-Type $xml
FilterChain iconv markup

mod foo will now support any character set supported by either (or both) of libxml2 or apr xlate/iconv.

Programming API

Programmers writing libxml2-based filter modules are encouraged to enable them for mod xml2enc, to provide strong
i18n support for your users without reinventing the wheel. The programming API is exposed in mod xml2enc.h, and a
usage example is MOD PROXY HTML.

89http://xmlsoft.org/

http://xmlsoft.org/

908 CHAPTER 10. APACHE MODULES

Detecting an Encoding

Unlike MOD CHARSET LITE, mod xml2enc is designed to work with data whose encoding cannot be known in ad-
vance and thus configured. It therefore uses ’sniffing’ techniques to detect the encoding of HTTP data as follows:

1. If the HTTP Content-Type header includes a charset parameter, that is used.

2. If the data start with an XML Byte Order Mark (BOM) or an XML encoding declaration, that is used.

3. If an encoding is declared in an HTML <META> element, that is used.

4. If none of the above match, the default value set by XML2ENCDEFAULT is used.

The rules are applied in order. As soon as a match is found, it is used and detection is stopped.

Output Encoding

libxml290 always uses UTF-8 (Unicode) internally, and libxml2-based filter modules will output that by default.
mod xml2enc can change the output encoding through the API, but there is currently no way to configure that di-
rectly.

Changing the output encoding should (in theory, at least) never be necessary, and is not recommended due to the extra
processing load on the server of an unnecessary conversion.

Unsupported Encodings

If you are working with encodings that are not supported by any of the conversion methods available on your platform,
you can still alias them to a supported encoding using XML2ENCALIAS.

xml2EncAlias Directive

Description: Recognise Aliases for encoding values
Syntax: xml2EncAlias charset alias [alias ...]
Context: server config
Status: Base
Module: mod xml2enc

This server-wide directive aliases one or more encoding to another encoding. This enables encodings not recognised by
libxml2 to be handled internally by libxml2’s encoding support using the translation table for a recognised encoding.
This serves two purposes: to support character sets (or names) not recognised either by libxml2 or iconv, and to skip
conversion for an encoding where it is known to be unnecessary.

xml2EncDefault Directive

Description: Sets a default encoding to assume when absolutely no information can be automatically de-
tected

Syntax: xml2EncDefault name
Context: server config, virtual host, directory, .htaccess
Status: Base
Module: mod xml2enc
Compatibility: Version 2.4.0 and later; available as a third-party module for earlier versions.

90http://xmlsoft.org/

http://xmlsoft.org/

10.119. APACHE MODULE MOD XML2ENC 909

If you are processing data with known encoding but no encoding information, you can set this default to help
mod xml2enc process the data correctly. For example, to work with the default value of Latin1 (iso-8859-1 speci-
fied in HTTP/1.0, use

xml2EncDefault iso-8859-1

xml2StartParse Directive

Description: Advise the parser to skip leading junk.
Syntax: xml2StartParse element [element ...]
Context: server config, virtual host, directory, .htaccess
Status: Base
Module: mod xml2enc

Specify that the markup parser should start at the first instance of any of the elements specified. This can be used as a
workaround where a broken backend inserts leading junk that messes up the parser (example here91).

It should never be used for XML, nor well-formed HTML.

91http://bahumbug.wordpress.com/2006/10/12/mod proxy html-revisited/

http://bahumbug.wordpress.com/2006/10/12/mod_proxy_html-revisited/

910 CHAPTER 10. APACHE MODULES

10.120 Apache Module mpm common

Description: A collection of directives that are implemented by more than one multi-processing mod-
ule (MPM)

Status: MPM

Directives

• CoreDumpDirectory

• EnableExceptionHook

• GracefulShutdownTimeout

• Listen

• ListenBackLog

• MaxConnectionsPerChild

• MaxMemFree

• MaxRequestWorkers

• MaxSpareThreads

• MinSpareThreads

• PidFile

• ReceiveBufferSize

• ScoreBoardFile

• SendBufferSize

• ServerLimit

• StartServers

• StartThreads

• ThreadLimit

• ThreadsPerChild

• ThreadStackSize

CoreDumpDirectory Directive

Description: Directory where Apache HTTP Server attempts to switch before dumping core
Syntax: CoreDumpDirectory directory
Default: See usage for the default setting
Context: server config
Status: MPM
Module: EVENT, PREFORK, WORKER

This controls the directory to which Apache httpd attempts to switch before dumping core. If your operating system is
configured to create core files in the working directory of the crashing process, COREDUMPDIRECTORY is necessary
to change working directory from the default SERVERROOT directory, which should not be writable by the user the
server runs as.

If you want a core dump for debugging, you can use this directive to place it in a different location. This directive
has no effect if your operating system is not configured to write core files to the working directory of the crashing
processes.

10.120. APACHE MODULE MPM COMMON 911

=⇒Core Dumps on Linux
If Apache httpd starts as root and switches to another user, the Linux kernel disables core
dumps even if the directory is writable for the process. Apache httpd (2.0.46 and later) reen-
ables core dumps on Linux 2.4 and beyond, but only if you explicitly configure a CORE-
DUMPDIRECTORY.

=⇒Core Dumps on BSD

To enable core-dumping of suid-executables on BSD-systems (such as FreeBSD), set
kern.sugid coredump to 1.

=⇒Specific signals
COREDUMPDIRECTORY processing only occurs for a select set of fatal signals: SIGFPE,
SIGILL, SIGABORT, SIGSEGV, and SIGBUS.
On some operating systems, SIGQUIT also results in a core dump but does not go through
COREDUMPDIRECTORY or ENABLEEXCEPTIONHOOK processing, so the core location is
dictated entirely by the operating system.

EnableExceptionHook Directive

Description: Enables a hook that runs exception handlers after a crash
Syntax: EnableExceptionHook On|Off
Default: EnableExceptionHook Off
Context: server config
Status: MPM
Module: EVENT, PREFORK, WORKER

For safety reasons this directive is only available if the server was configured with the
--enable-exception-hook option. It enables a hook that allows external modules to plug in and do
something after a child crashed.

There are already two modules, mod whatkilledus and mod backtrace that make use of this hook. Please
have a look at Jeff Trawick’s EnableExceptionHook site92 for more information about these.

GracefulShutdownTimeout Directive

Description: Specify a timeout after which a gracefully shutdown server will exit.
Syntax: GracefulShutdownTimeout seconds
Default: GracefulShutdownTimeout 0
Context: server config
Status: MPM
Module: PREFORK, WORKER, EVENT
Compatibility: Available in version 2.2 and later

The GRACEFULSHUTDOWNTIMEOUT specifies how many seconds after receiving a "graceful-stop" signal, a server
should continue to run, handling the existing connections.

Setting this value to zero means that the server will wait indefinitely until all remaining requests have been fully served.

92http://people.apache.org/˜trawick/exception hook.html

http://people.apache.org/~trawick/exception_hook.html

912 CHAPTER 10. APACHE MODULES

Listen Directive

Description: IP addresses and ports that the server listens to
Syntax: Listen [IP-address:]portnumber [protocol]
Context: server config
Status: MPM
Module: MPM NETWARE, MPM WINNT, MPMT OS2, PREFORK, WORKER, EVENT
Compatibility: The protocol argument was added in 2.1.5

The LISTEN directive instructs Apache httpd to listen to only specific IP addresses or ports; by default it responds to
requests on all IP interfaces. LISTEN is now a required directive. If it is not in the config file, the server will fail to
start. This is a change from previous versions of Apache httpd.

The LISTEN directive tells the server to accept incoming requests on the specified port or address-and-port combina-
tion. If only a port number is specified, the server listens to the given port on all interfaces. If an IP address is given as
well as a port, the server will listen on the given port and interface.

Multiple LISTEN directives may be used to specify a number of addresses and ports to listen to. The server will
respond to requests from any of the listed addresses and ports.

For example, to make the server accept connections on both port 80 and port 8000, use:

Listen 80
Listen 8000

To make the server accept connections on two specified interfaces and port numbers, use

Listen 192.170.2.1:80
Listen 192.170.2.5:8000

IPv6 addresses must be surrounded in square brackets, as in the following example:

Listen [2001:db8::a00:20ff:fea7:ccea]:80

The optional protocol argument is not required for most configurations. If not specified, https is the default for port
443 and http the default for all other ports. The protocol is used to determine which module should handle a request,
and to apply protocol specific optimizations with the ACCEPTFILTER directive.

You only need to set the protocol if you are running on non-standard ports. For example, running an https site on
port 8443:

Listen 192.170.2.1:8443 https

=⇒Error condition
Multiple LISTEN directives for the same ip address and port will result in an Address
already in use error message.

See also

• DNS Issues (p. 111)

• Setting which addresses and ports Apache HTTP Server uses (p. 78)

• Further discussion of the Address already in use error message, including other causes.93

93http://wiki.apache.org/httpd/CouldNotBindToAddress

http://wiki.apache.org/httpd/CouldNotBindToAddress

10.120. APACHE MODULE MPM COMMON 913

ListenBackLog Directive

Description: Maximum length of the queue of pending connections
Syntax: ListenBacklog backlog
Default: ListenBacklog 511
Context: server config
Status: MPM
Module: EVENT, MPM NETWARE, MPM WINNT, MPMT OS2, PREFORK, WORKER

The maximum length of the queue of pending connections. Generally no tuning is needed or desired, however on
some systems it is desirable to increase this when under a TCP SYN flood attack. See the backlog parameter to the
listen(2) system call.

This will often be limited to a smaller number by the operating system. This varies from OS to OS. Also note that
many OSes do not use exactly what is specified as the backlog, but use a number based on (but normally larger than)
what is set.

MaxConnectionsPerChild Directive

Description: Limit on the number of connections that an individual child server will handle during its life
Syntax: MaxConnectionsPerChild number
Default: MaxConnectionsPerChild 0
Context: server config
Status: MPM
Module: EVENT, MPM NETWARE, MPM WINNT, MPMT OS2, PREFORK, WORKER
Compatibility: Available Apache HTTP Server 2.3.9 and later. The old name MaxRequestsPerChild is

still supported.

The MAXCONNECTIONSPERCHILD directive sets the limit on the number of connections that an individual child
server process will handle. After MAXCONNECTIONSPERCHILD connections, the child process will die. If MAX-
CONNECTIONSPERCHILD is 0, then the process will never expire.

Setting MAXCONNECTIONSPERCHILD to a non-zero value limits the amount of memory that process can consume
by (accidental) memory leakage.

MaxMemFree Directive

Description: Maximum amount of memory that the main allocator is allowed to hold without calling
free()

Syntax: MaxMemFree KBytes
Default: MaxMemFree 2048
Context: server config
Status: MPM
Module: EVENT, MPM NETWARE, PREFORK, WORKER, MPM WINNT

The MAXMEMFREE directive sets the maximum number of free Kbytes that every allocator is allowed to hold without
calling free(). In threaded MPMs, every thread has its own allocator. When set to zero, the threshold will be set to
unlimited.

914 CHAPTER 10. APACHE MODULES

MaxRequestWorkers Directive

Description: Maximum number of connections that will be processed simultaneously
Syntax: MaxRequestWorkers number
Default: See usage for details
Context: server config
Status: MPM
Module: EVENT, PREFORK, WORKER

The MAXREQUESTWORKERS directive sets the limit on the number of simultaneous requests that will be served.
Any connection attempts over the MAXREQUESTWORKERS limit will normally be queued, up to a number based on
the LISTENBACKLOG directive. Once a child process is freed at the end of a different request, the connection will
then be serviced.

For non-threaded servers (i.e., PREFORK), MAXREQUESTWORKERS translates into the maximum number of child
processes that will be launched to serve requests. The default value is 256; to increase it, you must also raise SERVER-
LIMIT.

For threaded and hybrid servers (e.g. EVENT or WORKER) MAXREQUESTWORKERS restricts the total number of
threads that will be available to serve clients. For hybrid MPMs the default value is 16 (SERVERLIMIT) multiplied
by the value of 25 (THREADSPERCHILD). Therefore, to increase MAXREQUESTWORKERS to a value that requires
more than 16 processes, you must also raise SERVERLIMIT.

MAXREQUESTWORKERS was called MAXCLIENTS before version 2.3.13. The old name is still supported.

MaxSpareThreads Directive

Description: Maximum number of idle threads
Syntax: MaxSpareThreads number
Default: See usage for details
Context: server config
Status: MPM
Module: EVENT, MPM NETWARE, MPMT OS2, WORKER

Maximum number of idle threads. Different MPMs deal with this directive differently.

For WORKER, the default is MaxSpareThreads 250. This MPM deals with idle threads on a server-wide basis. If
there are too many idle threads in the server then child processes are killed until the number of idle threads is less than
this number.

For MPM NETWARE the default is MaxSpareThreads 100. Since this MPM runs a single-process, the spare
thread count is also server-wide.

MPMT OS2 works similar to MPM NETWARE. For MPMT OS2 the default value is 10.

=⇒Restrictions
The range of the MAXSPARETHREADS value is restricted. Apache httpd will correct the given
value automatically according to the following rules:

• MPM NETWARE wants the value to be greater than MINSPARETHREADS.

• For WORKER, the value must be greater or equal to the sum of MINSPARETHREADS
and THREADSPERCHILD.

See also

• MINSPARETHREADS

• STARTSERVERS

• MAXSPARESERVERS

10.120. APACHE MODULE MPM COMMON 915

MinSpareThreads Directive

Description: Minimum number of idle threads available to handle request spikes
Syntax: MinSpareThreads number
Default: See usage for details
Context: server config
Status: MPM
Module: EVENT, MPM NETWARE, MPMT OS2, WORKER

Minimum number of idle threads to handle request spikes. Different MPMs deal with this directive differently.

WORKER uses a default of MinSpareThreads 75 and deals with idle threads on a server-wide basis. If there
aren’t enough idle threads in the server then child processes are created until the number of idle threads is greater than
number.

MPM NETWARE uses a default of MinSpareThreads 10 and, since it is a single-process MPM, tracks this on a
server-wide bases.

MPMT OS2 works similar to MPM NETWARE. For MPMT OS2 the default value is 5.

See also

• MAXSPARETHREADS

• STARTSERVERS

• MINSPARESERVERS

PidFile Directive

Description: File where the server records the process ID of the daemon
Syntax: PidFile filename
Default: PidFile logs/httpd.pid
Context: server config
Status: MPM
Module: EVENT, MPM WINNT, MPMT OS2, PREFORK, WORKER

The PIDFILE directive sets the file to which the server records the process id of the daemon. If the filename is not
absolute then it is assumed to be relative to the SERVERROOT.

Example

PidFile /var/run/apache.pid

It is often useful to be able to send the server a signal, so that it closes and then re-opens its ERRORLOG and TRANS-
FERLOG, and re-reads its configuration files. This is done by sending a SIGHUP (kill -1) signal to the process id listed
in the PIDFILE.

The PIDFILE is subject to the same warnings about log file placement and security (p. 338) .

=⇒Note
As of Apache HTTP Server 2, we recommended that you only use the apachectl script,
or the init script that your OS provides, for (re-)starting or stopping the server.

916 CHAPTER 10. APACHE MODULES

ReceiveBufferSize Directive

Description: TCP receive buffer size
Syntax: ReceiveBufferSize bytes
Default: ReceiveBufferSize 0
Context: server config
Status: MPM
Module: EVENT, MPM NETWARE, MPM WINNT, MPMT OS2, PREFORK, WORKER

The server will set the TCP receive buffer size to the number of bytes specified.

If set to the value of 0, the server will use the OS default.

ScoreBoardFile Directive

Description: Location of the file used to store coordination data for the child processes
Syntax: ScoreBoardFile file-path
Default: ScoreBoardFile logs/apache runtime status
Context: server config
Status: MPM
Module: EVENT, MPM WINNT, PREFORK, WORKER

Apache HTTP Server uses a scoreboard to communicate between its parent and child processes. Some architectures
require a file to facilitate this communication. If the file is left unspecified, Apache httpd first attempts to create the
scoreboard entirely in memory (using anonymous shared memory) and, failing that, will attempt to create the file on
disk (using file-based shared memory). Specifying this directive causes Apache httpd to always create the file on the
disk.

Example

ScoreBoardFile /var/run/apache_runtime_status

File-based shared memory is useful for third-party applications that require direct access to the scoreboard.

If you use a SCOREBOARDFILE then you may see improved speed by placing it on a RAM disk. But be careful that
you heed the same warnings about log file placement and security (p. 338) .

See also

• Stopping and Restarting Apache HTTP Server (p. 27)

SendBufferSize Directive

Description: TCP buffer size
Syntax: SendBufferSize bytes
Default: SendBufferSize 0
Context: server config
Status: MPM
Module: EVENT, MPM NETWARE, MPM WINNT, MPMT OS2, PREFORK, WORKER

Sets the server’s TCP send buffer size to the number of bytes specified. It is often useful to set this past the OS’s
standard default value on high speed, high latency connections (i.e., 100ms or so, such as transcontinental fast pipes).

If set to the value of 0, the server will use the default value provided by your OS.

Further configuration of your operating system may be required to elicit better performance on high speed, high latency
connections.

10.120. APACHE MODULE MPM COMMON 917

=⇒On some operating systems, changes in TCP behavior resulting from a larger SENDBUFFER-
SIZE may not be seen unless ENABLESENDFILE is set to OFF. This interaction applies only to
static files.

ServerLimit Directive

Description: Upper limit on configurable number of processes
Syntax: ServerLimit number
Default: See usage for details
Context: server config
Status: MPM
Module: EVENT, PREFORK, WORKER

For the PREFORK MPM, this directive sets the maximum configured value for MAXREQUESTWORKERS for the
lifetime of the Apache httpd process. For the WORKER MPM, this directive in combination with THREADLIMIT
sets the maximum configured value for MAXREQUESTWORKERS for the lifetime of the Apache httpd process. Any
attempts to change this directive during a restart will be ignored, but MAXREQUESTWORKERS can be modified during
a restart.

Special care must be taken when using this directive. If SERVERLIMIT is set to a value much higher than necessary,
extra, unused shared memory will be allocated. If both SERVERLIMIT and MAXREQUESTWORKERS are set to values
higher than the system can handle, Apache httpd may not start or the system may become unstable.

With the PREFORK MPM, use this directive only if you need to set MAXREQUESTWORKERS higher than 256 (de-
fault). Do not set the value of this directive any higher than what you might want to set MAXREQUESTWORKERS
to.

With WORKER, use this directive only if your MAXREQUESTWORKERS and THREADSPERCHILD settings require
more than 16 server processes (default). Do not set the value of this directive any higher than the number of server
processes required by what you may want for MAXREQUESTWORKERS and THREADSPERCHILD.

=⇒Note
There is a hard limit of ServerLimit 20000 compiled into the server (for the PREFORK
MPM 200000). This is intended to avoid nasty effects caused by typos. To increase it even
further past this limit, you will need to modify the value of MAX SERVER LIMIT in the mpm
source file and rebuild the server.

See also

• Stopping and Restarting Apache HTTP Server (p. 27)

StartServers Directive

Description: Number of child server processes created at startup
Syntax: StartServers number
Default: See usage for details
Context: server config
Status: MPM
Module: EVENT, MPMT OS2, PREFORK, WORKER

The STARTSERVERS directive sets the number of child server processes created on startup. As the number of pro-
cesses is dynamically controlled depending on the load, (see MINSPARETHREADS, MAXSPARETHREADS, MINS-
PARESERVERS, MAXSPARESERVERS) there is usually little reason to adjust this parameter.

The default value differs from MPM to MPM. WORKER defaults to StartServers 3; PREFORK defaults to 5;
MPMT OS2 defaults to 2.

918 CHAPTER 10. APACHE MODULES

StartThreads Directive

Description: Number of threads created on startup
Syntax: StartThreads number
Default: See usage for details
Context: server config
Status: MPM
Module: MPM NETWARE

Number of threads created on startup. As the number of threads is dynamically controlled depending on the load,
(see MINSPARETHREADS, MAXSPARETHREADS, MINSPARESERVERS, MAXSPARESERVERS) there is usually lit-
tle reason to adjust this parameter.

For MPM NETWARE the default is StartThreads 50 and, since there is only a single process, this is the total
number of threads created at startup to serve requests.

ThreadLimit Directive

Description: Sets the upper limit on the configurable number of threads per child process
Syntax: ThreadLimit number
Default: See usage for details
Context: server config
Status: MPM
Module: EVENT, MPM WINNT, WORKER

This directive sets the maximum configured value for THREADSPERCHILD for the lifetime of the Apache httpd
process. Any attempts to change this directive during a restart will be ignored, but THREADSPERCHILD can be
modified during a restart up to the value of this directive.

Special care must be taken when using this directive. If THREADLIMIT is set to a value much higher than
THREADSPERCHILD, extra unused shared memory will be allocated. If both THREADLIMIT and THREADSPER-
CHILD are set to values higher than the system can handle, Apache httpd may not start or the system may become
unstable. Do not set the value of this directive any higher than your greatest predicted setting of THREADSPERCHILD
for the current run of Apache httpd.

The default value for THREADLIMIT is 1920 when used with MPM WINNT and 64 when used with the others.

=⇒Note
There is a hard limit of ThreadLimit 20000 (or ThreadLimit 100000 with EVENT,
ThreadLimit 15000 with MPM WINNT) compiled into the server. This is intended to
avoid nasty effects caused by typos. To increase it even further past this limit, you will need to
modify the value of MAX THREAD LIMIT in the mpm source file and rebuild the server.

ThreadsPerChild Directive

Description: Number of threads created by each child process
Syntax: ThreadsPerChild number
Default: See usage for details
Context: server config
Status: MPM
Module: EVENT, MPM WINNT, WORKER

This directive sets the number of threads created by each child process. The child creates these threads at startup and
never creates more. If using an MPM like MPM WINNT, where there is only one child process, this number should be
high enough to handle the entire load of the server. If using an MPM like WORKER, where there are multiple child
processes, the total number of threads should be high enough to handle the common load on the server.

10.120. APACHE MODULE MPM COMMON 919

The default value for THREADSPERCHILD is 64 when used with MPM WINNT and 25 when used with the others.

ThreadStackSize Directive

Description: The size in bytes of the stack used by threads handling client connections
Syntax: ThreadStackSize size
Default: 65536 on NetWare; varies on other operating systems
Context: server config
Status: MPM
Module: EVENT, MPM NETWARE, MPMT OS2, MPM WINNT, WORKER, EVENT
Compatibility: Available in Apache HTTP Server 2.1 and later

The THREADSTACKSIZE directive sets the size of the stack (for autodata) of threads which handle client connections
and call modules to help process those connections. In most cases the operating system default for stack size is
reasonable, but there are some conditions where it may need to be adjusted:

• On platforms with a relatively small default thread stack size (e.g., HP-UX), Apache httpd may crash when using
some third-party modules which use a relatively large amount of autodata storage. Those same modules may
have worked fine on other platforms where the default thread stack size is larger. This type of crash is resolved
by setting THREADSTACKSIZE to a value higher than the operating system default. This type of adjustment is
necessary only if the provider of the third-party module specifies that it is required, or if diagnosis of an Apache
httpd crash indicates that the thread stack size was too small.

• On platforms where the default thread stack size is significantly larger than necessary for the web server config-
uration, a higher number of threads per child process will be achievable if THREADSTACKSIZE is set to a value
lower than the operating system default. This type of adjustment should only be made in a test environment
which allows the full set of web server processing can be exercised, as there may be infrequent requests which
require more stack to process. The minimum required stack size strongly depends on the modules used, but any
change in the web server configuration can invalidate the current THREADSTACKSIZE setting.

• On Linux, this directive can only be used to increase the default stack size, as the underlying system call uses
the value as a minimum stack size. The (often large) soft limit for ulimit -s (8MB if unlimited) is used as
the default stack size.

=⇒It is recommended to not reduce THREADSTACKSIZE unless a high number of threads per
child process is needed. On some platforms (including Linux), a setting of 128000 is already
too low and causes crashes with some common modules.

920 CHAPTER 10. APACHE MODULES

10.121 Apache Module event

Description: A variant of the WORKER MPM with the goal of consuming threads only for connections
with active processing

Status: MPM
ModuleIdentifier: mpm event module
SourceFile: event.c

Summary

The EVENT Multi-Processing Module (MPM) is designed to allow more requests to be served simultaneously by
passing off some processing work to supporting threads, freeing up the main threads to work on new requests. It is
based on the WORKER MPM, which implements a hybrid multi-process multi-threaded server. Run-time configuration
directives are identical to those provided by WORKER.

To use the EVENT MPM, add --with-mpm=event to the configure script’s arguments when building the
httpd.

Directives

• AsyncRequestWorkerFactor

• CoreDumpDirectory (p. 910)

• EnableExceptionHook (p. 911)

• Group (p. 892)

• Listen (p. 912)

• ListenBacklog (p. 913)

• MaxConnectionsPerChild (p. 913)

• MaxMemFree (p. 913)

• MaxRequestWorkers (p. 914)

• MaxSpareThreads (p. 914)

• MinSpareThreads (p. 915)

• PidFile (p. 915)

• ScoreBoardFile (p. 916)

• SendBufferSize (p. 916)

• ServerLimit (p. 917)

• StartServers (p. 917)

• ThreadLimit (p. 918)

• ThreadsPerChild (p. 918)

• ThreadStackSize (p. 919)

• User (p. 893)

See also

• The worker MPM (p. 931)

10.121. APACHE MODULE EVENT 921

How it Works

This MPM tries to fix the ’keep alive problem’ in HTTP. After a client completes the first request, the client can keep
the connection open, and send further requests using the same socket. This can save significant overhead in creating
TCP connections. However, Apache HTTP Server traditionally keeps an entire child process/thread waiting for data
from the client, which brings its own disadvantages. To solve this problem, this MPM uses a dedicated thread to handle
both the Listening sockets, all sockets that are in a Keep Alive state, and sockets where the handler and protocol filters
have done their work and the only remaining thing to do is send the data to the client. The status page of MOD STATUS
shows how many connections are in the mentioned states.

The improved connection handling may not work for certain connection filters that have declared themselves as in-
compatible with event. In these cases, this MPM will fall back to the behaviour of the WORKER MPM and reserve one
worker thread per connection. All modules shipped with the server are compatible with the event MPM.

A similar restriction is currently present for requests involving an output filter that needs to read and/or modify the
whole response body, like for example mod ssl, mod deflate, or mod include. If the connection to the client blocks
while the filter is processing the data, and the amount of data produced by the filter is too big to be buffered in memory,
the thread used for the request is not freed while httpd waits until the pending data is sent to the client.

The MPM assumes that the underlying apr pollset implementation is reasonably threadsafe. This enables the
MPM to avoid excessive high level locking, or having to wake up the listener thread in order to send it a keep-alive
socket. This is currently only compatible with KQueue and EPoll.

Requirements

This MPM depends on APR’s atomic compare-and-swap operations for thread synchronization. If you are compiling
for an x86 target and you don’t need to support 386s, or you are compiling for a SPARC and you don’t need to run on
pre-UltraSPARC chips, add --enable-nonportable-atomics=yes to the configure script’s arguments.
This will cause APR to implement atomic operations using efficient opcodes not available in older CPUs.

This MPM does not perform well on older platforms which lack good threading, but the requirement for EPoll or
KQueue makes this moot.

• To use this MPM on FreeBSD, FreeBSD 5.3 or higher is recommended. However, it is possible to run this MPM
on FreeBSD 5.2.1, if you use libkse (see man libmap.conf).

• For NetBSD, at least version 2.0 is recommended.

• For Linux, a 2.6 kernel is recommended. It is also necessary to ensure that your version of glibc has been
compiled with support for EPoll.

AsyncRequestWorkerFactor Directive

Description: Limit concurrent connections per process
Syntax: AsyncRequestWorkerFactor factor
Default: 2
Context: server config
Status: MPM
Module: event
Compatibility: Available in version 2.3.13 and later

The event MPM handles some connections in an asynchronous way, where request worker threads are only allocated
for short periods of time as needed, and other connections with one request worker thread reserved per connection.
This can lead to situations where all workers are tied up and no worker thread is available to handle new work on
established async connections.

922 CHAPTER 10. APACHE MODULES

To mitigate this problem, the event MPM does two things: Firstly, it limits the number of connections accepted per
process, depending on the number of idle request workers. Secondly, if all workers are busy, it will close connections
in keep-alive state even if the keep-alive timeout has not expired. This allows the respective clients to reconnect to a
different process which may still have worker threads available.

This directive can be used to fine-tune the per-process connection limit. A process will only accept new connections
if the current number of connections (not counting connections in the "closing" state) is lower than:

THREADSPERCHILD + (ASYNCREQUESTWORKERFACTOR * number of idle workers)

This means the absolute maximum numbers of concurrent connections is:

(ASYNCREQUESTWORKERFACTOR + 1) * MAXREQUESTWORKERS

MAXREQUESTWORKERS was called MAXCLIENTS prior to version 2.3.13. The above value shows that the old name
did not accurately describe its meaning for the event MPM.

ASYNCREQUESTWORKERFACTOR can take non-integer arguments, e.g "1.5".

10.122. APACHE MODULE MPM NETWARE 923

10.122 Apache Module mpm netware

Description: Multi-Processing Module implementing an exclusively threaded web server optimized
for Novell NetWare

Status: MPM
ModuleIdentifier: mpm netware module
SourceFile: mpm netware.c

Summary

This Multi-Processing Module (MPM) implements an exclusively threaded web server that has been optimized for
Novell NetWare.

The main thread is responsible for launching child worker threads which listen for connections and serve them when
they arrive. Apache HTTP Server always tries to maintain several spare or idle worker threads, which stand ready to
serve incoming requests. In this way, clients do not need to wait for a new child threads to be spawned before their
requests can be served.

The STARTTHREADS, MINSPARETHREADS, MAXSPARETHREADS, and MAXTHREADS regulate how the main
thread creates worker threads to serve requests. In general, Apache httpd is very self-regulating, so most sites do
not need to adjust these directives from their default values. Sites with limited memory may need to decrease MAX-
THREADS to keep the server from thrashing (spawning and terminating idle threads). More information about tuning
process creation is provided in the performance hints (p. 327) documentation.

MAXCONNECTIONSPERCHILD controls how frequently the server recycles processes by killing old ones and launch-
ing new ones. On the NetWare OS it is highly recommended that this directive remain set to 0. This allows worker
threads to continue servicing requests indefinitely.

Directives

• Listen (p. 912)

• ListenBacklog (p. 913)

• MaxConnectionsPerChild (p. 913)

• MaxMemFree (p. 913)

• MaxSpareThreads (p. 914)

• MaxThreads

• MinSpareThreads (p. 915)

• ReceiveBufferSize (p. 916)

• SendBufferSize (p. 916)

• StartThreads (p. 918)

• ThreadStackSize (p. 919)

See also

• Setting which addresses and ports Apache httpd uses (p. 78)

924 CHAPTER 10. APACHE MODULES

MaxThreads Directive

Description: Set the maximum number of worker threads
Syntax: MaxThreads number
Default: MaxThreads 2048
Context: server config
Status: MPM
Module: mpm netware

The MAXTHREADS directive sets the desired maximum number worker threads allowable. The default value is also
the compiled in hard limit. Therefore it can only be lowered, for example:

MaxThreads 512

10.123. APACHE MODULE MPMT OS2 925

10.123 Apache Module mpmt os2

Description: Hybrid multi-process, multi-threaded MPM for OS/2
Status: MPM
ModuleIdentifier: mpm mpmt os2 module
SourceFile: mpmt os2.c

Summary

The Server consists of a main, parent process and a small, static number of child processes.

The parent process’ job is to manage the child processes. This involves spawning children as required to ensure there
are always STARTSERVERS processes accepting connections.

Each child process consists of a a pool of worker threads and a main thread that accepts connections and passes them
to the workers via a work queue. The worker thread pool is dynamic, managed by a maintenance thread so that the
number of idle threads is kept between MINSPARETHREADS and MAXSPARETHREADS.

Directives

• Group (p. 892)

• Listen (p. 912)

• ListenBacklog (p. 913)

• MaxConnectionsPerChild (p. 913)

• MaxSpareThreads (p. 914)

• MinSpareThreads (p. 915)

• PidFile (p. 915)

• ReceiveBufferSize (p. 916)

• SendBufferSize (p. 916)

• StartServers (p. 917)

• User (p. 893)

See also

• Setting which addresses and ports Apache uses (p. 78)

926 CHAPTER 10. APACHE MODULES

10.124 Apache Module prefork

Description: Implements a non-threaded, pre-forking web server
Status: MPM
ModuleIdentifier: mpm prefork module
SourceFile: prefork.c

Summary

This Multi-Processing Module (MPM) implements a non-threaded, pre-forking web server. Each server process may
answer incoming requests, and a parent process manages the size of the server pool. It is appropriate for sites that need
to avoid threading for compatibility with non-thread-safe libraries. It is also the best MPM for isolating each request,
so that a problem with a single request will not affect any other.

This MPM is very self-regulating, so it is rarely necessary to adjust its configuration directives. Most important is that
MAXREQUESTWORKERS be big enough to handle as many simultaneous requests as you expect to receive, but small
enough to assure that there is enough physical RAM for all processes.

Directives

• CoreDumpDirectory (p. 910)

• EnableExceptionHook (p. 911)

• Group (p. 892)

• Listen (p. 912)

• ListenBacklog (p. 913)

• MaxConnectionsPerChild (p. 913)

• MaxMemFree (p. 913)

• MaxRequestWorkers (p. 914)

• MaxSpareServers

• MinSpareServers

• PidFile (p. 915)

• ReceiveBufferSize (p. 916)

• ScoreBoardFile (p. 916)

• SendBufferSize (p. 916)

• ServerLimit (p. 917)

• StartServers (p. 917)

• User (p. 893)

See also

• Setting which addresses and ports Apache HTTP Server uses (p. 78)

How it Works

A single control process is responsible for launching child processes which listen for connections and serve them when
they arrive. Apache httpd always tries to maintain several spare or idle server processes, which stand ready to serve

10.124. APACHE MODULE PREFORK 927

incoming requests. In this way, clients do not need to wait for a new child processes to be forked before their requests
can be served.

The STARTSERVERS, MINSPARESERVERS, MAXSPARESERVERS, and MAXREQUESTWORKERS regulate how the
parent process creates children to serve requests. In general, Apache httpd is very self-regulating, so most sites do
not need to adjust these directives from their default values. Sites which need to serve more than 256 simultaneous
requests may need to increase MAXREQUESTWORKERS, while sites with limited memory may need to decrease
MAXREQUESTWORKERS to keep the server from thrashing (swapping memory to disk and back). More information
about tuning process creation is provided in the performance hints (p. 327) documentation.

While the parent process is usually started as root under Unix in order to bind to port 80, the child processes are
launched by Apache httpd as a less-privileged user. The USER and GROUP directives are used to set the privileges
of the Apache httpd child processes. The child processes must be able to read all the content that will be served, but
should have as few privileges beyond that as possible.

MAXCONNECTIONSPERCHILD controls how frequently the server recycles processes by killing old ones and launch-
ing new ones.

This MPM uses the mpm-accept mutex to serialize access to incoming connections when subject to the thundering
herd problem (generally, when there are multiple listening sockets). The implementation aspects of this mutex can
be configured with the MUTEX directive. The performance hints (p. 327) documentation has additional information
about this mutex.

MaxSpareServers Directive

Description: Maximum number of idle child server processes
Syntax: MaxSpareServers number
Default: MaxSpareServers 10
Context: server config
Status: MPM
Module: prefork

The MAXSPARESERVERS directive sets the desired maximum number of idle child server processes. An idle process
is one which is not handling a request. If there are more than MAXSPARESERVERS idle, then the parent process will
kill off the excess processes.

Tuning of this parameter should only be necessary on very busy sites. Setting this parameter to a large number is
almost always a bad idea. If you are trying to set the value equal to or lower than MINSPARESERVERS, Apache HTTP
Server will automatically adjust it to MINSPARESERVERS + 1.

See also

• MINSPARESERVERS

• STARTSERVERS

• MAXSPARETHREADS

MinSpareServers Directive

Description: Minimum number of idle child server processes
Syntax: MinSpareServers number
Default: MinSpareServers 5
Context: server config
Status: MPM
Module: prefork

928 CHAPTER 10. APACHE MODULES

The MINSPARESERVERS directive sets the desired minimum number of idle child server processes. An idle process is
one which is not handling a request. If there are fewer than MINSPARESERVERS idle, then the parent process creates
new children: It will spawn one, wait a second, then spawn two, wait a second, then spawn four, and it will continue
exponentially until it is spawning 32 children per second. It will stop whenever it satisfies the MINSPARESERVERS
setting.

Tuning of this parameter should only be necessary on very busy sites. Setting this parameter to a large number is
almost always a bad idea.

See also

• MAXSPARESERVERS

• STARTSERVERS

• MINSPARETHREADS

10.125. APACHE MODULE MPM WINNT 929

10.125 Apache Module mpm winnt

Description: Multi-Processing Module optimized for Windows NT.
Status: MPM
ModuleIdentifier: mpm winnt module
SourceFile: mpm winnt.c

Summary

This Multi-Processing Module (MPM) is the default for the Windows NT operating systems. It uses a single control
process which launches a single child process which in turn creates threads to handle requests

Capacity is configured using the THREADSPERCHILD directive, which sets the maximum number of concurrent client
connections.

By default, this MPM uses advanced Windows APIs for accepting new client connections. In some configurations,
third-party products may interfere with this implementation, with the following messages written to the web server
log:

Child: Encountered too many AcceptEx faults accepting client
connections.

winnt mpm: falling back to ’AcceptFilter none’.

The MPM falls back to a safer implementation, but some client requests were not processed correctly. In order to
avoid this error, use ACCEPTFILTER with accept filter none.

AcceptFilter http none
AcceptFilter https none

In Apache httpd 2.0 and 2.2, WIN32DISABLEACCEPTEX was used for this purpose.

The WinNT MPM differs from the Unix MPMs such as worker and event in several areas:

• When a child process is exiting due to shutdown, restart, or MAXCONNECTIONSPERCHILD, active requests in
the exiting process have TIMEOUT seconds to finish before processing is aborted. Alternate types of restart and
shutdown are not implemented.

• New child processes read the configuration files instead of inheriting the configuration from the parent. The
behavior will be the same as on Unix if the child process is created at startup or restart, but if a child process
is created because the prior one crashed or reached MAXCONNECTIONSPERCHILD, any pending changes to
the configuration will become active in the child at that point, and the parent and child will be using a different
configuration. If planned configuration changes have been partially implemented and the current configuration
cannot be parsed, the replacement child process cannot start up and the server will halt. Because of this behavior,
configuration files should not be changed until the time of a server restart.

• The monitor and fatal exception hooks are not currently implemented.

• ACCEPTFILTER is implemented in the MPM and has a different type of control over handling of new connec-
tions. (Refer to the ACCEPTFILTER documentation for details.)

Directives

• AcceptFilter (p. 356)

• CoreDumpDirectory (p. 910)

930 CHAPTER 10. APACHE MODULES

• Listen (p. 912)

• ListenBacklog (p. 913)

• MaxConnectionsPerChild (p. 913)

• MaxMemFree (p. 913)

• PidFile (p. 915)

• ReceiveBufferSize (p. 916)

• ScoreBoardFile (p. 916)

• SendBufferSize (p. 916)

• ThreadLimit (p. 918)

• ThreadsPerChild (p. 918)

• ThreadStackSize (p. 919)

See also

• Using Apache HTTP Server on Microsoft Windows (p. 251)

10.126. APACHE MODULE WORKER 931

10.126 Apache Module worker

Description: Multi-Processing Module implementing a hybrid multi-threaded multi-process web
server

Status: MPM
ModuleIdentifier: mpm worker module
SourceFile: worker.c

Summary

This Multi-Processing Module (MPM) implements a hybrid multi-process multi-threaded server. By using threads to
serve requests, it is able to serve a large number of requests with fewer system resources than a process-based server.
However, it retains much of the stability of a process-based server by keeping multiple processes available, each with
many threads.

The most important directives used to control this MPM are THREADSPERCHILD, which controls the number of
threads deployed by each child process and MAXREQUESTWORKERS, which controls the maximum total number of
threads that may be launched.

Directives

• CoreDumpDirectory (p. 910)

• EnableExceptionHook (p. 911)

• Group (p. 892)

• Listen (p. 912)

• ListenBacklog (p. 913)

• MaxConnectionsPerChild (p. 913)

• MaxMemFree (p. 913)

• MaxRequestWorkers (p. 914)

• MaxSpareThreads (p. 914)

• MinSpareThreads (p. 915)

• PidFile (p. 915)

• ReceiveBufferSize (p. 916)

• ScoreBoardFile (p. 916)

• SendBufferSize (p. 916)

• ServerLimit (p. 917)

• StartServers (p. 917)

• ThreadLimit (p. 918)

• ThreadsPerChild (p. 918)

• ThreadStackSize (p. 919)

• User (p. 893)

See also

• Setting which addresses and ports Apache HTTP Server uses (p. 78)

932 CHAPTER 10. APACHE MODULES

How it Works

A single control process (the parent) is responsible for launching child processes. Each child process creates a fixed
number of server threads as specified in the THREADSPERCHILD directive, as well as a listener thread which listens
for connections and passes them to a server thread for processing when they arrive.

Apache HTTP Server always tries to maintain a pool of spare or idle server threads, which stand ready to serve
incoming requests. In this way, clients do not need to wait for a new threads or processes to be created before their
requests can be served. The number of processes that will initially launch is set by the STARTSERVERS directive.
During operation, the server assesses the total number of idle threads in all processes, and forks or kills processes
to keep this number within the boundaries specified by MINSPARETHREADS and MAXSPARETHREADS. Since this
process is very self-regulating, it is rarely necessary to modify these directives from their default values. The maximum
number of clients that may be served simultaneously (i.e., the maximum total number of threads in all processes) is
determined by the MAXREQUESTWORKERS directive. The maximum number of active child processes is determined
by the MAXREQUESTWORKERS directive divided by the THREADSPERCHILD directive.

Two directives set hard limits on the number of active child processes and the number of server threads in a child
process, and can only be changed by fully stopping the server and then starting it again. SERVERLIMIT is a hard limit
on the number of active child processes, and must be greater than or equal to the MAXREQUESTWORKERS directive
divided by the THREADSPERCHILD directive. THREADLIMIT is a hard limit of the number of server threads, and
must be greater than or equal to the THREADSPERCHILD directive.

In addition to the set of active child processes, there may be additional child processes which are terminating, but where
at least one server thread is still handling an existing client connection. Up to MAXREQUESTWORKERS terminating
processes may be present, though the actual number can be expected to be much smaller. This behavior can be avoided
by disabling the termination of individual child processes, which is achieved using the following:

• set the value of MAXCONNECTIONSPERCHILD to zero

• set the value of MAXSPARETHREADS to the same value as MAXREQUESTWORKERS

A typical configuration of the process-thread controls in the WORKER MPM could look as follows:

ServerLimit 16
StartServers 2
MaxRequestWorkers 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25

While the parent process is usually started as root under Unix in order to bind to port 80, the child processes and
threads are launched by the server as a less-privileged user. The USER and GROUP directives are used to set the
privileges of the Apache HTTP Server child processes. The child processes must be able to read all the content that
will be served, but should have as few privileges beyond that as possible. In addition, unless suexec is used, these
directives also set the privileges which will be inherited by CGI scripts.

MAXCONNECTIONSPERCHILD controls how frequently the server recycles processes by killing old ones and launch-
ing new ones.

This MPM uses the mpm-accept mutex to serialize access to incoming connections when subject to the thundering
herd problem (generally, when there are multiple listening sockets). The implementation aspects of this mutex can
be configured with the MUTEX directive. The performance hints (p. 327) documentation has additional information
about this mutex.

Chapter 11

Developer Documentation

933

934 CHAPTER 11. DEVELOPER DOCUMENTATION

11.1 Developer Documentation for the Apache HTTP Server 2.4

! Warning
Many of the documents listed here are in need of update. They are in different stages of
progress. Please be patient, and point out any discrepancies or errors on the developer/ pages
directly to the dev@httpd.apache.orga mailing list.

ahttp://httpd.apache.org/lists.html#http-dev

2.4 development documents

• Developing modules for the Apache HTTP Server 2.4 (p. 958)

• Hook Functions in 2.4 (p. 987)

• Request Processing in 2.4 (p. 994)

• How filters work in 2.4 (p. 997)

• Guidelines for output filters in 2.4 (p. 1000)

• Documenting code in 2.4 (p. 986)

• Thread Safety Issues in 2.4 (p. 1007)

Upgrading to 2.4

• API changes in 2.3/2.4 (p. 951)

• Converting Modules from 1.3 to 2.x (p. 990)

External Resources

• Autogenerated Apache HTTP Server (trunk) code documentation1

• Developer articles at apachetutor2 include:

– Request Processing3

– Configuration for Modules4

– Resource Management5

– Connection Pooling6

– Introduction to Buckets and Brigades7

1http://ci.apache.org/projects/httpd/trunk/doxygen/
2http://www.apachetutor.org/
3http://www.apachetutor.org/dev/request
4http://www.apachetutor.org/dev/config
5http://www.apachetutor.org/dev/pools
6http://www.apachetutor.org/dev/reslist
7http://www.apachetutor.org/dev/brigades

http://httpd.apache.org/lists.html#http-dev
http://ci.apache.org/projects/httpd/trunk/doxygen/
http://www.apachetutor.org/
http://www.apachetutor.org/dev/request
http://www.apachetutor.org/dev/config
http://www.apachetutor.org/dev/pools
http://www.apachetutor.org/dev/reslist
http://www.apachetutor.org/dev/brigades

11.2. APACHE 1.3 API NOTES 935

11.2 Apache 1.3 API notes

! Warning
This document has not been updated to take into account changes made in the 2.0 version of
the Apache HTTP Server. Some of the information may still be relevant, but please use it with
care.

These are some notes on the Apache API and the data structures you have to deal with, etc. They are not yet nearly
complete, but hopefully, they will help you get your bearings. Keep in mind that the API is still subject to change as
we gain experience with it. (See the TODO file for what might be coming). However, it will be easy to adapt modules
to any changes that are made. (We have more modules to adapt than you do).

A few notes on general pedagogical style here. In the interest of conciseness, all structure declarations here are
incomplete – the real ones have more slots that I’m not telling you about. For the most part, these are reserved to one
component of the server core or another, and should be altered by modules with caution. However, in some cases, they
really are things I just haven’t gotten around to yet. Welcome to the bleeding edge.

Finally, here’s an outline, to give you some bare idea of what’s coming up, and in what order:

• Basic concepts.

– Handlers, Modules, and Requests
– A brief tour of a module

• How handlers work

– A brief tour of the request rec

– Where request rec structures come from
– Handling requests, declining, and returning error codes
– Special considerations for response handlers
– Special considerations for authentication handlers
– Special considerations for logging handlers

• Resource allocation and resource pools

• Configuration, commands and the like

– Per-directory configuration structures
– Command handling
– Side notes — per-server configuration, virtual servers, etc.

Basic concepts

We begin with an overview of the basic concepts behind the API, and how they are manifested in the code.

Handlers, Modules, and Requests

Apache breaks down request handling into a series of steps, more or less the same way the Netscape server API does
(although this API has a few more stages than NetSite does, as hooks for stuff I thought might be useful in the future).
These are:

• URI -> Filename translation

936 CHAPTER 11. DEVELOPER DOCUMENTATION

• Auth ID checking [is the user who they say they are?]

• Auth access checking [is the user authorized here?]

• Access checking other than auth

• Determining MIME type of the object requested

• ‘Fixups’ – there aren’t any of these yet, but the phase is intended as a hook for possible extensions like SETENV,
which don’t really fit well elsewhere.

• Actually sending a response back to the client.

• Logging the request

These phases are handled by looking at each of a succession of modules, looking to see if each of them has a handler
for the phase, and attempting invoking it if so. The handler can typically do one of three things:

• Handle the request, and indicate that it has done so by returning the magic constant OK.

• Decline to handle the request, by returning the magic integer constant DECLINED. In this case, the server
behaves in all respects as if the handler simply hadn’t been there.

• Signal an error, by returning one of the HTTP error codes. This terminates normal handling of the request,
although an ErrorDocument may be invoked to try to mop up, and it will be logged in any case.

Most phases are terminated by the first module that handles them; however, for logging, ‘fixups’, and non-access
authentication checking, all handlers always run (barring an error). Also, the response phase is unique in that modules
may declare multiple handlers for it, via a dispatch table keyed on the MIME type of the requested object. Modules
may declare a response-phase handler which can handle any request, by giving it the key */* (i.e., a wildcard MIME
type specification). However, wildcard handlers are only invoked if the server has already tried and failed to find a
more specific response handler for the MIME type of the requested object (either none existed, or they all declined).

The handlers themselves are functions of one argument (a request rec structure. vide infra), which returns an
integer, as above.

A brief tour of a module

At this point, we need to explain the structure of a module. Our candidate will be one of the messier ones, the CGI
module – this handles both CGI scripts and the SCRIPTALIAS config file command. It’s actually a great deal more
complicated than most modules, but if we’re going to have only one example, it might as well be the one with its
fingers in every place.

Let’s begin with handlers. In order to handle the CGI scripts, the module declares a response handler for them.
Because of SCRIPTALIAS, it also has handlers for the name translation phase (to recognize SCRIPTALIASed URIs),
the type-checking phase (any SCRIPTALIASed request is typed as a CGI script).

The module needs to maintain some per (virtual) server information, namely, the SCRIPTALIASes in effect; the module
structure therefore contains pointers to a functions which builds these structures, and to another which combines two
of them (in case the main server and a virtual server both have SCRIPTALIASes declared).

Finally, this module contains code to handle the SCRIPTALIAS command itself. This particular module only declares
one command, but there could be more, so modules have command tables which declare their commands, and describe
where they are permitted, and how they are to be invoked.

A final note on the declared types of the arguments of some of these commands: a pool is a pointer to a resource pool
structure; these are used by the server to keep track of the memory which has been allocated, files opened, etc., either
to service a particular request, or to handle the process of configuring itself. That way, when the request is over (or, for
the configuration pool, when the server is restarting), the memory can be freed, and the files closed, en masse, without
anyone having to write explicit code to track them all down and dispose of them. Also, a cmd parms structure

11.2. APACHE 1.3 API NOTES 937

contains various information about the config file being read, and other status information, which is sometimes of
use to the function which processes a config-file command (such as SCRIPTALIAS). With no further ado, the module
itself:

/* Declarations of handlers. */

int translate scriptalias (request rec *);
int type scriptalias (request rec *);
int cgi handler (request rec *);

/* Subsidiary dispatch table for response-phase

* handlers, by MIME type */

handler rec cgi handlers[] = {
{ "application/x-httpd-cgi", cgi handler },
{ NULL }

};
/* Declarations of routines to manipulate the

* module’s configuration info. Note that these are

* returned, and passed in, as void *’s; the server

* core keeps track of them, but it doesn’t, and can’t,

* know their internal structure.

*/

void *make cgi server config (pool *);
void *merge cgi server config (pool *, void *, void *);

/* Declarations of routines to handle config-file commands */

extern char *script alias(cmd parms *, void *per dir config, char

*fake, char *real);

command rec cgi cmds[] = {
{ "ScriptAlias", script alias, NULL, RSRC CONF, TAKE2,

"a fakename and a realname"},
{ NULL }

};
module cgi module = {

STANDARD_MODULE_STUFF,
NULL, /* initializer */
NULL, /* dir config creator */
NULL, /* dir merger */
make_cgi_server_config, /* server config */
merge_cgi_server_config, /* merge server config */
cgi_cmds, /* command table */
cgi_handlers, /* handlers */
translate_scriptalias, /* filename translation */
NULL, /* check_user_id */
NULL, /* check auth */
NULL, /* check access */
type_scriptalias, /* type_checker */
NULL, /* fixups */
NULL, /* logger */
NULL /* header parser */

};

938 CHAPTER 11. DEVELOPER DOCUMENTATION

How handlers work

The sole argument to handlers is a request rec structure. This structure describes a particular request which
has been made to the server, on behalf of a client. In most cases, each connection to the client generates only one
request rec structure.

A brief tour of the request rec

The request rec contains pointers to a resource pool which will be cleared when the server is finished handling
the request; to structures containing per-server and per-connection information, and most importantly, information on
the request itself.

The most important such information is a small set of character strings describing attributes of the object being re-
quested, including its URI, filename, content-type and content-encoding (these being filled in by the translation and
type-check handlers which handle the request, respectively).

Other commonly used data items are tables giving the MIME headers on the client’s original request, MIME headers
to be sent back with the response (which modules can add to at will), and environment variables for any subprocesses
which are spawned off in the course of servicing the request. These tables are manipulated using the ap table get
and ap table set routines.

=⇒Note that the Content-type header value cannot be set by module content-handlers using
the ap table *() routines. Rather, it is set by pointing the content type field in the
request rec structure to an appropriate string. e.g.,

r->content type = "text/html";

Finally, there are pointers to two data structures which, in turn, point to per-module configuration structures. Specifi-
cally, these hold pointers to the data structures which the module has built to describe the way it has been configured
to operate in a given directory (via .htaccess files or <DIRECTORY> sections), for private data it has built in the
course of servicing the request (so modules’ handlers for one phase can pass ‘notes’ to their handlers for other phases).
There is another such configuration vector in the server rec data structure pointed to by the request rec, which
contains per (virtual) server configuration data.

Here is an abridged declaration, giving the fields most commonly used:

11.2. APACHE 1.3 API NOTES 939

struct request rec {
pool *pool;
conn rec *connection;
server rec *server;

/* What object is being requested */

char *uri;
char *filename;
char *path info;

char *args; /* QUERY_ARGS, if any */
struct stat finfo; /* Set by server core;

* st_mode set to zero if no such file */

char *content type;
char *content encoding;

/* MIME header environments, in and out. Also,

* an array containing environment variables to

* be passed to subprocesses, so people can write

* modules to add to that environment.

*
* The difference between headers out and

* err headers out is that the latter are printed

* even on error, and persist across internal

* redirects (so the headers printed for

* ERRORDOCUMENT handlers will have them).

*/

table *headers in;
table *headers out;
table *err headers out;
table *subprocess env;

/* Info about the request itself... */

int header_only; /* HEAD request, as opposed to GET */
char *protocol; /* Protocol, as given to us, or HTTP/0.9 */
char *method; /* GET, HEAD, POST, etc. */
int method_number; /* M_GET, M_POST, etc. */

/* Info for logging */

char *the request;
int bytes sent;

/* A flag which modules can set, to indicate that

* the data being returned is volatile, and clients

* should be told not to cache it.

*/

int no cache;

/* Various other config info which may change

* with .htaccess files

* These are config vectors, with one void*
* pointer for each module (the thing pointed

* to being the module’s business).

*/

void *per_dir_config; /* Options set in config files, etc. */
void *request_config; /* Notes on *this* request */

};

940 CHAPTER 11. DEVELOPER DOCUMENTATION

Where request rec structures come from

Most request rec structures are built by reading an HTTP request from a client, and filling in the fields. However,
there are a few exceptions:

• If the request is to an imagemap, a type map (i.e., a *.var file), or a CGI script which returned a local
‘Location:’, then the resource which the user requested is going to be ultimately located by some URI other
than what the client originally supplied. In this case, the server does an internal redirect, constructing a new
request rec for the new URI, and processing it almost exactly as if the client had requested the new URI
directly.

• If some handler signaled an error, and an ErrorDocument is in scope, the same internal redirect machinery
comes into play.

• Finally, a handler occasionally needs to investigate ‘what would happen if’ some other request were run. For
instance, the directory indexing module needs to know what MIME type would be assigned to a request for each
directory entry, in order to figure out what icon to use.

Such handlers can construct a sub-request, using the functions ap sub req lookup file,
ap sub req lookup uri, and ap sub req method uri; these construct a new request rec
structure and processes it as you would expect, up to but not including the point of actually sending a response.
(These functions skip over the access checks if the sub-request is for a file in the same directory as the original
request).

(Server-side includes work by building sub-requests and then actually invoking the response handler for them,
via the function ap run sub req).

Handling requests, declining, and returning error codes

As discussed above, each handler, when invoked to handle a particular request rec, has to return an int to indicate
what happened. That can either be

• OK – the request was handled successfully. This may or may not terminate the phase.

• DECLINED – no erroneous condition exists, but the module declines to handle the phase; the server tries to find
another.

• an HTTP error code, which aborts handling of the request.

Note that if the error code returned is REDIRECT, then the module should put a Location in the request’s
headers out, to indicate where the client should be redirected to.

Special considerations for response handlers

Handlers for most phases do their work by simply setting a few fields in the request rec structure (or, in the case
of access checkers, simply by returning the correct error code). However, response handlers have to actually send a
request back to the client.

They should begin by sending an HTTP response header, using the function ap send http header. (You don’t
have to do anything special to skip sending the header for HTTP/0.9 requests; the function figures out on its own that
it shouldn’t do anything). If the request is marked header only, that’s all they should do; they should return after
that, without attempting any further output.

Otherwise, they should produce a request body which responds to the client as appropriate. The primitives for this are
ap rputc and ap rprintf, for internally generated output, and ap send fd, to copy the contents of some FILE
* straight to the client.

11.2. APACHE 1.3 API NOTES 941

At this point, you should more or less understand the following piece of code, which is the handler which handles GET
requests which have no more specific handler; it also shows how conditional GETs can be handled, if it’s desirable
to do so in a particular response handler – ap set last modified checks against the If-modified-since
value supplied by the client, if any, and returns an appropriate code (which will, if nonzero, be USE LOCAL COPY).
No similar considerations apply for ap set content length, but it returns an error code for symmetry.

int default handler (request rec *r)
{

int errstatus;
FILE *f;

if (r->method number != M GET) return DECLINED;
if (r->finfo.st mode == 0) return NOT FOUND;

if ((errstatus = ap set content length (r, r->finfo.st size))
|| (errstatus = ap set last modified (r, r->finfo.st mtime)))
return errstatus;

f = fopen (r->filename, "r");

if (f == NULL) {
log reason("file permissions deny server access", r->filename,
r);
return FORBIDDEN;

}
register timeout ("send", r);
ap send http header (r);

if (!r->header only) send fd (f, r);
ap pfclose (r->pool, f);
return OK;

}

Finally, if all of this is too much of a challenge, there are a few ways out of it. First off, as shown above, a response
handler which has not yet produced any output can simply return an error code, in which case the server will automati-
cally produce an error response. Secondly, it can punt to some other handler by invoking ap internal redirect,
which is how the internal redirection machinery discussed above is invoked. A response handler which has internally
redirected should always return OK.

(Invoking ap internal redirect from handlers which are not response handlers will lead to serious confusion).

Special considerations for authentication handlers

Stuff that should be discussed here in detail:

• Authentication-phase handlers not invoked unless auth is configured for the directory.

• Common auth configuration stored in the core per-dir configuration; it has accessors ap auth type,
ap auth name, and ap requires.

• Common routines, to handle the protocol end of things, at least for HTTP basic authentication
(ap get basic auth pw, which sets the connection->user structure field automatically, and
ap note basic auth failure, which arranges for the proper WWW-Authenticate: header to be sent
back).

942 CHAPTER 11. DEVELOPER DOCUMENTATION

Special considerations for logging handlers

When a request has internally redirected, there is the question of what to log. Apache handles this by bundling
the entire chain of redirects into a list of request rec structures which are threaded through the r->prev and
r->next pointers. The request rec which is passed to the logging handlers in such cases is the one which was
originally built for the initial request from the client; note that the bytes sent field will only be correct in the last
request in the chain (the one for which a response was actually sent).

Resource allocation and resource pools

One of the problems of writing and designing a server-pool server is that of preventing leakage, that is, allocating
resources (memory, open files, etc.), without subsequently releasing them. The resource pool machinery is designed
to make it easy to prevent this from happening, by allowing resource to be allocated in such a way that they are
automatically released when the server is done with them.

The way this works is as follows: the memory which is allocated, file opened, etc., to deal with a particular request are
tied to a resource pool which is allocated for the request. The pool is a data structure which itself tracks the resources
in question.

When the request has been processed, the pool is cleared. At that point, all the memory associated with it is released
for reuse, all files associated with it are closed, and any other clean-up functions which are associated with the pool
are run. When this is over, we can be confident that all the resource tied to the pool have been released, and that none
of them have leaked.

Server restarts, and allocation of memory and resources for per-server configuration, are handled in a similar way.
There is a configuration pool, which keeps track of resources which were allocated while reading the server config-
uration files, and handling the commands therein (for instance, the memory that was allocated for per-server module
configuration, log files and other files that were opened, and so forth). When the server restarts, and has to reread the
configuration files, the configuration pool is cleared, and so the memory and file descriptors which were taken up by
reading them the last time are made available for reuse.

It should be noted that use of the pool machinery isn’t generally obligatory, except for situations like logging handlers,
where you really need to register cleanups to make sure that the log file gets closed when the server restarts (this is
most easily done by using the function ap pfopen, which also arranges for the underlying file descriptor to be closed
before any child processes, such as for CGI scripts, are execed), or in case you are using the timeout machinery (which
isn’t yet even documented here). However, there are two benefits to using it: resources allocated to a pool never leak
(even if you allocate a scratch string, and just forget about it); also, for memory allocation, ap palloc is generally
faster than malloc.

We begin here by describing how memory is allocated to pools, and then discuss how other resources are tracked by
the resource pool machinery.

Allocation of memory in pools

Memory is allocated to pools by calling the function ap palloc, which takes two arguments, one being a pointer
to a resource pool structure, and the other being the amount of memory to allocate (in chars). Within handlers for
handling requests, the most common way of getting a resource pool structure is by looking at the pool slot of the
relevant request rec; hence the repeated appearance of the following idiom in module code:

11.2. APACHE 1.3 API NOTES 943

int my handler(request rec *r)
{

struct my structure *foo;
...

foo = (foo *)ap palloc (r->pool, sizeof(my structure));

}

Note that there is no ap pfree – ap palloced memory is freed only when the associated resource pool is cleared.
This means that ap palloc does not have to do as much accounting as malloc(); all it does in the typical case is
to round up the size, bump a pointer, and do a range check.

(It also raises the possibility that heavy use of ap palloc could cause a server process to grow excessively large.
There are two ways to deal with this, which are dealt with below; briefly, you can use malloc, and try to be sure that
all of the memory gets explicitly freed, or you can allocate a sub-pool of the main pool, allocate your memory in the
sub-pool, and clear it out periodically. The latter technique is discussed in the section on sub-pools below, and is used
in the directory-indexing code, in order to avoid excessive storage allocation when listing directories with thousands
of files).

Allocating initialized memory

There are functions which allocate initialized memory, and are frequently useful. The function ap pcalloc has the
same interface as ap palloc, but clears out the memory it allocates before it returns it. The function ap pstrdup
takes a resource pool and a char * as arguments, and allocates memory for a copy of the string the pointer points to,
returning a pointer to the copy. Finally ap pstrcat is a varargs-style function, which takes a pointer to a resource
pool, and at least two char * arguments, the last of which must be NULL. It allocates enough memory to fit copies
of each of the strings, as a unit; for instance:

ap pstrcat (r->pool, "foo", "/", "bar", NULL);

returns a pointer to 8 bytes worth of memory, initialized to "foo/bar".

Commonly-used pools in the Apache Web server

A pool is really defined by its lifetime more than anything else. There are some static pools in http main which are
passed to various non-http main functions as arguments at opportune times. Here they are:

permanent pool never passed to anything else, this is the ancestor of all pools

pconf • subpool of permanent pool
• created at the beginning of a config "cycle"; exists until the server is terminated or restarts; passed to all

config-time routines, either via cmd->pool, or as the "pool *p" argument on those which don’t take pools
• passed to the module init() functions

ptemp • sorry I lie, this pool isn’t called this currently in 1.3, I renamed it this in my pthreads development. I’m
referring to the use of ptrans in the parent... contrast this with the later definition of ptrans in the child.
• subpool of permanent pool
• created at the beginning of a config "cycle"; exists until the end of config parsing; passed to config-time

routines via cmd->temp pool. Somewhat of a "bastard child" because it isn’t available everywhere. Used
for temporary scratch space which may be needed by some config routines but which is deleted at the end
of config.

944 CHAPTER 11. DEVELOPER DOCUMENTATION

pchild • subpool of permanent pool
• created when a child is spawned (or a thread is created); lives until that child (thread) is destroyed
• passed to the module child init functions
• destruction happens right after the child exit functions are called... (which may explain why I think

child exit is redundant and unneeded)

ptrans • should be a subpool of pchild, but currently is a subpool of permanent pool, see above
• cleared by the child before going into the accept() loop to receive a connection
• used as connection->pool

r->pool • for the main request this is a subpool of connection->pool; for subrequests it is a subpool of the
parent request’s pool.
• exists until the end of the request (i.e., ap destroy sub req, or in child main after process request has

finished)
• note that r itself is allocated from r->pool; i.e., r->pool is first created and then r is the first thing palloc()d

from it

For almost everything folks do, r->pool is the pool to use. But you can see how other lifetimes, such as pchild, are
useful to some modules... such as modules that need to open a database connection once per child, and wish to clean
it up when the child dies.

You can also see how some bugs have manifested themself, such as setting connection->user to a value from
r->pool – in this case connection exists for the lifetime of ptrans, which is longer than r->pool (especially if
r->pool is a subrequest!). So the correct thing to do is to allocate from connection->pool.

And there was another interesting bug in MOD INCLUDE / MOD CGI. You’ll see in those that they do this test to decide
if they should use r->pool or r->main->pool. In this case the resource that they are registering for cleanup is
a child process. If it were registered in r->pool, then the code would wait() for the child when the subrequest
finishes. With MOD INCLUDE this could be any old #include, and the delay can be up to 3 seconds... and happened
quite frequently. Instead the subprocess is registered in r->main->pool which causes it to be cleaned up when
the entire request is done – i.e., after the output has been sent to the client and logging has happened.

Tracking open files, etc.

As indicated above, resource pools are also used to track other sorts of resources besides memory. The most common
are open files. The routine which is typically used for this is ap pfopen, which takes a resource pool and two strings
as arguments; the strings are the same as the typical arguments to fopen, e.g.,

...
FILE *f = ap pfopen (r->pool, r->filename, "r");

if (f == NULL) { ... } else { ... }

There is also a ap popenf routine, which parallels the lower-level open system call. Both of these routines arrange
for the file to be closed when the resource pool in question is cleared.

Unlike the case for memory, there are functions to close files allocated with ap pfopen, and ap popenf, namely
ap pfclose and ap pclosef. (This is because, on many systems, the number of files which a single process
can have open is quite limited). It is important to use these functions to close files allocated with ap pfopen and
ap popenf, since to do otherwise could cause fatal errors on systems such as Linux, which react badly if the same
FILE* is closed more than once.

(Using the close functions is not mandatory, since the file will eventually be closed regardless, but you should
consider it in cases where your module is opening, or could open, a lot of files).

11.2. APACHE 1.3 API NOTES 945

Other sorts of resources – cleanup functions

More text goes here. Describe the cleanup primitives in terms of which the file stuff is implemented; also,
spawn process.

Pool cleanups live until clear pool() is called: clear pool(a) recursively calls destroy pool() on all
subpools of a; then calls all the cleanups for a; then releases all the memory for a. destroy pool(a) calls
clear pool(a) and then releases the pool structure itself. i.e., clear pool(a) doesn’t delete a, it just frees up
all the resources and you can start using it again immediately.

Fine control – creating and dealing with sub-pools, with a note on sub-requests

On rare occasions, too-free use of ap palloc() and the associated primitives may result in undesirably profligate
resource allocation. You can deal with such a case by creating a sub-pool, allocating within the sub-pool rather than
the main pool, and clearing or destroying the sub-pool, which releases the resources which were associated with it.
(This really is a rare situation; the only case in which it comes up in the standard module set is in case of listing
directories, and then only with very large directories. Unnecessary use of the primitives discussed here can hair up
your code quite a bit, with very little gain).

The primitive for creating a sub-pool is ap make sub pool, which takes another pool (the parent pool) as an argu-
ment. When the main pool is cleared, the sub-pool will be destroyed. The sub-pool may also be cleared or destroyed
at any time, by calling the functions ap clear pool and ap destroy pool, respectively. (The difference is that
ap clear pool frees resources associated with the pool, while ap destroy pool also deallocates the pool itself.
In the former case, you can allocate new resources within the pool, and clear it again, and so forth; in the latter case,
it is simply gone).

One final note – sub-requests have their own resource pools, which are sub-pools of the resource pool for the main
request. The polite way to reclaim the resources associated with a sub request which you have allocated (using the
ap sub req ... functions) is ap destroy sub req, which frees the resource pool. Before calling this function,
be sure to copy anything that you care about which might be allocated in the sub-request’s resource pool into someplace
a little less volatile (for instance, the filename in its request rec structure).

(Again, under most circumstances, you shouldn’t feel obliged to call this function; only 2K of memory or so are
allocated for a typical sub request, and it will be freed anyway when the main request pool is cleared. It is only
when you are allocating many, many sub-requests for a single main request that you should seriously consider the
ap destroy ... functions).

Configuration, commands and the like

One of the design goals for this server was to maintain external compatibility with the NCSA 1.3 server — that is,
to read the same configuration files, to process all the directives therein correctly, and in general to be a drop-in
replacement for NCSA. On the other hand, another design goal was to move as much of the server’s functionality into
modules which have as little as possible to do with the monolithic server core. The only way to reconcile these goals
is to move the handling of most commands from the central server into the modules.

However, just giving the modules command tables is not enough to divorce them completely from the server core. The
server has to remember the commands in order to act on them later. That involves maintaining data which is private to
the modules, and which can be either per-server, or per-directory. Most things are per-directory, including in particular
access control and authorization information, but also information on how to determine file types from suffixes, which
can be modified by ADDTYPE and FORCETYPE directives, and so forth. In general, the governing philosophy is
that anything which can be made configurable by directory should be; per-server information is generally used in the
standard set of modules for information like ALIASes and REDIRECTs which come into play before the request is tied
to a particular place in the underlying file system.

Another requirement for emulating the NCSA server is being able to handle the per-directory configuration files,

946 CHAPTER 11. DEVELOPER DOCUMENTATION

generally called .htaccess files, though even in the NCSA server they can contain directives which have nothing at
all to do with access control. Accordingly, after URI -> filename translation, but before performing any other phase,
the server walks down the directory hierarchy of the underlying filesystem, following the translated pathname, to
read any .htaccess files which might be present. The information which is read in then has to be merged with the
applicable information from the server’s own config files (either from the <DIRECTORY> sections in access.conf,
or from defaults in srm.conf, which actually behaves for most purposes almost exactly like <Directory />).

Finally, after having served a request which involved reading .htaccess files, we need to discard the storage
allocated for handling them. That is solved the same way it is solved wherever else similar problems come up, by
tying those structures to the per-transaction resource pool.

Per-directory configuration structures

Let’s look out how all of this plays out in mod mime.c, which defines the file typing handler which emulates the
NCSA server’s behavior of determining file types from suffixes. What we’ll be looking at, here, is the code which
implements the ADDTYPE and ADDENCODING commands. These commands can appear in .htaccess files, so
they must be handled in the module’s private per-directory data, which in fact, consists of two separate tables for
MIME types and encoding information, and is declared as follows:

typedef struct {
table *forced_types; /* Additional AddTyped stuff */
table *encoding_types; /* Added with AddEncoding... */

} mime_dir_config;

When the server is reading a configuration file, or <DIRECTORY> section, which includes one of the MIME module’s
commands, it needs to create a mime dir config structure, so those commands have something to act on. It does
this by invoking the function it finds in the module’s ‘create per-dir config slot’, with two arguments: the name of the
directory to which this configuration information applies (or NULL for srm.conf), and a pointer to a resource pool
in which the allocation should happen.

(If we are reading a .htaccess file, that resource pool is the per-request resource pool for the request; otherwise
it is a resource pool which is used for configuration data, and cleared on restarts. Either way, it is important for the
structure being created to vanish when the pool is cleared, by registering a cleanup on the pool if necessary).

For the MIME module, the per-dir config creation function just ap pallocs the structure above, and a creates a
couple of tables to fill it. That looks like this:

void *create mime dir config (pool *p, char *dummy)
{

mime dir config *new =

(mime dir config *) ap palloc (p, sizeof(mime dir config));

new->forced types = ap make table (p, 4);
new->encoding types = ap make table (p, 4);

return new;

}

Now, suppose we’ve just read in a .htaccess file. We already have the per-directory configuration structure for the
next directory up in the hierarchy. If the .htaccess file we just read in didn’t have any ADDTYPE or ADDENCOD-
ING commands, its per-directory config structure for the MIME module is still valid, and we can just use it. Otherwise,
we need to merge the two structures somehow.

11.2. APACHE 1.3 API NOTES 947

To do that, the server invokes the module’s per-directory config merge function, if one is present. That function takes
three arguments: the two structures being merged, and a resource pool in which to allocate the result. For the MIME
module, all that needs to be done is overlay the tables from the new per-directory config structure with those from the
parent:

void *merge mime dir configs (pool *p, void *parent dirv, void

*subdirv)
{

mime dir config *parent dir = (mime dir config *)parent dirv;
mime dir config *subdir = (mime dir config *)subdirv;
mime dir config *new =

(mime dir config *)ap palloc (p, sizeof(mime dir config));

new->forced types = ap overlay tables (p, subdir->forced types,

parent dir->forced types);

new->encoding types = ap overlay tables (p, subdir->encoding types,

parent dir->encoding types);

return new;

}

As a note – if there is no per-directory merge function present, the server will just use the subdirectory’s configuration
info, and ignore the parent’s. For some modules, that works just fine (e.g., for the includes module, whose per-
directory configuration information consists solely of the state of the XBITHACK), and for those modules, you can
just not declare one, and leave the corresponding structure slot in the module itself NULL.

Command handling

Now that we have these structures, we need to be able to figure out how to fill them. That involves processing the
actual ADDTYPE and ADDENCODING commands. To find commands, the server looks in the module’s command
table. That table contains information on how many arguments the commands take, and in what formats, where it is
permitted, and so forth. That information is sufficient to allow the server to invoke most command-handling functions
with pre-parsed arguments. Without further ado, let’s look at the ADDTYPE command handler, which looks like this
(the ADDENCODING command looks basically the same, and won’t be shown here):

char *add type(cmd parms *cmd, mime dir config *m, char *ct, char *ext)
{

if (*ext == ’.’) ++ext;
ap table set (m->forced types, ext, ct);
return NULL;

}

This command handler is unusually simple. As you can see, it takes four arguments, two of which are pre-parsed
arguments, the third being the per-directory configuration structure for the module in question, and the fourth being
a pointer to a cmd parms structure. That structure contains a bunch of arguments which are frequently of use to
some, but not all, commands, including a resource pool (from which memory can be allocated, and to which cleanups
should be tied), and the (virtual) server being configured, from which the module’s per-server configuration data can
be obtained if required.

Another way in which this particular command handler is unusually simple is that there are no error conditions which
it can encounter. If there were, it could return an error message instead of NULL; this causes an error to be printed out

948 CHAPTER 11. DEVELOPER DOCUMENTATION

on the server’s stderr, followed by a quick exit, if it is in the main config files; for a .htaccess file, the syntax
error is logged in the server error log (along with an indication of where it came from), and the request is bounced
with a server error response (HTTP error status, code 500).

The MIME module’s command table has entries for these commands, which look like this:

command rec mime cmds[] = {
{ "AddType", add type, NULL, OR FILEINFO, TAKE2,

"a mime type followed by a file extension" },
{ "AddEncoding", add encoding, NULL, OR FILEINFO, TAKE2,

"an encoding (e.g., gzip), followed by a file extension" },
{ NULL }

};

The entries in these tables are:

• The name of the command

• The function which handles it

• a (void *) pointer, which is passed in the cmd parms structure to the command handler — this is useful in
case many similar commands are handled by the same function.

• A bit mask indicating where the command may appear. There are mask bits corresponding to each
AllowOverride option, and an additional mask bit, RSRC CONF, indicating that the command may appear
in the server’s own config files, but not in any .htaccess file.

• A flag indicating how many arguments the command handler wants pre-parsed, and how they should be passed
in. TAKE2 indicates two pre-parsed arguments. Other options are TAKE1, which indicates one pre-parsed
argument, FLAG, which indicates that the argument should be On or Off, and is passed in as a boolean flag,
RAW ARGS, which causes the server to give the command the raw, unparsed arguments (everything but the
command name itself). There is also ITERATE, which means that the handler looks the same as TAKE1,
but that if multiple arguments are present, it should be called multiple times, and finally ITERATE2, which
indicates that the command handler looks like a TAKE2, but if more arguments are present, then it should be
called multiple times, holding the first argument constant.

• Finally, we have a string which describes the arguments that should be present. If the arguments in the actual
config file are not as required, this string will be used to help give a more specific error message. (You can safely
leave this NULL).

Finally, having set this all up, we have to use it. This is ultimately done in the module’s handlers, specifically for its
file-typing handler, which looks more or less like this; note that the per-directory configuration structure is extracted
from the request rec’s per-directory configuration vector by using the ap get module config function.

11.2. APACHE 1.3 API NOTES 949

int find ct(request rec *r)
{

int i;
char *fn = ap pstrdup (r->pool, r->filename);
mime dir config *conf = (mime dir config *)

ap get module config(r->per dir config, &mime module);

char *type;

if (S ISDIR(r->finfo.st mode)) {
r->content type = DIR MAGIC TYPE;
return OK;

}
if((i=ap rind(fn,’.’)) < 0) return DECLINED;
++i;

if ((type = ap table get (conf->encoding types, &fn[i])))
{

r->content encoding = type;

/* go back to previous extension to try to use it as a type */
fn[i-1] = ’\0’;
if((i=ap rind(fn,’.’)) < 0) return OK;
++i;

}
if ((type = ap table get (conf->forced types, &fn[i])))
{

r->content type = type;

}
return OK;

}

Side notes – per-server configuration, virtual servers, etc.

The basic ideas behind per-server module configuration are basically the same as those for per-directory configuration;
there is a creation function and a merge function, the latter being invoked where a virtual server has partially overridden
the base server configuration, and a combined structure must be computed. (As with per-directory configuration, the
default if no merge function is specified, and a module is configured in some virtual server, is that the base configuration
is simply ignored).

The only substantial difference is that when a command needs to configure the per-server private module data, it needs
to go to the cmd parms data to get at it. Here’s an example, from the alias module, which also indicates how a
syntax error can be returned (note that the per-directory configuration argument to the command handler is declared
as a dummy, since the module doesn’t actually have per-directory config data):

950 CHAPTER 11. DEVELOPER DOCUMENTATION

char *add redirect(cmd parms *cmd, void *dummy, char *f, char *url)
{

server rec *s = cmd->server;
alias server conf *conf = (alias server conf *)

ap get module config(s->module config,&alias module);

alias entry *new = ap push array (conf->redirects);

if (!ap is url (url)) return "Redirect to non-URL";

new->fake = f; new->real = url;
return NULL;

}

11.3. API CHANGES IN APACHE HTTP SERVER 2.4 SINCE 2.2 951

11.3 API Changes in Apache HTTP Server 2.4 since 2.2

This document describes changes to the Apache HTTPD API from version 2.2 to 2.4, that may be of interest to
module/application developers and core hacks. As of the first GA release of the 2.4 branch API compatibility is
preserved for the life of the 2.4 branch. (The VERSIONING8 description for the 2.4 release provides more information
about API compatibility.)

API changes fall into two categories: APIs that are altogether new, and existing APIs that are expanded or changed.
The latter are further divided into those where all changes are backwards-compatible (so existing modules can ignore
them), and those that might require attention by maintainers. As with the transition from HTTPD 2.0 to 2.2, existing
modules and applications will require recompiling and may call for some attention, but most should not require any
substantial updating (although some may be able to take advantage of API changes to offer significant improvements).

For the purpose of this document, the API is split according to the public header files. These headers are themselves
the reference documentation, and can be used to generate a browsable HTML reference with make docs.

Changed APIs

ap expr (NEW!)

Introduces a new API to parse and evaluate boolean and algebraic expressions, including provision for a standard
syntax and customised variants.

ap listen (changed; backwards-compatible)

Introduces a new API to enable httpd child processes to serve different purposes.

ap mpm (changed)

ap mpm run is replaced by a new mpm hook. Also ap graceful stop signalled is lost, and
ap mpm register timed callback is new.

ap regex (changed)

In addition to the existing regexp wrapper, a new higher-level API ap rxplus is now provided. This provides the
capability to compile Perl-style expressions like s/regexp/replacement/flags and to execute them against
arbitrary strings. Support for regexp backreferences is also added.

ap slotmem (NEW!)

Introduces an API for modules to allocate and manage memory slots, most commonly for shared memory.

ap socache (NEW!)

API to manage a shared object cache.

heartbeat (NEW!)

common structures for heartbeat modules
8http://svn.apache.org/repos/asf/httpd/httpd/branches/2.4.x/VERSIONING

http://svn.apache.org/repos/asf/httpd/httpd/branches/2.4.x/VERSIONING

952 CHAPTER 11. DEVELOPER DOCUMENTATION

ap parse htaccess (changed)

The function signature for ap parse htaccess has been changed. A apr table t of individual directives al-
lowed for override must now be passed (override remains).

http config (changed)

• Introduces per-module, per-directory loglevels, including macro wrappers.

• New AP DECLARE MODULE macro to declare all modules.

• New APLOG USE MODULE macro necessary for per-module loglevels in multi-file modules.

• New API to retain data across module unload/load

• New check config hook

• New ap process fnmatch configs() function to process wildcards

• Change ap configfile t, ap cfg getline(), ap cfg getc() to return error codes, and add
ap pcfg strerror() for retrieving an error description.

• Any config directive permitted in ACCESS CONF context must now correctly handle being called from
an .htaccess file via the new ALLOWOVERRIDELIST directive. ap check cmd context() accepts a new flag
NOT IN HTACCESS to detect this case.

http core (changed)

• REMOVED ap default type, ap requires, all 2.2 authnz API

• Introduces Optional Functions for logio and authnz

• New function ap get server name for url to support IPv6 literals.

• New function ap register errorlog handler to register error log format string handlers.

• Arguments of error log hook have changed. Declaration has moved to http core.h.

• New function ap state query to determine if the server is in the initial configuration preflight phase or not.
This is both easier to use and more correct than the old method of creating a pool userdata entry in the process
pool.

• New function ap get conn socket to get the socket descriptor for a connection. This should be used instead
of accessing the core connection config directly.

httpd (changed)

• Introduce per-directory, per-module loglevel

• New loglevels APLOG TRACEn

• Introduce errorlog ids for requests and connections

• Support for mod request kept body

• Support buffering filter data for async requests

• New CONN STATE values

• Function changes: ap escape html updated; ap unescape all,
ap escape path segment buffer

• Modules that load other modules later than the EXEC ON READ config reading stage need to call
ap reserve module slots() or ap reserve module slots directive() in their pre config
hook.

11.3. API CHANGES IN APACHE HTTP SERVER 2.4 SINCE 2.2 953

• The useragent IP address per request can now be tracked independently of the client IP address of the connection,
for support of deployments with load balancers.

http log (changed)

• Introduce per-directory, per-module loglevel

• New loglevels APLOG TRACEn

• ap log *error become macro wrappers (backwards-compatible if APLOG MARK macro is used, except that
is no longer possible to use #ifdef inside the argument list)

• piped logging revamped

• module index added to error log hook

• new function: ap log command line

http request (changed)

• New auth internal API and auth provider API

• New EOR bucket type

• New function ap process async request

• New flags AP AUTH INTERNAL PER CONF and AP AUTH INTERNAL PER URI

• New access checker ex hook to apply additional access control and/or bypass authentication.

• New functions ap hook check access ex, ap hook check access, ap hook check authn,
ap hook check authz which accept AP AUTH INTERNAL PER * flags

• DEPRECATED direct use of ap hook access checker, access checker ex,
ap hook check user id, ap hook auth checker

When possible, registering all access control hooks (including authentication and authorization hooks) using
AP AUTH INTERNAL PER CONF is recommended. If all modules’ access control hooks are registered with this
flag, then whenever the server handles an internal sub-request that matches the same set of access control configura-
tion directives as the initial request (which is the common case), it can avoid invoking the access control hooks another
time.

If your module requires the old behavior and must perform access control checks on every sub-request with a different
URI from the initial request, even if that URI matches the same set of access control configuration directives, then use
AP AUTH INTERNAL PER URI.

mod auth (NEW!)

Introduces the new provider framework for authn and authz

mod cache (changed)

Introduces a commit entity() function to the cache provider interface, allowing atomic writes to cache. Add a
cache status() hook to report the cache decision. All private structures and functions were removed.

mod core (NEW!)

This introduces low-level APIs to send arbitrary headers, and exposes functions to handle HTTP OPTIONS and
TRACE.

954 CHAPTER 11. DEVELOPER DOCUMENTATION

mod cache disk (changed)

Changes the disk format of the disk cache to support atomic cache updates without locking. The device/inode pair of
the body file is embedded in the header file, allowing confirmation that the header and body belong to one another.

mod disk cache (renamed)

The mod disk cache module has been renamed to mod cache disk in order to be consistent with the naming of other
modules within the server.

mod request (NEW!)

The API for MOD REQUEST, to make input data available to multiple application/handler modules where required,
and to parse HTML form data.

mpm common (changed)

• REMOVES: accept, lockfile, lock mech, set scoreboard (locking uses the new ap mutex API)

• NEW API to drop privileges (delegates this platform-dependent function to modules)

• NEW Hooks: mpm query, timed callback, and get name

• CHANGED interfaces: monitor hook, ap reclaim child processes,
ap relieve child processes

scoreboard (changed)

ap get scoreboard worker is made non-backwards-compatible as an alternative version is introduced. Addi-
tional proxy balancer support. Child status stuff revamped.

util cookies (NEW!)

Introduces a new API for managing HTTP Cookies.

util ldap (changed)

no description available

util mutex (NEW!)

A wrapper for APR proc and global mutexes in httpd, providing common configuration for the underlying mechanism
and location of lock files.

util script (changed)

NEW: ap args to table

11.3. API CHANGES IN APACHE HTTP SERVER 2.4 SINCE 2.2 955

util time (changed)

NEW: ap recent ctime ex

Specific information on upgrading modules from 2.2

Logging

In order to take advantage of per-module loglevel configuration, any source file that calls the ap log * functions
should declare which module it belongs to. If the module’s module struct is called foo module, the following code
can be used to remain backward compatible with HTTPD 2.0 and 2.2:

#include <http log.h>

#ifdef APLOG USE MODULE
APLOG USE MODULE(foo);

#endif

Note: This is absolutely required for C++-language modules. It can be skipped for C-language modules, though that
breaks module-specific log level support for files without it.

The number of parameters of the ap log * functions and the definition of APLOG MARK has changed. Normally, the
change is completely transparent. However, changes are required if a module uses APLOG MARK as a parameter to its
own functions or if a module calls ap log * without passing APLOG MARK. A module which uses wrappers around
ap log * typically uses both of these constructs.

The easiest way to change code which passes APLOG MARK to its own functions is to define and use a different
macro that expands to the parameters required by those functions, as APLOG MARK should only be used when calling
ap log * directly. In this way, the code will remain compatible with HTTPD 2.0 and 2.2.

Code which calls ap log * without passing APLOG MARK will necessarily differ between 2.4 and earlier releases, as
2.4 requires a new third argument, APLOG MODULE INDEX.

/* code for httpd 2.0/2.2 */
ap log perror(file, line, APLOG ERR, 0, p, "Failed to allocate dynamic
lock structure");

/* code for httpd 2.4 */
ap log perror(file, line, APLOG MODULE INDEX, APLOG ERR, 0, p, "Failed
to allocate dynamic lock structure");

ap log *error are now implemented as macros. This means that it is no longer possible to use #ifdef inside the
argument list of ap log *error, as this would cause undefined behavor according to C99.

A server rec pointer must be passed to ap log error()when called after startup. This was always appropriate,
but there are even more limitations with a NULL server rec in 2.4 than in previous releases. Beginning with 2.3.12,
the global variable ap server conf can always be used as the server rec parameter, as it will be NULL only
when it is valid to pass NULL to ap log error(). ap server conf should be used only when a more appropriate
server rec is not available.

Consider the following changes to take advantage of the new APLOG TRACE1..8 log levels:

• Check current use of APLOG DEBUG and consider if one of the APLOG TRACEn levels is more appropriate.

956 CHAPTER 11. DEVELOPER DOCUMENTATION

• If your module currently has a mechanism for configuring the amount of debug logging which is performed,
consider eliminating that mechanism and relying on the use of different APLOG TRACEn levels. If expensive
trace processing needs to be bypassed depending on the configured log level, use the APLOGtracen and
APLOGrtracen macros to first check if tracing is enabled.

Modules sometimes add process id and/or thread id to their log messages. These ids are now logged by default, so it
may not be necessary for the module to log them explicitly. (Users may remove them from the error log format, but
they can be instructed to add it back if necessary for problem diagnosis.)

If your module uses these existing APIs...

ap default type() This is no longer available; Content-Type must be configured explicitly or added by the
application.

ap get server name() If the returned server name is used in a URL, use ap get server name for url()
instead. This new function handles the odd case where the server name is an IPv6 literal address.

ap get server version() For logging purposes, where detailed information is appropriate, use
ap get server description(). When generating output, where the amount of information should be
configurable by ServerTokens, use ap get server banner().

ap graceful stop signalled() Replace with a call to ap mpm query(AP MPMQ MPM STATE) and
checking for state AP MPMQ STOPPING.

ap max daemons limit, ap my generation, and ap threads per child Use ap mpm query()
query codes AP MPMQ MAX DAEMON USED, AP MPMQ GENERATION, and AP MPMQ MAX THREADS,
respectively.

ap mpm query() Ensure that it is not used until after the register-hooks hook has completed. Otherwise, an MPM
built as a DSO would not have had a chance to enable support for this function.

ap requires() The core server now provides better infrastructure for handling REQUIRE configuration. Register
an auth provider function for each supported entity using ap register auth provider(). The function
will be called as necessary during REQUIRE processing. (Consult bundled modules for detailed examples.)

ap server conf->process->pool userdata Optional:

• If your module uses this to determine which pass of the startup hooks is being run, use
ap state query(AP SQ MAIN STATE).
• If your module uses this to maintain data across the unloading and reloading of your module, use
ap retained data create() and ap retained data get().

apr global mutex create(), apr proc mutex create() Optional: See ap mutex register(),
ap global mutex create(), and ap proc mutex create(); these allow your mutexes to be con-
figurable with the MUTEX directive; you can also remove any configuration mechanisms in your module for
such mutexes

CORE PRIVATE This is now unnecessary and ignored.

dav new error() and dav new error tag() Previously, these assumed that errno contained information
describing the failure. Now, an apr status t parameter must be provided. Pass 0/APR SUCCESS if there
is no such error information, or a valid apr status t value otherwise.

mpm default.h, DEFAULT LOCKFILE, DEFAULT THREAD LIMIT, DEFAULT PIDLOG, etc. The header file
and most of the default configuration values set in it are no longer visible to modules. (Most can still be overrid-
den at build time.) DEFAULT PIDLOG and DEFAULT REL RUNTIMEDIR are now universally available via
ap config.h.

11.3. API CHANGES IN APACHE HTTP SERVER 2.4 SINCE 2.2 957

unixd config This has been renamed to ap unixd config.

unixd setup child() This has been renamed to ap unixd setup child(), but most callers should call the added
ap run drop privileges() hook.

conn rec->remote ip and conn rec->remote addr These fields have been renamed in order to distin-
guish between the client IP address of the connection and the useragent IP address of the request (potentially
overridden by a load balancer or proxy). References to either of these fields must be updated with one of the
following options, as appropriate for the module:

• When you require the IP address of the user agent, which might be connected directly to the
server, or might optionally be separated from the server by a transparent load balancer or proxy, use
request rec->useragent ip and request rec->useragent addr.
• When you require the IP address of the client that is connected directly to the server, which might

be the useragent or might be the load balancer or proxy itself, use conn rec->client ip and
conn rec->client addr.

If your module interfaces with this feature...

suEXEC Optional: If your module logs an error when ap unixd config.suexec enabled is 0, also log the
value of the new field suexec disabled reason, which contains an explanation of why it is not available.

Extended status data in the scoreboard In previous releases, ExtendedStatus had to be set to On, which in
turn required that mod status was loaded. In 2.4, just set ap extended status to 1 in a pre-config hook
and the extended status data will be available.

Does your module...

Parse query args Consider if ap args to table() would be helpful.

Parse form data... Use ap parse form data().

Check for request header fields Content-Length and Transfer-Encoding to see if a body was specified
Use ap request has body().

Implement cleanups which clear pointer variables Use ap pool cleanup set null().

Create run-time files such as shared memory files, pid files, etc. Use ap runtime dir relative() so that
the global configuration for the location of such files, either by the DEFAULT REL RUNTIMEDIR compile
setting or the DEFAULTRUNTIMEDIR directive, will be respected. Apache httpd 2.4.2 and above.

958 CHAPTER 11. DEVELOPER DOCUMENTATION

11.4 Developing modules for the Apache HTTP Server 2.4

This document explains how you can develop modules for the Apache HTTP Server 2.4

See also

• Request Processing in Apache 2.4 (p. 994)

• Apache 2.x Hook Functions (p. 987)

Introduction

What we will be discussing in this document

This document will discuss how you can create modules for the Apache HTTP Server 2.4, by exploring
an example module called mod example. In the first part of this document, the purpose of this mod-
ule will be to calculate and print out various digest values for existing files on your web server, when-
ever we access the URL http://hostname/filename.sum. For instance, if we want to know the
MD5 digest value of the file located at http://www.example.com/index.html, we would visit
http://www.example.com/index.html.sum.

In the second part of this document, which deals with configuration directive and context awareness, we will be looking
at a module that simply writes out its own configuration to the client.

Prerequisites

First and foremost, you are expected to have a basic knowledge of how the C programming language works. In most
cases, we will try to be as pedagogical as possible and link to documents describing the functions used in the examples,
but there are also many cases where it is necessary to either just assume that "it works" or do some digging yourself
into what the hows and whys of various function calls.

Lastly, you will need to have a basic understanding of how modules are loaded and configured in the Apache HTTP
Server, as well as how to get the headers for Apache if you do not have them already, as these are needed for compiling
new modules.

Compiling your module

To compile the source code we are building in this document, we will be using APXS (p. 291) . Assuming your source
file is called mod example.c, compiling, installing and activating the module is as simple as:

apxs -i -a -c mod_example.c

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 959

Defining a module

Every module starts with the same declaration, or name tag if you will, that defines a module as a separate entity
within Apache:

module AP_MODULE_DECLARE_DATA example_module =
{

STANDARD20_MODULE_STUFF,
create_dir_conf, /* Per-directory configuration handler */
merge_dir_conf, /* Merge handler for per-directory configurations */
create_svr_conf, /* Per-server configuration handler */
merge_svr_conf, /* Merge handler for per-server configurations */
directives, /* Any directives we may have for httpd */
register_hooks /* Our hook registering function */

};

This bit of code lets the server know that we have now registered a new module in the system, and that its name is
example module. The name of the module is used primarily for two things:

• Letting the server know how to load the module using the LoadModule

• Setting up a namespace for the module to use in configurations

For now, we’re only concerned with the first purpose of the module name, which comes into play when we need to
load the module:

LoadModule example_module modules/mod_example.so

In essence, this tells the server to open up mod example.so and look for a module called example module.

Within this name tag of ours is also a bunch of references to how we would like to handle things: Which directives do
we respond to in a configuration file or .htaccess, how do we operate within specific contexts, and what handlers are
we interested in registering with the Apache HTTP service. We’ll return to all these elements later in this document.

Getting started: Hooking into the server

An introduction to hooks

When handling requests in Apache HTTP Server 2.4, the first thing you will need to do is create a hook into the
request handling process. A hook is essentially a message telling the server that you are willing to either serve or
at least take a glance at certain requests given by clients. All handlers, whether it’s mod rewrite, mod authn *,

960 CHAPTER 11. DEVELOPER DOCUMENTATION

mod proxy and so on, are hooked into specific parts of the request process. As you are probably aware, modules serve
different purposes; Some are authentication/authorization handlers, others are file or script handlers while some third
modules rewrite URIs or proxies content. Furthermore, in the end, it is up to the user of the server how and when
each module will come into place. Thus, the server itself does not presume to know which module is responsible for
handling a specific request, and will ask each module whether they have an interest in a given request or not. It is then
up to each module to either gently decline serving a request, accept serving it or flat out deny the request from being
served, as authentication/authorization modules do:

To make it a bit easier for handlers such as our mod example to know whether the client is requesting content we
should handle or not, the server has directives for hinting to modules whether their assistance is needed or not. Two of
these are ADDHANDLER and SETHANDLER. Let’s take a look at an example using ADDHANDLER. In our example
case, we want every request ending with .sum to be served by mod example, so we’ll add a configuration directive
that tells the server to do just that:

AddHandler example-handler .sum

What this tells the server is the following: Whenever we receive a request for a URI ending in .sum, we are to let all
modules know that we are looking for whoever goes by the name of "example-handler" . Thus, when a request is
being served that ends in .sum, the server will let all modules know, that this request should be served by "example-
handler ". As you will see later, when we start building mod example, we will check for this handler tag relayed by
AddHandler and reply to the server based on the value of this tag.

Hooking into httpd

To begin with, we only want to create a simple handler, that replies to the client browser when a specific URL is
requested, so we won’t bother setting up configuration handlers and directives just yet. Our initial module definition
will look like this:

module AP_MODULE_DECLARE_DATA example_module =

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 961

{
STANDARD20_MODULE_STUFF,
NULL,
NULL,
NULL,
NULL,
NULL,
register_hooks /* Our hook registering function */

};

This lets the server know that we are not interested in anything fancy, we just want to hook onto the requests and
possibly handle some of them.

The reference in our example declaration, register hooks is the name of a function we will create to manage how
we hook onto the request process. In this example module, the function has just one purpose; To create a simple hook
that gets called after all the rewrites, access control etc has been handled. Thus, we will let the server know, that we
want to hook into its process as one of the last modules:

static void register_hooks(apr_pool_t *pool)
{

/* Create a hook in the request handler, so we get called when a request arrives */
ap_hook_handler(example_handler, NULL, NULL, APR_HOOK_LAST);

}

The example handler reference is the function that will handle the request. We will discuss how to create a
handler in the next chapter.

Other useful hooks

Hooking into the request handling phase is but one of many hooks that you can create. Some other ways of hooking
are:

• ap hook child init: Place a hook that executes when a child process is spawned (commonly used for
initializing modules after the server has forked)

• ap hook pre config: Place a hook that executes before any configuration data has been read (very early
hook)

• ap hook post config: Place a hook that executes after configuration has been parsed, but before the server
has forked

• ap hook translate name: Place a hook that executes when a URI needs to be translated into a filename
on the server (think mod rewrite)

• ap hook quick handler: Similar to ap hook handler, except it is run before any other request hooks
(translation, auth, fixups etc)

• ap hook log transaction: Place a hook that executes when the server is about to add a log entry of the
current request

Building a handler

A handler is essentially a function that receives a callback when a request to the server is made. It is passed a record
of the current request (how it was made, which headers and requests were passed along, who’s giving the request and
so on), and is put in charge of either telling the server that it’s not interested in the request or handle the request with
the tools provided.

962 CHAPTER 11. DEVELOPER DOCUMENTATION

A simple "Hello, world!" handler

Let’s start off by making a very simple request handler that does the following:

1. Check that this is a request that should be served by "example-handler"

2. Set the content type of our output to text/html

3. Write "Hello, world!" back to the client browser

4. Let the server know that we took care of this request and everything went fine

In C code, our example handler will now look like this:

static int example_handler(request_rec *r)
{

/* First off, we need to check if this is a call for the "example-handler" handler.

* If it is, we accept it and do our things, if not, we simply return DECLINED,

* and the server will try somewhere else.

*/
if (!r->handler || strcmp(r->handler, "example-handler")) return (DECLINED);

/* Now that we are handling this request, we’ll write out "Hello, world!" to the client.

* To do so, we must first set the appropriate content type, followed by our output.

*/
ap_set_content_type(r, "text/html");
ap_rprintf(r, "Hello, world!");

/* Lastly, we must tell the server that we took care of this request and everything went fine.

* We do so by simply returning the value OK to the server.

*/
return OK;

}

Now, we put all we have learned together and end up with a program that looks like mod example 1.c9 . The functions
used in this example will be explained later in the section "Some useful functions you should know".

The request rec structure

The most essential part of any request is the request record . In a call to a handler function, this is represented by
the request rec* structure passed along with every call that is made. This struct, typically just referred to as
r in modules, contains all the information you need for your module to fully process any HTTP request and respond
accordingly.

Some key elements of the request rec structure are:

• r->handler (char*): Contains the name of the handler the server is currently asking to do the handling
of this request

• r->method (char*): Contains the HTTP method being used, f.x. GET or POST

• r->filename (char*): Contains the translated filename the client is requesting

• r->args (char*): Contains the query string of the request, if any

9http://people.apache.org/˜humbedooh/mods/examples/mod example 1.c

http://people.apache.org/~humbedooh/mods/examples/mod_example_1.c

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 963

• r->headers in (apr table t*): Contains all the headers sent by the client

• r->connection (conn rec*): A record containing information about the current connection

• r->user (char*): If the URI requires authentication, this is set to the username provided

• r->useragent ip (char*): The IP address of the client connecting to us

• r->pool (apr pool t*): The memory pool of this request. We’ll discuss this in the "Memory manage-
ment" chapter.

A complete list of all the values contained within the request rec structure can be found in the httpd.h10 header
file or at http://ci.apache.org/projects/httpd/trunk/doxygen/structrequest rec.html.

Let’s try out some of these variables in another example handler:

static int example_handler(request_rec *r)
{

/* Set the appropriate content type */
ap_set_content_type(r, "text/html");

/* Print out the IP address of the client connecting to us: */
ap_rprintf(r, "<h2>Hello, %s!</h2>", r->useragent_ip);

/* If we were reached through a GET or a POST request, be happy, else sad. */
if (!strcmp(r->method, "POST") || !strcmp(r->method, "GET")) {

ap_rputs("You used a GET or a POST method, that makes us happy!
", r);
}
else {

ap_rputs("You did not use POST or GET, that makes us sad :(
", r);
}

/* Lastly, if there was a query string, let’s print that too! */
if (r->args) {

ap_rprintf(r, "Your query string was: %s", r->args);
}
return OK;

}

Return values

Apache relies on return values from handlers to signify whether a request was handled or not, and if so, whether the
request went well or not. If a module is not interested in handling a specific request, it should always return the value
DECLINED. If it is handling a request, it should either return the generic value OK, or a specific HTTP status code, for
example:

static int example_handler(request_rec *r)
{

/* Return 404: Not found */
return HTTP_NOT_FOUND;

}

Returning OK or a HTTP status code does not necessarily mean that the request will end. The server may still have
other handlers that are interested in this request, for instance the logging modules which, upon a successful request,

10http://svn.apache.org/repos/asf/httpd/httpd/trunk/include/httpd.h

http://svn.apache.org/repos/asf/httpd/httpd/trunk/include/httpd.h

964 CHAPTER 11. DEVELOPER DOCUMENTATION

will write down a summary of what was requested and how it went. To do a full stop and prevent any further processing
after your module is done, you can return the value DONE to let the server know that it should cease all activity on this
request and carry on with the next, without informing other handlers.
General response codes:

• DECLINED: We are not handling this request

• OK: We handled this request and it went well

• DONE: We handled this request and the server should just close this thread without further processing

HTTP specific return codes (excerpt):

• HTTP OK (200): Request was okay

• HTTP MOVED PERMANENTLY (301): The resource has moved to a new URL

• HTTP UNAUTHORIZED (401): Client is not authorized to visit this page

• HTTP FORBIDDEN (403): Permission denied

• HTTP NOT FOUND (404): File not found

• HTTP INTERNAL SERVER ERROR (500): Internal server error (self explanatory)

Some useful functions you should know

• ap rputs(const char *string, request rec *r):
Sends a string of text to the client. This is a shorthand version of ap rwrite11.

ap_rputs("Hello, world!", r);

• ap rprintf12:
This function works just like printf, except it sends the result to the client.

ap_rprintf(r, "Hello, %s!", r->useragent_ip);

• ap set content type13(request rec *r, const char *type):
Sets the content type of the output you are sending.

ap_set_content_type(r, "text/plain"); /* force a raw text output */

Memory management

Managing your resources in Apache HTTP Server 2.4 is quite easy, thanks to the memory pool system. In essence,
each server, connection and request have their own memory pool that gets cleaned up when its scope ends, e.g. when
a request is done or when a server process shuts down. All your module needs to do is latch onto this memory pool,
and you won’t have to worry about having to clean up after yourself - pretty neat, huh?

In our module, we will primarily be allocating memory for each request, so it’s appropriate to use the r->pool
reference when creating new objects. A few of the functions for allocating memory within a pool are:

11http://ci.apache.org/projects/httpd/trunk/doxygen/group APACHE CORE PROTO.html#gac827cd0537d2b6213a7c06d7c26cc36e
12http://ci.apache.org/projects/httpd/trunk/doxygen/group APACHE CORE PROTO.html#ga5e91eb6ca777c9a427b2e82bf1eeb81d
13http://ci.apache.org/projects/httpd/trunk/doxygen/group APACHE CORE PROTO.html#gaa2f8412c400197338ec509f4a45e4579

http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__PROTO.html#gac827cd0537d2b6213a7c06d7c26cc36e
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__PROTO.html#ga5e91eb6ca777c9a427b2e82bf1eeb81d
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__PROTO.html#gaa2f8412c400197338ec509f4a45e4579

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 965

• void* apr palloc14(apr pool t *p, apr size t size): Allocates size number of bytes in
the pool for you

• void* apr pcalloc15(apr pool t *p, apr size t size): Allocates size number of bytes in
the pool for you and sets all bytes to 0

• char* apr pstrdup16(apr pool t *p, const char *s): Creates a duplicate of the string s.
This is useful for copying constant values so you can edit them

• char* apr psprintf17(apr pool t *p, const char *fmt, ...): Similar to sprintf, ex-
cept the server supplies you with an appropriately allocated target variable

Let’s put these functions into an example handler:

static int example_handler(request_rec *r)
{

const char *original = "You can’t edit this!";
char *copy;
int *integers;

/* Allocate space for 10 integer values and set them all to zero. */
integers = apr_pcalloc(r->pool, sizeof(int)*10);

/* Create a copy of the ’original’ variable that we can edit. */
copy = apr_pstrdup(r->pool, original);
return OK;

}

This is all well and good for our module, which won’t need any pre-initialized variables or structures. However, if we
wanted to initialize something early on, before the requests come rolling in, we could simply add a call to a function
in our register hooks function to sort it out:

static void register_hooks(apr_pool_t *pool)
{

/* Call a function that initializes some stuff */
example_init_function(pool);
/* Create a hook in the request handler, so we get called when a request arrives */
ap_hook_handler(example_handler, NULL, NULL, APR_HOOK_LAST);

}

In this pre-request initialization function we would not be using the same pool as we did when allocating resources
for request-based functions. Instead, we would use the pool given to us by the server for allocating memory on a
per-process based level.

Parsing request data

In our example module, we would like to add a feature, that checks which type of digest, MD5 or SHA1 the client
would like to see. This could be solved by adding a query string to the request. A query string is typically comprised
of several keys and values put together in a string, for instance valueA=yes&valueB=no&valueC=maybe. It is

14http://apr.apache.org/docs/apr/1.4/group apr pools.html#ga85f1e193c31d109affda72f9a92c6915
15http://apr.apache.org/docs/apr/1.4/group apr pools.html#gaf61c098ad258069d64cdf8c0a9369f9e
16http://apr.apache.org/docs/apr/1.4/group apr strings.html#gabc79e99ff19abbd7cfd18308c5f85d47
17http://apr.apache.org/docs/apr/1.4/group apr strings.html#ga3eca76b8d293c5c3f8021e45eda813d8

http://apr.apache.org/docs/apr/1.4/group__apr__pools.html#ga85f1e193c31d109affda72f9a92c6915
http://apr.apache.org/docs/apr/1.4/group__apr__pools.html#gaf61c098ad258069d64cdf8c0a9369f9e
http://apr.apache.org/docs/apr/1.4/group__apr__strings.html#gabc79e99ff19abbd7cfd18308c5f85d47
http://apr.apache.org/docs/apr/1.4/group__apr__strings.html#ga3eca76b8d293c5c3f8021e45eda813d8

966 CHAPTER 11. DEVELOPER DOCUMENTATION

up to the module itself to parse these and get the data it requires. In our example, we’ll be looking for a key called
digest, and if set to md5, we’ll produce an MD5 digest, otherwise we’ll produce a SHA1 digest.

Since the introduction of Apache HTTP Server 2.4, parsing request data from GET and POST requests have never
been easier. All we require to parse both GET and POST data is four simple lines:

apr_table_t *GET;
apr_array_header_t*POST;

ap_args_to_table(r, &GET);

ap_parse_form_data(r, NULL, &POST, -1, 8192);

In our specific example module, we’re looking for the digest value from the query string, which now resides inside
a table called GET. To extract this value, we need only perform a simple operation:

/* Get the "digest" key from the query string, if any. */
const char *digestType = apr_table_get(GET, "digest");

/* If no key was returned, we will set a default value instead. */
if (!digestType) digestType = "sha1";

The structures used for the POST and GET data are not exactly the same, so if we were to fetch a value from POST
data instead of the query string, we would have to resort to a few more lines, as outlined in this example in the last
chapter of this document.

Making an advanced handler

Now that we have learned how to parse form data and manage our resources, we can move on to creating an advanced
version of our module, that spits out the MD5 or SHA1 digest of files:

static int example_handler(request_rec *r)
{

int rc, exists;
apr_finfo_t finfo;
apr_file_t *file;
char *filename;
char buffer[256];
apr_size_t readBytes;
int n;
apr_table_t *GET;
apr_array_header_t *POST;
const char *digestType;

/* Check that the "example-handler" handler is being called. */
if (!r->handler || strcmp(r->handler, "example-handler")) return (DECLINED);

/* Figure out which file is being requested by removing the .sum from it */
filename = apr_pstrdup(r->pool, r->filename);

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 967

filename[strlen(filename)-4] = 0; /* Cut off the last 4 characters. */

/* Figure out if the file we request a sum on exists and isn’t a directory */
rc = apr_stat(&finfo, filename, APR_FINFO_MIN, r->pool);
if (rc == APR_SUCCESS) {

exists =
(

(finfo.filetype != APR_NOFILE)
&& !(finfo.filetype & APR_DIR)
);
if (!exists) return HTTP_NOT_FOUND; /* Return a 404 if not found. */

}
/* If apr_stat failed, we’re probably not allowed to check this file. */
else return HTTP_FORBIDDEN;

/* Parse the GET and, optionally, the POST data sent to us */

ap_args_to_table(r, &GET);
ap_parse_form_data(r, NULL, &POST, -1, 8192);

/* Set the appropriate content type */
ap_set_content_type(r, "text/html");

/* Print a title and some general information */
ap_rprintf(r, "<h2>Information on %s:</h2>", filename);
ap_rprintf(r, "Size: %u bytes
", finfo.size);

/* Get the digest type the client wants to see */
digestType = apr_table_get(GET, "digest");
if (!digestType) digestType = "MD5";

rc = apr_file_open(&file, filename, APR_READ, APR_OS_DEFAULT, r->pool);
if (rc == APR_SUCCESS) {

/* Are we trying to calculate the MD5 or the SHA1 digest? */
if (!strcasecmp(digestType, "md5")) {

/* Calculate the MD5 sum of the file */
union {

char chr[16];
uint32_t num[4];

} digest;
apr_md5_ctx_t md5;
apr_md5_init(&md5);
readBytes = 256;
while (apr_file_read(file, buffer, &readBytes) == APR_SUCCESS) {

apr_md5_update(&md5, buffer, readBytes);
}
apr_md5_final(digest.chr, &md5);

/* Print out the MD5 digest */
ap_rputs("MD5: <code>", r);
for (n = 0; n < APR_MD5_DIGESTSIZE/4; n++) {

968 CHAPTER 11. DEVELOPER DOCUMENTATION

ap_rprintf(r, "%08x", digest.num[n]);
}
ap_rputs("</code>", r);
/* Print a link to the SHA1 version */
ap_rputs("
View the SHA1 hash instead", r);

}
else {

/* Calculate the SHA1 sum of the file */
union {

char chr[20];
uint32_t num[5];

} digest;
apr_sha1_ctx_t sha1;
apr_sha1_init(&sha1);
readBytes = 256;
while (apr_file_read(file, buffer, &readBytes) == APR_SUCCESS) {

apr_sha1_update(&sha1, buffer, readBytes);
}
apr_sha1_final(digest.chr, &sha1);

/* Print out the SHA1 digest */
ap_rputs("SHA1: <code>", r);
for (n = 0; n < APR_SHA1_DIGESTSIZE/4; n++) {

ap_rprintf(r, "%08x", digest.num[n]);
}
ap_rputs("</code>", r);

/* Print a link to the MD5 version */
ap_rputs("
View the MD5 hash instead", r);

}
apr_file_close(file);

}
/* Let the server know that we responded to this request. */
return OK;

}

This version in its entirety can be found here: mod example 2.c18.

Adding configuration options

In this next segment of this document, we will turn our eyes away from the digest module and create a new example
module, whose only function is to write out its own configuration. The purpose of this is to examine how the server
works with configuration, and what happens when you start writing advanced configurations for your modules.

An introduction to configuration directives

If you are reading this, then you probably already know what a configuration directive is. Simply put, a directive
is a way of telling an individual module (or a set of modules) how to behave, such as these directives control how
mod rewrite works:

18http://people.apache.org/˜humbedooh/mods/examples/mod example 2.c

http://people.apache.org/~humbedooh/mods/examples/mod_example_2.c

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 969

RewriteEngine On
RewriteCond "%{REQUEST_URI}" "ˆ/foo/bar"
RewriteRule "ˆ/foo/bar/(.*)$" "/foobar?page=$1"

Each of these configuration directives are handled by a separate function, that parses the parameters given and sets up
a configuration accordingly.

Making an example configuration

To begin with, we’ll create a basic configuration in C-space:

typedef struct {
int enabled; /* Enable or disable our module */
const char *path; /* Some path to...something */
int typeOfAction; /* 1 means action A, 2 means action B and so on */

} example_config;

Now, let’s put this into perspective by creating a very small module that just prints out a hard-coded configuration.
You’ll notice that we use the register hooks function for initializing the configuration values to their defaults:

typedef struct {
int enabled; /* Enable or disable our module */
const char *path; /* Some path to...something */
int typeOfAction; /* 1 means action A, 2 means action B and so on */

} example_config;

static example_config config;

static int example_handler(request_rec *r)
{

if (!r->handler || strcmp(r->handler, "example-handler")) return(DECLINED);
ap_set_content_type(r, "text/plain");
ap_rprintf(r, "Enabled: %u\n", config.enabled);
ap_rprintf(r, "Path: %s\n", config.path);
ap_rprintf(r, "TypeOfAction: %x\n", config.typeOfAction);
return OK;

}

static void register_hooks(apr_pool_t *pool)
{

config.enabled = 1;
config.path = "/foo/bar";
config.typeOfAction = 0x00;
ap_hook_handler(example_handler, NULL, NULL, APR_HOOK_LAST);

}

/* Define our module as an entity and assign a function for registering hooks */

module AP_MODULE_DECLARE_DATA example_module =
{

STANDARD20_MODULE_STUFF,
NULL, /* Per-directory configuration handler */

970 CHAPTER 11. DEVELOPER DOCUMENTATION

NULL, /* Merge handler for per-directory configurations */
NULL, /* Per-server configuration handler */
NULL, /* Merge handler for per-server configurations */
NULL, /* Any directives we may have for httpd */
register_hooks /* Our hook registering function */

};

So far so good. To access our new handler, we could add the following to our configuration:

<Location "/example">
SetHandler example-handler

</Location>

When we visit, we’ll see our current configuration being spit out by our module.

Registering directives with the server

What if we want to change our configuration, not by hard-coding new values into the module, but by using either the
httpd.conf file or possibly a .htaccess file? It’s time to let the server know that we want this to be possible. To do so,
we must first change our name tag to include a reference to the configuration directives we want to register with the
server:

module AP_MODULE_DECLARE_DATA example_module =
{

STANDARD20_MODULE_STUFF,
NULL, /* Per-directory configuration handler */
NULL, /* Merge handler for per-directory configurations */
NULL, /* Per-server configuration handler */
NULL, /* Merge handler for per-server configurations */
example_directives, /* Any directives we may have for httpd */
register_hooks /* Our hook registering function */

};

This will tell the server that we are now accepting directives from the configuration files, and that the structure called
example directives holds information on what our directives are and how they work. Since we have three
different variables in our module configuration, we will add a structure with three directives and a NULL at the end:

static const command_rec example_directives[] =
{

AP_INIT_TAKE1("exampleEnabled", example_set_enabled, NULL, RSRC_CONF, "Enable or disable mod_example"),
AP_INIT_TAKE1("examplePath", example_set_path, NULL, RSRC_CONF, "The path to whatever"),
AP_INIT_TAKE2("exampleAction", example_set_action, NULL, RSRC_CONF, "Special action value!"),
{ NULL }

};

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 971

As you can see, each directive needs at least 5 parameters set:

1. AP INIT TAKE119: This is a macro that tells the server that this directive takes one and only one argument.
If we required two arguments, we could use the macro AP INIT TAKE220 and so on (refer to httpd conf.h for
more macros).

2. exampleEnabled: This is the name of our directive. More precisely, it is what the user must put in his/her
configuration in order to invoke a configuration change in our module.

3. example set enabled: This is a reference to a C function that parses the directive and sets the configuration
accordingly. We will discuss how to make this in the following paragraph.

4. RSRC CONF: This tells the server where the directive is permitted. We’ll go into details on this value in the later
chapters, but for now, RSRC CONF means that the server will only accept these directives in a server context.

5. "Enable or disable....": This is simply a brief description of what the directive does.

(The "missing" parameter in our definition, which is usually set to NULL, is an optional function that can be run
after the initial function to parse the arguments have been run. This is usually omitted, as the function for verifying
arguments might as well be used to set them.)

The directive handler function

Now that we have told the server to expect some directives for our module, it’s time to make a few functions for
handling these. What the server reads in the configuration file(s) is text, and so naturally, what it passes along to our
directive handler is one or more strings, that we ourselves need to recognize and act upon. You’ll notice, that since
we set our exampleAction directive to accept two arguments, its C function also has an additional parameter
defined:

/* Handler for the "exampleEnabled" directive */
const char *example_set_enabled(cmd_parms *cmd, void *cfg, const char *arg)
{

if(!strcasecmp(arg, "on")) config.enabled = 1;
else config.enabled = 0;
return NULL;

}

/* Handler for the "examplePath" directive */
const char *example_set_path(cmd_parms *cmd, void *cfg, const char *arg)
{

19http://ci.apache.org/projects/httpd/trunk/doxygen/group APACHE CORE CONFIG.html#ga07c7d22ae17805e61204463326cf9c34
20http://ci.apache.org/projects/httpd/trunk/doxygen/group APACHE CORE CONFIG.html#gafaec43534fcf200f37d9fecbf9247c21

http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__CONFIG.html#ga07c7d22ae17805e61204463326cf9c34
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__CONFIG.html#gafaec43534fcf200f37d9fecbf9247c21

972 CHAPTER 11. DEVELOPER DOCUMENTATION

config.path = arg;
return NULL;

}

/* Handler for the "exampleAction" directive */
/* Let’s pretend this one takes one argument (file or db), and a second (deny or allow), */
/* and we store it in a bit-wise manner. */
const char *example_set_action(cmd_parms *cmd, void *cfg, const char *arg1, const char *arg2)
{

if(!strcasecmp(arg1, "file")) config.typeOfAction = 0x01;
else config.typeOfAction = 0x02;

if(!strcasecmp(arg2, "deny")) config.typeOfAction += 0x10;
else config.typeOfAction += 0x20;
return NULL;

}

Putting it all together

Now that we have our directives set up, and handlers configured for them, we can assemble our module into one big
file:

/* mod_example_config_simple.c: */
#include <stdio.h>
#include "apr_hash.h"
#include "ap_config.h"
#include "ap_provider.h"
#include "httpd.h"
#include "http_core.h"
#include "http_config.h"
#include "http_log.h"
#include "http_protocol.h"
#include "http_request.h"

/*
==
Our configuration prototype and declaration:
==

*/
typedef struct {

int enabled; /* Enable or disable our module */
const char *path; /* Some path to...something */
int typeOfAction; /* 1 means action A, 2 means action B and so on */

} example_config;

static example_config config;

/*
==
Our directive handlers:
==

*/
/* Handler for the "exampleEnabled" directive */

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 973

const char *example_set_enabled(cmd_parms *cmd, void *cfg, const char *arg)
{

if(!strcasecmp(arg, "on")) config.enabled = 1;
else config.enabled = 0;
return NULL;

}

/* Handler for the "examplePath" directive */
const char *example_set_path(cmd_parms *cmd, void *cfg, const char *arg)
{

config.path = arg;
return NULL;

}

/* Handler for the "exampleAction" directive */
/* Let’s pretend this one takes one argument (file or db), and a second (deny or allow), */
/* and we store it in a bit-wise manner. */
const char *example_set_action(cmd_parms *cmd, void *cfg, const char *arg1, const char *arg2)
{

if(!strcasecmp(arg1, "file")) config.typeOfAction = 0x01;
else config.typeOfAction = 0x02;

if(!strcasecmp(arg2, "deny")) config.typeOfAction += 0x10;
else config.typeOfAction += 0x20;
return NULL;

}

/*
==
The directive structure for our name tag:
==

*/
static const command_rec example_directives[] =
{

AP_INIT_TAKE1("exampleEnabled", example_set_enabled, NULL, RSRC_CONF, "Enable or disable mod_example"),
AP_INIT_TAKE1("examplePath", example_set_path, NULL, RSRC_CONF, "The path to whatever"),
AP_INIT_TAKE2("exampleAction", example_set_action, NULL, RSRC_CONF, "Special action value!"),
{ NULL }

};
/*
==
Our module handler:
==

*/
static int example_handler(request_rec *r)
{

if(!r->handler || strcmp(r->handler, "example-handler")) return(DECLINED);
ap_set_content_type(r, "text/plain");
ap_rprintf(r, "Enabled: %u\n", config.enabled);
ap_rprintf(r, "Path: %s\n", config.path);
ap_rprintf(r, "TypeOfAction: %x\n", config.typeOfAction);
return OK;

}

974 CHAPTER 11. DEVELOPER DOCUMENTATION

/*
==
The hook registration function (also initializes the default config values):
==

*/
static void register_hooks(apr_pool_t *pool)
{

config.enabled = 1;
config.path = "/foo/bar";
config.typeOfAction = 3;
ap_hook_handler(example_handler, NULL, NULL, APR_HOOK_LAST);

}
/*
==
Our module name tag:
==

*/
module AP_MODULE_DECLARE_DATA example_module =
{

STANDARD20_MODULE_STUFF,
NULL, /* Per-directory configuration handler */
NULL, /* Merge handler for per-directory configurations */
NULL, /* Per-server configuration handler */
NULL, /* Merge handler for per-server configurations */
example_directives, /* Any directives we may have for httpd */
register_hooks /* Our hook registering function */

};

In our httpd.conf file, we can now change the hard-coded configuration by adding a few lines:

ExampleEnabled On
ExamplePath "/usr/bin/foo"
ExampleAction file allow

And thus we apply the configuration, visit /example on our web site, and we see the configuration has adapted to
what we wrote in our configuration file.

Context aware configurations

Introduction to context aware configurations

In Apache HTTP Server 2.4, different URLs, virtual hosts, directories etc can have very different meanings to the user
of the server, and thus different contexts within which modules must operate. For example, let’s assume you have this
configuration set up for mod rewrite:

<Directory "/var/www">
RewriteCond "%{HTTP_HOST}" "ˆexample.com$"
RewriteRule "(.*)" "http://www.example.com/$1"

</Directory>
<Directory "/var/www/sub">

RewriteRule "ˆfoobar$" "index.php?foobar=true"
</Directory>

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 975

In this example, you will have set up two different contexts for mod rewrite:

1. Inside /var/www, all requests for http://example.com must go to http://www.example.com

2. Inside /var/www/sub, all requests for foobar must go to index.php?foobar=true

If mod rewrite (or the entire server for that matter) wasn’t context aware, then these rewrite rules would just apply to
every and any request made, regardless of where and how they were made, but since the module can pull the context
specific configuration straight from the server, it does not need to know itself, which of the directives are valid in this
context, since the server takes care of this.

So how does a module get the specific configuration for the server, directory or location in question? It does so by
making one simple call:

example_config *config = (example_config*) ap_get_module_config(r->per_dir_config, &example_module);

That’s it! Of course, a whole lot goes on behind the scenes, which we will discuss in this chapter, starting with how
the server came to know what our configuration looks like, and how it came to be set up as it is in the specific context.

Our basic configuration setup

In this chapter, we will be working with a slightly modified version of our previous context structure. We will set a
context variable that we can use to track which context configuration is being used by the server in various places:

typedef struct {
char context[256];
char path[256];
int typeOfAction;
int enabled;

} example_config;

Our handler for requests will also be modified, yet still very simple:

static int example_handler(request_rec *r)
{

if(!r->handler || strcmp(r->handler, "example-handler")) return(DECLINED);
example_config *config = (example_config*) ap_get_module_config(r->per_dir_config, &example_module);
ap_set_content_type(r, "text/plain");
ap_rprintf("Enabled: %u\n", config->enabled);
ap_rprintf("Path: %s\n", config->path);
ap_rprintf("TypeOfAction: %x\n", config->typeOfAction);
ap_rprintf("Context: %s\n", config->context);
return OK;

}

Choosing a context

Before we can start making our module context aware, we must first define, which contexts we will accept. As we saw
in the previous chapter, defining a directive required five elements be set:

AP_INIT_TAKE1("exampleEnabled", example_set_enabled, NULL, RSRC_CONF, "Enable or disable mod_example"),

976 CHAPTER 11. DEVELOPER DOCUMENTATION

The RSRC CONF definition told the server that we would only allow this directive in a global server context, but since
we are now trying out a context aware version of our module, we should set this to something more lenient, namely the
value ACCESS CONF, which lets us use the directive inside <Directory> and <Location> blocks. For more control
over the placement of your directives, you can combine the following restrictions together to form a specific rule:

• RSRC CONF: Allow in .conf files (not .htaccess) outside <Directory> or <Location>

• ACCESS CONF: Allow in .conf files (not .htaccess) inside <Directory> or <Location>

• OR OPTIONS: Allow in .conf files and .htaccess when AllowOverride Options is set

• OR FILEINFO: Allow in .conf files and .htaccess when AllowOverride FileInfo is set

• OR AUTHCFG: Allow in .conf files and .htaccess when AllowOverride AuthConfig is set

• OR INDEXES: Allow in .conf files and .htaccess when AllowOverride Indexes is set

• OR ALL: Allow anywhere in .conf files and .htaccess

Using the server to allocate configuration slots

A much smarter way to manage your configurations is by letting the server help you create them. To do so, we must
first start off by changing our name tag to let the server know, that it should assist us in creating and managing our
configurations. Since we have chosen the per-directory (or per-location) context for our module configurations, we’ll
add a per-directory creator and merger function reference in our tag:

module AP_MODULE_DECLARE_DATA example_module =
{

STANDARD20_MODULE_STUFF,
create_dir_conf, /* Per-directory configuration handler */
merge_dir_conf, /* Merge handler for per-directory configurations */
NULL, /* Per-server configuration handler */
NULL, /* Merge handler for per-server configurations */
directives, /* Any directives we may have for httpd */
register_hooks /* Our hook registering function */

};

Creating new context configurations

Now that we have told the server to help us create and manage configurations, our first step is to make a function
for creating new, blank configurations. We do so by creating the function we just referenced in our name tag as the
Per-directory configuration handler:

void *create_dir_conf(apr_pool_t *pool, char *context) {
context = context ? context : "(undefined context)";
example_config *cfg = apr_pcalloc(pool, sizeof(example_config));
if(cfg) {

/* Set some default values */
strcpy(cfg->context, context);
cfg->enabled = 0;
cfg->path = "/foo/bar";
cfg->typeOfAction = 0x11;

}
return cfg;

}

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 977

Merging configurations

Our next step in creating a context aware configuration is merging configurations. This part of the process particularly
applies to scenarios where you have a parent configuration and a child, such as the following:

<Directory "/var/www">
ExampleEnabled On
ExamplePath "/foo/bar"
ExampleAction file allow

</Directory>
<Directory "/var/www/subdir">

ExampleAction file deny
</Directory>

In this example, it is natural to assume that the directory /var/www/subdir should inherit the values set for the
/var/www directory, as we did not specify an ExampleEnabled nor an ExamplePath for this directory. The
server does not presume to know if this is true, but cleverly does the following:

1. Creates a new configuration for /var/www

2. Sets the configuration values according to the directives given for /var/www

3. Creates a new configuration for /var/www/subdir

4. Sets the configuration values according to the directives given for /var/www/subdir

5. Proposes a merge of the two configurations into a new configuration for /var/www/subdir

This proposal is handled by the merge dir conf function we referenced in our name tag. The purpose of this
function is to assess the two configurations and decide how they are to be merged:

void *merge_dir_conf(apr_pool_t *pool, void *BASE, void *ADD) {
example_config *base = (example_config *) BASE ; /* This is what was set in the parent context */
example_config *add = (example_config *) ADD ; /* This is what is set in the new context */
example_config *conf = (example_config *) create_dir_conf(pool, "Merged configuration"); /* This will be the merged configuration */

/* Merge configurations */
conf->enabled = (add->enabled == 0) ? base->enabled : add->enabled ;
conf->typeOfAction = add->typeOfAction ? add->typeOfAction : base->typeOfAction;
strcpy(conf->path, strlen(add->path) ? add->path : base->path);

return conf ;
}

Trying out our new context aware configurations

Now, let’s try putting it all together to create a new module that is context aware. First off, we’ll create a configuration
that lets us test how the module works:

<Location "/a">
SetHandler example-handler
ExampleEnabled on
ExamplePath "/foo/bar"

978 CHAPTER 11. DEVELOPER DOCUMENTATION

ExampleAction file allow
</Location>

<Location "/a/b">
ExampleAction file deny
ExampleEnabled off

</Location>

<Location "/a/b/c">
ExampleAction db deny
ExamplePath "/foo/bar/baz"
ExampleEnabled on

</Location>

Then we’ll assemble our module code. Note, that since we are now using our name tag as reference when fetching
configurations in our handler, I have added some prototypes to keep the compiler happy:

/*$6
+++

* mod_example_config.c
+++

*/

#include <stdio.h>
#include "apr_hash.h"
#include "ap_config.h"
#include "ap_provider.h"
#include "httpd.h"
#include "http_core.h"
#include "http_config.h"
#include "http_log.h"
#include "http_protocol.h"
#include "http_request.h"

/*$1
˜˜˜

Configuration structure
˜˜˜

*/

typedef struct
{

char context[256];
char path[256];
int typeOfAction;
int enabled;

} example_config;

/*$1
˜˜˜

Prototypes
˜˜˜

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 979

*/

static int example_handler(request_rec *r);
const char *example_set_enabled(cmd_parms *cmd, void *cfg, const char *arg);
const char *example_set_path(cmd_parms *cmd, void *cfg, const char *arg);
const char *example_set_action(cmd_parms *cmd, void *cfg, const char *arg1, const char *arg2);
void *create_dir_conf(apr_pool_t *pool, char *context);
void *merge_dir_conf(apr_pool_t *pool, void *BASE, void *ADD);
static void register_hooks(apr_pool_t *pool);

/*$1
˜˜˜

Configuration directives
˜˜˜

*/

static const command_rec directives[] =
{

AP_INIT_TAKE1("exampleEnabled", example_set_enabled, NULL, ACCESS_CONF, "Enable or disable mod_example"),
AP_INIT_TAKE1("examplePath", example_set_path, NULL, ACCESS_CONF, "The path to whatever"),
AP_INIT_TAKE2("exampleAction", example_set_action, NULL, ACCESS_CONF, "Special action value!"),
{ NULL }

};

/*$1
˜˜˜

Our name tag
˜˜˜

*/

module AP_MODULE_DECLARE_DATA example_module =
{

STANDARD20_MODULE_STUFF,
create_dir_conf, /* Per-directory configuration handler */
merge_dir_conf, /* Merge handler for per-directory configurations */
NULL, /* Per-server configuration handler */
NULL, /* Merge handler for per-server configurations */
directives, /* Any directives we may have for httpd */
register_hooks /* Our hook registering function */

};

/*
===

Hook registration function
===

*/
static void register_hooks(apr_pool_t *pool)
{

ap_hook_handler(example_handler, NULL, NULL, APR_HOOK_LAST);
}

/*
===

980 CHAPTER 11. DEVELOPER DOCUMENTATION

Our example web service handler
===

*/
static int example_handler(request_rec *r)
{

if(!r->handler || strcmp(r->handler, "example-handler")) return(DECLINED);

/*˜˜*/
example_config *config = (example_config *) ap_get_module_config(r->per_dir_config, &example_module);
/*˜˜*/

ap_set_content_type(r, "text/plain");
ap_rprintf(r, "Enabled: %u\n", config->enabled);
ap_rprintf(r, "Path: %s\n", config->path);
ap_rprintf(r, "TypeOfAction: %x\n", config->typeOfAction);
ap_rprintf(r, "Context: %s\n", config->context);
return OK;

}

/*
===

Handler for the "exampleEnabled" directive
===

*/
const char *example_set_enabled(cmd_parms *cmd, void *cfg, const char *arg)
{

/*˜˜˜*/
example_config *conf = (example_config *) cfg;
/*˜˜˜*/

if(conf)
{

if(!strcasecmp(arg, "on"))
conf->enabled = 1;

else
conf->enabled = 0;

}

return NULL;
}

/*
===

Handler for the "examplePath" directive
===

*/
const char *example_set_path(cmd_parms *cmd, void *cfg, const char *arg)
{

/*˜˜˜*/
example_config *conf = (example_config *) cfg;
/*˜˜˜*/

if(conf)

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 981

{
strcpy(conf->path, arg);

}

return NULL;
}

/*
===

Handler for the "exampleAction" directive ;
Let’s pretend this one takes one argument (file or db), and a second (deny or allow), ;
and we store it in a bit-wise manner.

===

*/
const char *example_set_action(cmd_parms *cmd, void *cfg, const char *arg1, const char *arg2)
{

/*˜˜˜*/
example_config *conf = (example_config *) cfg;
/*˜˜˜*/

if(conf)
{

{
if(!strcasecmp(arg1, "file"))

conf->typeOfAction = 0x01;
else

conf->typeOfAction = 0x02;
if(!strcasecmp(arg2, "deny"))

conf->typeOfAction += 0x10;
else

conf->typeOfAction += 0x20;
}

}

return NULL;
}

/*
===

Function for creating new configurations for per-directory contexts
===

*/
void *create_dir_conf(apr_pool_t *pool, char *context)
{

context = context ? context : "Newly created configuration";

/*˜˜˜*/
example_config *cfg = apr_pcalloc(pool, sizeof(example_config));
/*˜˜˜*/

if(cfg)
{

{

982 CHAPTER 11. DEVELOPER DOCUMENTATION

/* Set some default values */
strcpy(cfg->context, context);
cfg->enabled = 0;
memset(cfg->path, 0, 256);
cfg->typeOfAction = 0x00;

}
}

return cfg;
}

/*
===

Merging function for configurations
===

*/
void *merge_dir_conf(apr_pool_t *pool, void *BASE, void *ADD)
{

/*˜˜*/
example_config *base = (example_config *) BASE;
example_config *add = (example_config *) ADD;
example_config *conf = (example_config *) create_dir_conf(pool, "Merged configuration");
/*˜˜*/

conf->enabled = (add->enabled == 0) ? base->enabled : add->enabled;
conf->typeOfAction = add->typeOfAction ? add->typeOfAction : base->typeOfAction;
strcpy(conf->path, strlen(add->path) ? add->path : base->path);
return conf;

}

Summing up

We have now looked at how to create simple modules for Apache HTTP Server 2.4 and configuring them. What you
do next is entirely up to you, but it is my hope that something valuable has come out of reading this documentation.
If you have questions on how to further develop modules, you are welcome to join our mailing lists21 or check out the
rest of our documentation for further tips.

Some useful snippets of code

Retrieve variables from POST form data

typedef struct {
const char *key;
const char *value;

} keyValuePair;

keyValuePair *readPost(request_rec *r) {
apr_array_header_t *pairs = NULL;
apr_off_t len;
apr_size_t size;

21http://httpd.apache.org/lists.html

http://httpd.apache.org/lists.html

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 983

int res;
int i = 0;
char *buffer;
keyValuePair *kvp;

res = ap_parse_form_data(r, NULL, &pairs, -1, HUGE_STRING_LEN);
if (res != OK || !pairs) return NULL; /* Return NULL if we failed or if there are is no POST data */
kvp = apr_pcalloc(r->pool, sizeof(keyValuePair) * (pairs->nelts + 1));
while (pairs && !apr_is_empty_array(pairs)) {

ap_form_pair_t *pair = (ap_form_pair_t *) apr_array_pop(pairs);
apr_brigade_length(pair->value, 1, &len);
size = (apr_size_t) len;
buffer = apr_palloc(r->pool, size + 1);
apr_brigade_flatten(pair->value, buffer, &size);
buffer[len] = 0;
kvp[i].key = apr_pstrdup(r->pool, pair->name);
kvp[i].value = buffer;
i++;

}
return kvp;

}

static int example_handler(request_rec *r)
{

/*˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜*/
keyValuePair *formData;
/*˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜*/

formData = readPost(r);
if (formData) {

int i;
for (i = 0; &formData[i]; i++) {

if (formData[i].key && formData[i].value) {
ap_rprintf(r, "%s = %s\n", formData[i].key, formData[i].value);

} else if (formData[i].key) {
ap_rprintf(r, "%s\n", formData[i].key);

} else if (formData[i].value) {
ap_rprintf(r, "= %s\n", formData[i].value);

} else {
break;

}
}

}
return OK;

}

Printing out every HTTP header received

static int example_handler(request_rec *r)
{

/*˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜*/
const apr_array_header_t *fields;
int i;

984 CHAPTER 11. DEVELOPER DOCUMENTATION

apr_table_entry_t *e = 0;
/*˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜*/

fields = apr_table_elts(r->headers_in);
e = (apr_table_entry_t *) fields->elts;
for(i = 0; i < fields->nelts; i++) {

ap_rprintf(r, "%s: %s\n", e[i].key, e[i].val);
}
return OK;

}

Reading the request body into memory

static int util_read(request_rec *r, const char **rbuf, apr_off_t *size)
{

/*˜˜˜˜˜˜˜˜*/
int rc = OK;
/*˜˜˜˜˜˜˜˜*/

if((rc = ap_setup_client_block(r, REQUEST_CHUNKED_ERROR))) {
return(rc);

}

if(ap_should_client_block(r)) {

/*˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜*/
char argsbuffer[HUGE_STRING_LEN];
apr_off_t rsize, len_read, rpos = 0;
apr_off_t length = r->remaining;
/*˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜*/

*rbuf = (const char *) apr_pcalloc(r->pool, (apr_size_t) (length + 1));

*size = length;
while((len_read = ap_get_client_block(r, argsbuffer, sizeof(argsbuffer))) > 0) {

if((rpos + len_read) > length) {
rsize = length - rpos;

}
else {

rsize = len_read;
}

memcpy((char *) *rbuf + rpos, argsbuffer, (size_t) rsize);
rpos += rsize;

}
}
return(rc);

}

static int example_handler(request_rec *r)
{

/*˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜*/
apr_off_t size;
const char *buffer;

11.4. DEVELOPING MODULES FOR THE APACHE HTTP SERVER 2.4 985

/*˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜*/

if(util_read(r, &buffer, &size) == OK) {
ap_rprintf(r, "We read a request body that was %" APR_OFF_T_FMT " bytes long", size);

}
return OK;

}

986 CHAPTER 11. DEVELOPER DOCUMENTATION

11.5 Documenting code in Apache 2.4

Apache 2.4 uses Doxygen22 to document the APIs and global variables in the code. This will explain the basics of
how to document using Doxygen.

Brief Description

To start a documentation block, use /**
To end a documentation block, use */

In the middle of the block, there are multiple tags we can use:

Description of this functions purpose
@param parameter name description
@return description

@deffunc signature of the function

The deffunc is not always necessary. DoxyGen does not have a full parser in it, so any prototype that use a macro
in the return type declaration is too complex for scandoc. Those functions require a deffunc. An example (using
> rather than >):

/**
* return the final element of the pathname

* @param pathname The path to get the final element of

* @return the final element of the path

* @tip Examples:

* <pre>

* "/foo/bar/gum" -> "gum"

* "/foo/bar/gum/" -> ""

* "gum" -> "gum"

* "wi\\n32\\stuff" -> "stuff"

* </pre>

* @deffunc const char * ap filename of pathname(const char *pathname)

*/

At the top of the header file, always include:

/**
* @package Name of library header

*/

Doxygen uses a new HTML file for each package. The HTML files are named {Name of library header}.html, so try
to be concise with your names.

For a further discussion of the possibilities please refer to the Doxygen site23.

22http://www.doxygen.org/
23http://www.doxygen.org/

http://www.doxygen.org/
http://www.doxygen.org/

11.6. HOOK FUNCTIONS IN THE APACHE HTTP SERVER 2.X 987

11.6 Hook Functions in the Apache HTTP Server 2.x

! Warning
This document is still in development and may be partially out of date.

In general, a hook function is one that the Apache HTTP Server will call at some point during the processing of
a request. Modules can provide functions that are called, and specify when they get called in comparison to other
modules.

Creating a hook function

In order to create a new hook, four things need to be done:

Declare the hook function

Use the AP DECLARE HOOK macro, which needs to be given the return type of the hook function, the name of the
hook, and the arguments. For example, if the hook returns an int and takes a request rec * and an int and is
called do something, then declare it like this:

AP_DECLARE_HOOK(int, do_something, (request_rec *r, int n))

This should go in a header which modules will include if they want to use the hook.

Create the hook structure

Each source file that exports a hook has a private structure which is used to record the module functions that use the
hook. This is declared as follows:

APR_HOOK_STRUCT(
APR_HOOK_LINK(do_something)
...

)

Implement the hook caller

The source file that exports the hook has to implement a function that will call the hook. There are currently three
possible ways to do this. In all cases, the calling function is called ap run hookname().

Void hooks

If the return value of a hook is void, then all the hooks are called, and the caller is implemented like this:

AP_IMPLEMENT_HOOK_VOID(do_something, (request_rec *r, int n), (r, n))

The second and third arguments are the dummy argument declaration and the dummy arguments as they will be used
when calling the hook. In other words, this macro expands to something like this:

988 CHAPTER 11. DEVELOPER DOCUMENTATION

void ap_run_do_something(request_rec *r, int n)
{

...
do_something(r, n);

}

Hooks that return a value

If the hook returns a value, then it can either be run until the first hook that does something interesting, like so:

AP_IMPLEMENT_HOOK_RUN_FIRST(int, do_something, (request_rec *r, int n), (r, n), DECLINED)

The first hook that does not return DECLINED stops the loop and its return value is returned from the hook caller.
Note that DECLINED is the traditional hook return value meaning "I didn’t do anything", but it can be whatever suits
you.

Alternatively, all hooks can be run until an error occurs. This boils down to permitting two return values, one of which
means "I did something, and it was OK" and the other meaning "I did nothing". The first function that returns a
value other than one of those two stops the loop, and its return is the return value. Declare these like so:

AP_IMPLEMENT_HOOK_RUN_ALL(int, do_something, (request_rec *r, int n), (r, n), OK, DECLINED)

Again, OK and DECLINED are the traditional values. You can use what you want.

Call the hook callers

At appropriate moments in the code, call the hook caller, like so:

int n, ret;
request_rec *r;

ret=ap_run_do_something(r, n);

Hooking the hook

A module that wants a hook to be called needs to do two things.

Implement the hook function

Include the appropriate header, and define a static function of the correct type:

static int my_something_doer(request_rec *r, int n)
{

...
return OK;

}

11.6. HOOK FUNCTIONS IN THE APACHE HTTP SERVER 2.X 989

Add a hook registering function

During initialisation, the server will call each modules hook registering function, which is included in the module
structure:

static void my_register_hooks()
{

ap_hook_do_something(my_something_doer, NULL, NULL, APR_HOOK_MIDDLE);
}

mode MODULE_VAR_EXPORT my_module =
{

...
my_register_hooks /* register hooks */

};

Controlling hook calling order

In the example above, we didn’t use the three arguments in the hook registration function that control calling order.
There are two mechanisms for doing this. The first, rather crude, method, allows us to specify roughly where the hook
is run relative to other modules. The final argument control this. There are three possible values: APR HOOK FIRST,
APR HOOK MIDDLE and APR HOOK LAST.

All modules using any particular value may be run in any order relative to each other, but, of course, all modules
using APR HOOK FIRST will be run before APR HOOK MIDDLE which are before APR HOOK LAST. Modules that
don’t care when they are run should use APR HOOK MIDDLE. These values are spaced out, so that positions like
APR HOOK FIRST-2 are possible to hook slightly earlier than other functions.

Note that there are two more values, APR HOOK REALLY FIRST and APR HOOK REALLY LAST. These should
only be used by the hook exporter.

The other method allows finer control. When a module knows that it must be run before (or after) some other modules,
it can specify them by name. The second (third) argument is a NULL-terminated array of strings consisting of the
names of modules that must be run before (after) the current module. For example, suppose we want "mod xyz.c"
and "mod abc.c" to run before we do, then we’d hook as follows:

static void register_hooks()
{

static const char * const aszPre[] = { "mod_xyz.c", "mod_abc.c", NULL };

ap_hook_do_something(my_something_doer, aszPre, NULL, APR_HOOK_MIDDLE);
}

Note that the sort used to achieve this is stable, so ordering set by APR HOOK ORDER is preserved, as far as is possible.

990 CHAPTER 11. DEVELOPER DOCUMENTATION

11.7 Converting Modules from Apache 1.3 to Apache 2.0

This is a first attempt at writing the lessons I learned when trying to convert the mod mmap static module to
Apache 2.0. It’s by no means definitive and probably won’t even be correct in some ways, but it’s a start.

The easier changes ...

Cleanup Routines

These now need to be of type apr status t and return a value of that type. Normally the return value will be
APR SUCCESS unless there is some need to signal an error in the cleanup. Be aware that even though you signal an
error not all code yet checks and acts upon the error.

Initialisation Routines

These should now be renamed to better signify where they sit in the overall process. So the name gets a small change
from mmap init to mmap post config. The arguments passed have undergone a radical change and now look
like

• apr pool t *p

• apr pool t *plog

• apr pool t *ptemp

• server rec *s

Data Types

A lot of the data types have been moved into the APR24. This means that some have had a name change, such as the
one shown above. The following is a brief list of some of the changes that you are likely to have to make.

• pool becomes apr pool t

• table becomes apr table t

The messier changes...

Register Hooks

The new architecture uses a series of hooks to provide for calling your functions. These you’ll need to add to your
module by way of a new function, static void register hooks(void). The function is really reasonably
straightforward once you understand what needs to be done. Each function that needs calling at some stage in the
processing of a request needs to be registered, handlers do not. There are a number of phases where functions can be
added, and for each you can specify with a high degree of control the relative order that the function will be called in.

This is the code that was added to mod mmap static:

24http://apr.apache.org/

http://apr.apache.org/

11.7. CONVERTING MODULES FROM APACHE 1.3 TO APACHE 2.0 991

static void register_hooks(void)
{

static const char * const aszPre[]={ "http_core.c",NULL };
ap_hook_post_config(mmap_post_config,NULL,NULL,HOOK_MIDDLE);
ap_hook_translate_name(mmap_static_xlat,aszPre,NULL,HOOK_LAST);

};

This registers 2 functions that need to be called, one in the post config stage (virtually every module will need
this one) and one for the translate name phase. note that while there are different function names the format of
each is identical. So what is the format?

ap hook phase name(function name, predecessors, successors, position);

There are 3 hook positions defined...

• HOOK FIRST

• HOOK MIDDLE

• HOOK LAST

To define the position you use the position and then modify it with the predecessors and successors. Each of the
modifiers can be a list of functions that should be called, either before the function is run (predecessors) or after the
function has run (successors).

In the mod mmap static case I didn’t care about the post config stage, but the mmap static xlat must
be called after the core module had done its name translation, hence the use of the aszPre to define a modifier to the
position HOOK LAST.

Module Definition

There are now a lot fewer stages to worry about when creating your module definition. The old definition looked like

module MODULE_VAR_EXPORT module_name_module =
{

STANDARD_MODULE_STUFF,
/* initializer */
/* dir config creater */
/* dir merger --- default is to override */
/* server config */
/* merge server config */
/* command handlers */
/* handlers */
/* filename translation */
/* check_user_id */
/* check auth */
/* check access */
/* type_checker */
/* fixups */
/* logger */
/* header parser */
/* child_init */
/* child_exit */
/* post read-request */

};

992 CHAPTER 11. DEVELOPER DOCUMENTATION

The new structure is a great deal simpler...

module MODULE_VAR_EXPORT module_name_module =
{

STANDARD20_MODULE_STUFF,
/* create per-directory config structures */
/* merge per-directory config structures */
/* create per-server config structures */
/* merge per-server config structures */
/* command handlers */
/* handlers */
/* register hooks */

};

Some of these read directly across, some don’t. I’ll try to summarise what should be done below.

The stages that read directly across :

/* dir config creater */ /* create per-directory config structures */

/* server config */ /* create per-server config structures */

/* dir merger */ /* merge per-directory config structures */

/* merge server config */ /* merge per-server config structures */

/* command table */ /* command apr table t */

/* handlers */ /* handlers */

The remainder of the old functions should be registered as hooks. There are the following hook stages defined so far...

ap hook pre config do any setup required prior to processing configuration directives

ap hook check config review configuration directive interdependencies

ap hook test config executes only with -t option

ap hook open logs open any specified logs

ap hook post config this is where the old init routines get registered

ap hook http method retrieve the http method from a request. (legacy)

ap hook auth checker check if the resource requires authorization

ap hook access checker check for module-specific restrictions

ap hook check user id check the user-id and password

ap hook default port retrieve the default port for the server

ap hook pre connection do any setup required just before processing, but after accepting

ap hook process connection run the correct protocol

ap hook child init call as soon as the child is started

ap hook create request ??

11.7. CONVERTING MODULES FROM APACHE 1.3 TO APACHE 2.0 993

ap hook fixups last chance to modify things before generating content

ap hook handler generate the content

ap hook header parser lets modules look at the headers, not used by most modules, because they use
post read request for this

ap hook insert filter to insert filters into the filter chain

ap hook log transaction log information about the request

ap hook optional fn retrieve retrieve any functions registered as optional

ap hook post read request called after reading the request, before any other phase

ap hook quick handler called before any request processing, used by cache modules.

ap hook translate name translate the URI into a filename

ap hook type checker determine and/or set the doc type

994 CHAPTER 11. DEVELOPER DOCUMENTATION

11.8 Request Processing in the Apache HTTP Server 2.x

! Warning
Warning - this is a first (fast) draft that needs further revision!

Several changes in 2.0 and above affect the internal request processing mechanics. Module authors need to be aware
of these changes so they may take advantage of the optimizations and security enhancements.

The first major change is to the subrequest and redirect mechanisms. There were a number of different code paths in
the Apache HTTP Server 1.3 to attempt to optimize subrequest or redirect behavior. As patches were introduced to
2.0, these optimizations (and the server behavior) were quickly broken due to this duplication of code. All duplicate
code has been folded back into ap process request internal() to prevent the code from falling out of sync
again.

This means that much of the existing code was ’unoptimized’. It is the Apache HTTP Project’s first goal to create
a robust and correct implementation of the HTTP server RFC. Additional goals include security, scalability and op-
timization. New methods were sought to optimize the server (beyond the performance of 1.3) without introducing
fragile or insecure code.

The Request Processing Cycle

All requests pass through ap process request internal() in request.c, including subrequests and redi-
rects. If a module doesn’t pass generated requests through this code, the author is cautioned that the module may be
broken by future changes to request processing.

To streamline requests, the module author can take advantage of the hooks offered to drop out of the request cycle
early, or to bypass core hooks which are irrelevant (and costly in terms of CPU.)

The Request Parsing Phase

Unescapes the URL

The request’s parsed uri path is unescaped, once and only once, at the beginning of internal request processing.

This step is bypassed if the proxyreq flag is set, or the parsed uri.path element is unset. The module has no
further control of this one-time unescape operation, either failing to unescape or multiply unescaping the URL leads
to security repercussions.

Strips Parent and This Elements from the URI

All /../ and /./ elements are removed by ap getparents(). This helps to ensure the path is (nearly) absolute
before the request processing continues.

This step cannot be bypassed.

Initial URI Location Walk

Every request is subject to an ap location walk() call. This ensures that <LOCATION> sections are consis-
tently enforced for all requests. If the request is an internal redirect or a sub-request, it may borrow some or all of
the processing from the previous or parent request’s ap location walk, so this step is generally very efficient after
processing the main request.

11.8. REQUEST PROCESSING IN THE APACHE HTTP SERVER 2.X 995

translate name

Modules can determine the file name, or alter the given URI in this step. For example, MOD VHOST ALIAS will
translate the URI’s path into the configured virtual host, MOD ALIAS will translate the path to an alias path, and if the
request falls back on the core, the DOCUMENTROOT is prepended to the request resource.

If all modules DECLINE this phase, an error 500 is returned to the browser, and a "couldn’t translate name" error is
logged automatically.

Hook: map to storage

After the file or correct URI was determined, the appropriate per-dir configurations are merged together. For example,
MOD PROXY compares and merges the appropriate <PROXY> sections. If the URI is nothing more than a local
(non-proxy) TRACE request, the core handles the request and returns DONE. If no module answers this hook with OK
or DONE, the core will run the request filename against the <DIRECTORY> and <FILES> sections. If the request
’filename’ isn’t an absolute, legal filename, a note is set for later termination.

URI Location Walk

Every request is hardened by a second ap location walk() call. This reassures that a translated request is still
subjected to the configured <LOCATION> sections. The request again borrows some or all of the processing from its
previous location walk above, so this step is almost always very efficient unless the translated URI mapped to a
substantially different path or Virtual Host.

Hook: header parser

The main request then parses the client’s headers. This prepares the remaining request processing steps to better serve
the client’s request.

The Security Phase

Needs Documentation. Code is:

if ((access_status = ap_run_access_checker(r)) != 0) {
return decl_die(access_status, "check access", r);

}

if ((access_status = ap_run_check_user_id(r)) != 0) {
return decl_die(access_status, "check user", r);

}

if ((access_status = ap_run_auth_checker(r)) != 0) {
return decl_die(access_status, "check authorization", r);

}

The Preparation Phase

Hook: type checker

The modules have an opportunity to test the URI or filename against the target resource, and set mime information
for the request. Both MOD MIME and MOD MIME MAGIC use this phase to compare the file name or contents against

996 CHAPTER 11. DEVELOPER DOCUMENTATION

the administrator’s configuration and set the content type, language, character set and request handler. Some modules
may set up their filters or other request handling parameters at this time.

If all modules DECLINE this phase, an error 500 is returned to the browser, and a "couldn’t find types" error is logged
automatically.

Hook: fixups

Many modules are ’trounced’ by some phase above. The fixups phase is used by modules to ’reassert’ their ownership
or force the request’s fields to their appropriate values. It isn’t always the cleanest mechanism, but occasionally it’s
the only option.

The Handler Phase

This phase is not part of the processing in ap process request internal(). Many modules pre-
pare one or more subrequests prior to creating any content at all. After the core, or a module calls
ap process request internal() it then calls ap invoke handler() to generate the request.

Hook: insert filter

Modules that transform the content in some way can insert their values and override existing filters, such that if the
user configured a more advanced filter out-of-order, then the module can move its order as need be. There is no result
code, so actions in this hook better be trusted to always succeed.

Hook: handler

The module finally has a chance to serve the request in its handler hook. Note that not every prepared request is sent to
the handler hook. Many modules, such as MOD AUTOINDEX, will create subrequests for a given URI, and then never
serve the subrequest, but simply lists it for the user. Remember not to put required teardown from the hooks above
into this module, but register pool cleanups against the request pool to free resources as required.

11.9. HOW FILTERS WORK IN APACHE 2.0 997

11.9 How filters work in Apache 2.0

! Warning
This is a cut ’n paste job from an email (<022501c1c529$f63a9550$7f00000a@KOJ>) and
only reformatted for better readability. It’s not up to date but may be a good start for further
research.

Filter Types

There are three basic filter types (each of these is actually broken down into two categories, but that comes later).

CONNECTION Filters of this type are valid for the lifetime of this connection. (AP FTYPE CONNECTION,
AP FTYPE NETWORK)

PROTOCOL Filters of this type are valid for the lifetime of this request from the point of view of the client, this
means that the request is valid from the time that the request is sent until the time that the response is received.
(AP FTYPE PROTOCOL, AP FTYPE TRANSCODE)

RESOURCE Filters of this type are valid for the time that this content is used to satisfy a request. For simple requests,
this is identical to PROTOCOL, but internal redirects and sub-requests can change the content without ending
the request. (AP FTYPE RESOURCE, AP FTYPE CONTENT SET)

It is important to make the distinction between a protocol and a resource filter. A resource filter is tied to a specific
resource, it may also be tied to header information, but the main binding is to a resource. If you are writing a filter and
you want to know if it is resource or protocol, the correct question to ask is: "Can this filter be removed if the request
is redirected to a different resource?" If the answer is yes, then it is a resource filter. If it is no, then it is most likely
a protocol or connection filter. I won’t go into connection filters, because they seem to be well understood. With this
definition, a few examples might help:

Byterange We have coded it to be inserted for all requests, and it is removed if not used. Because this filter is active
at the beginning of all requests, it can not be removed if it is redirected, so this is a protocol filter.

http header This filter actually writes the headers to the network. This is obviously a required filter (except in the
asis case which is special and will be dealt with below) and so it is a protocol filter.

Deflate The administrator configures this filter based on which file has been requested. If we do an internal redirect
from an autoindex page to an index.html page, the deflate filter may be added or removed based on config, so
this is a resource filter.

The further breakdown of each category into two more filter types is strictly for ordering. We could remove it, and
only allow for one filter type, but the order would tend to be wrong, and we would need to hack things to make it work.
Currently, the RESOURCE filters only have one filter type, but that should change.

How are filters inserted?

This is actually rather simple in theory, but the code is complex. First of all, it is important that
everybody realize that there are three filter lists for each request, but they are all concatenated to-
gether. So, the first list is r->output filters, then r->proto output filters, and finally
r->connection->output filters. These correspond to the RESOURCE, PROTOCOL, and CONNECTION
filters respectively. The problem previously, was that we used a singly linked list to create the filter stack, and
we started from the "correct" location. This means that if I had a RESOURCE filter on the stack, and I added a

998 CHAPTER 11. DEVELOPER DOCUMENTATION

CONNECTION filter, the CONNECTION filter would be ignored. This should make sense, because we would insert the
connection filter at the top of the c->output filters list, but the end of r->output filters pointed to the
filter that used to be at the front of c->output filters. This is obviously wrong. The new insertion code uses
a doubly linked list. This has the advantage that we never lose a filter that has been inserted. Unfortunately, it comes
with a separate set of headaches.

The problem is that we have two different cases were we use subrequests. The first is to insert more data into a
response. The second is to replace the existing response with an internal redirect. These are two different cases and
need to be treated as such.

In the first case, we are creating the subrequest from within a handler or filter. This means that the next filter should
be passed to make sub request function, and the last resource filter in the sub-request will point to the next filter
in the main request. This makes sense, because the sub-request’s data needs to flow through the same set of filters as
the main request. A graphical representation might help:

Default_handler --> includes_filter --> byterange --> ...

If the includes filter creates a sub request, then we don’t want the data from that sub-request to go through the includes
filter, because it might not be SSI data. So, the subrequest adds the following:

Default_handler --> includes_filter -/-> byterange --> ...
/

Default_handler --> sub_request_core

What happens if the subrequest is SSI data? Well, that’s easy, the includes filter is a resource filter, so it will
be added to the sub request in between the Default handler and the sub request core filter.

The second case for sub-requests is when one sub-request is going to become the real request. This happens whenever
a sub-request is created outside of a handler or filter, and NULL is passed as the next filter to the make sub request
function.

In this case, the resource filters no longer make sense for the new request, because the resource has changed. So,
instead of starting from scratch, we simply point the front of the resource filters for the sub-request to the front of the
protocol filters for the old request. This means that we won’t lose any of the protocol filters, neither will we try to send
this data through a filter that shouldn’t see it.

The problem is that we are using a doubly-linked list for our filter stacks now. But, you should notice that it is possible
for two lists to intersect in this model. So, you do you handle the previous pointer? This is a very difficult question
to answer, because there is no "right" answer, either method is equally valid. I looked at why we use the previous
pointer. The only reason for it is to allow for easier addition of new servers. With that being said, the solution I chose
was to make the previous pointer always stay on the original request.

This causes some more complex logic, but it works for all cases. My concern in having it move to the sub-request, is
that for the more common case (where a sub-request is used to add data to a response), the main filter chain would be
wrong. That didn’t seem like a good idea to me.

Asis

The final topic. :-) Mod Asis is a bit of a hack, but the handler needs to remove all filters except for connection filters,
and send the data. If you are using MOD ASIS, all other bets are off.

11.9. HOW FILTERS WORK IN APACHE 2.0 999

Explanations

The absolutely last point is that the reason this code was so hard to get right, was because we had hacked so much
to force it to work. I wrote most of the hacks originally, so I am very much to blame. However, now that the
code is right, I have started to remove some hacks. Most people should have seen that the reset filters and
add required filters functions are gone. Those inserted protocol level filters for error conditions, in fact, both
functions did the same thing, one after the other, it was really strange. Because we don’t lose protocol filters for
error cases any more, those hacks went away. The HTTP HEADER, Content-length, and Byterange filters are
all added in the insert filters phase, because if they were added earlier, we had some interesting interactions.
Now, those could all be moved to be inserted with the HTTP IN, CORE, and CORE IN filters. That would make the
code easier to follow.

1000 CHAPTER 11. DEVELOPER DOCUMENTATION

11.10 Guide to writing output filters

There are a number of common pitfalls encountered when writing output filters; this page aims to document best
practice for authors of new or existing filters.

This document is applicable to both version 2.0 and version 2.2 of the Apache HTTP Server; it specifically targets
RESOURCE-level or CONTENT SET-level filters though some advice is generic to all types of filter.

Filters and bucket brigades

Each time a filter is invoked, it is passed a bucket brigade, containing a sequence of buckets which represent both data
content and metadata. Every bucket has a bucket type; a number of bucket types are defined and used by the httpd
core modules (and the apr-util library which provides the bucket brigade interface), but modules are free to define
their own types.

=⇒Output filters must be prepared to process buckets of non-standard types; with a few exceptions,
a filter need not care about the types of buckets being filtered.

A filter can tell whether a bucket represents either data or metadata using the APR BUCKET IS METADATA macro.
Generally, all metadata buckets should be passed down the filter chain by an output filter. Filters may transform, delete,
and insert data buckets as appropriate.

There are two metadata bucket types which all filters must pay attention to: the EOS bucket type, and the FLUSH
bucket type. An EOS bucket indicates that the end of the response has been reached and no further buckets need be
processed. A FLUSH bucket indicates that the filter should flush any buffered buckets (if applicable) down the filter
chain immediately.

=⇒FLUSH buckets are sent when the content generator (or an upstream filter) knows that there
may be a delay before more content can be sent. By passing FLUSH buckets down the filter
chain immediately, filters ensure that the client is not kept waiting for pending data longer than
necessary.

Filters can create FLUSH buckets and pass these down the filter chain if desired. Generating FLUSH buckets unnec-
essarily, or too frequently, can harm network utilisation since it may force large numbers of small packets to be sent,
rather than a small number of larger packets. The section on Non-blocking bucket reads covers a case where filters are
encouraged to generate FLUSH buckets.

Example bucket brigade
HEAP FLUSH FILE EOS

This shows a bucket brigade which may be passed to a filter; it contains two metadata buckets (FLUSH and EOS), and
two data buckets (HEAP and FILE).

Filter invocation

For any given request, an output filter might be invoked only once and be given a single brigade representing the entire
response. It is also possible that the number of times a filter is invoked for a single response is proportional to the size
of the content being filtered, with the filter being passed a brigade containing a single bucket each time. Filters must
operate correctly in either case.

! An output filter which allocates long-lived memory every time it is invoked may consume
memory proportional to response size. Output filters which need to allocate memory should
do so once per response; see Maintaining state below.

11.10. GUIDE TO WRITING OUTPUT FILTERS 1001

An output filter can distinguish the final invocation for a given response by the presence of an EOS bucket in the
brigade. Any buckets in the brigade after an EOS should be ignored.

An output filter should never pass an empty brigade down the filter chain. To be defensive, filters should be prepared to
accept an empty brigade, and should return success without passing this brigade on down the filter chain. The handling
of an empty brigade should have no side effects (such as changing any state private to the filter).

How to handle an empty brigade

apr_status_t dummy_filter(ap_filter_t *f, apr_bucket_brigade *bb)
{

if (APR_BRIGADE_EMPTY(bb)) {
return APR_SUCCESS;

}
....

Brigade structure

A bucket brigade is a doubly-linked list of buckets. The list is terminated (at both ends) by a sentinel which can
be distinguished from a normal bucket by comparing it with the pointer returned by APR BRIGADE SENTINEL.
The list sentinel is in fact not a valid bucket structure; any attempt to call normal bucket functions (such as
apr bucket read) on the sentinel will have undefined behaviour (i.e. will crash the process).

There are a variety of functions and macros for traversing and manipulating bucket brigades; see the apr buckets.h25

header for complete coverage. Commonly used macros include:

APR BRIGADE FIRST(bb) returns the first bucket in brigade bb

APR BRIGADE LAST(bb) returns the last bucket in brigade bb

APR BUCKET NEXT(e) gives the next bucket after bucket e

APR BUCKET PREV(e) gives the bucket before bucket e

The apr bucket brigade structure itself is allocated out of a pool, so if a filter creates a new brigade, it must en-
sure that memory use is correctly bounded. A filter which allocates a new brigade out of the request pool (r->pool)
on every invocation, for example, will fall foul of the warning above concerning memory use. Such a filter should
instead create a brigade on the first invocation per request, and store that brigade in its state structure.

! It is generally never advisable to use apr brigade destroy to "destroy" a brigade un-
less you know for certain that the brigade will never be used again, even then, it should be
used rarely. The memory used by the brigade structure will not be released by calling this
function (since it comes from a pool), but the associated pool cleanup is unregistered. Using
apr brigade destroy can in fact cause memory leaks; if a "destroyed" brigade contains
buckets when its containing pool is destroyed, those buckets will not be immediately destroyed.
In general, filters should use apr brigade cleanup in preference to
apr brigade destroy.

25http://apr.apache.org/docs/apr-util/trunk/group a p r util bucket brigades.html

http://apr.apache.org/docs/apr-util/trunk/group___a_p_r___util___bucket___brigades.html

1002 CHAPTER 11. DEVELOPER DOCUMENTATION

Processing buckets

When dealing with non-metadata buckets, it is important to understand that the "apr bucket *" object is an
abstract representation of data:

1. The amount of data represented by the bucket may or may not have a determinate length; for a bucket which rep-
resents data of indeterminate length, the ->length field is set to the value (apr size t)-1. For example,
buckets of the PIPE bucket type have an indeterminate length; they represent the output from a pipe.

2. The data represented by a bucket may or may not be mapped into memory. The FILE bucket type, for example,
represents data stored in a file on disk.

Filters read the data from a bucket using the apr bucket read function. When this function is invoked, the bucket
may morph into a different bucket type, and may also insert a new bucket into the bucket brigade. This must happen
for buckets which represent data not mapped into memory.

To give an example; consider a bucket brigade containing a single FILE bucket representing an entire file, 24 kilobytes
in size:

FILE(0K-24K)

When this bucket is read, it will read a block of data from the file, morph into a HEAP bucket to represent that data,
and return the data to the caller. It also inserts a new FILE bucket representing the remainder of the file; after the
apr bucket read call, the brigade looks like:

HEAP(8K) FILE(8K-24K)

Filtering brigades

The basic function of any output filter will be to iterate through the passed-in brigade and transform (or simply ex-
amine) the content in some manner. The implementation of the iteration loop is critical to producing a well-behaved
output filter.

Taking an example which loops through the entire brigade as follows:

Bad output filter – do not imitate!

apr_bucket *e = APR_BRIGADE_FIRST(bb);
const char *data;
apr_size_t length;

while (e != APR_BRIGADE_SENTINEL(bb)) {
apr_bucket_read(e, &data, &length, APR_BLOCK_READ);
e = APR_BUCKET_NEXT(e);

}

return ap_pass_brigade(bb);

The above implementation would consume memory proportional to content size. If passed a FILE bucket, for exam-
ple, the entire file contents would be read into memory as each apr bucket read call morphed a FILE bucket into
a HEAP bucket.

In contrast, the implementation below will consume a fixed amount of memory to filter any brigade; a temporary
brigade is needed and must be allocated only once per response, see the Maintaining state section.

11.10. GUIDE TO WRITING OUTPUT FILTERS 1003

Better output filter

apr_bucket *e;
const char *data;
apr_size_t length;

while ((e = APR_BRIGADE_FIRST(bb)) != APR_BRIGADE_SENTINEL(bb)) {
rv = apr_bucket_read(e, &data, &length, APR_BLOCK_READ);
if (rv) ...;
/* Remove bucket e from bb. */
APR_BUCKET_REMOVE(e);
/* Insert it into temporary brigade. */
APR_BRIGADE_INSERT_HEAD(tmpbb, e);
/* Pass brigade downstream. */
rv = ap_pass_brigade(f->next, tmpbb);
if (rv) ...;
apr_brigade_cleanup(tmpbb);

}

Maintaining state

A filter which needs to maintain state over multiple invocations per response can use the ->ctx field of its
ap filter t structure. It is typical to store a temporary brigade in such a structure, to avoid having to allocate
a new brigade per invocation as described in the Brigade structure section.

Example code to maintain filter state

struct dummy_state {
apr_bucket_brigade *tmpbb;
int filter_state;
...

};

apr_status_t dummy_filter(ap_filter_t *f, apr_bucket_brigade *bb)
{

struct dummy_state *state;

state = f->ctx;
if (state == NULL) {

/* First invocation for this response: initialise state structure.

*/
f->ctx = state = apr_palloc(f->r->pool, sizeof *state);

state->tmpbb = apr_brigade_create(f->r->pool, f->c->bucket_alloc);
state->filter_state = ...;

}
...

Buffering buckets

If a filter decides to store buckets beyond the duration of a single filter function invocation (for example storing them
in its ->ctx state structure), those buckets must be set aside. This is necessary because some bucket types provide

1004 CHAPTER 11. DEVELOPER DOCUMENTATION

buckets which represent temporary resources (such as stack memory) which will fall out of scope as soon as the filter
chain completes processing the brigade.

To setaside a bucket, the apr bucket setaside function can be called. Not all bucket types can be setaside, but
if successful, the bucket will have morphed to ensure it has a lifetime at least as long as the pool given as an argument
to the apr bucket setaside function.

Alternatively, the ap save brigade function can be used, which will move all the buckets into a separate brigade
containing buckets with a lifetime as long as the given pool argument. This function must be used with care, taking
into account the following points:

1. On return, ap save brigade guarantees that all the buckets in the returned brigade will represent data
mapped into memory. If given an input brigade containing, for example, a PIPE bucket, ap save brigade
will consume an arbitrary amount of memory to store the entire output of the pipe.

2. When ap save brigade reads from buckets which cannot be setaside, it will always perform blocking reads,
removing the opportunity to use Non-blocking bucket reads.

3. If ap save brigade is used without passing a non-NULL "saveto" (destination) brigade parameter, the
function will create a new brigade, which may cause memory use to be proportional to content size as described
in the Brigade structure section.

! Filters must ensure that any buffered data is processed and passed down the filter chain during
the last invocation for a given response (a brigade containing an EOS bucket). Otherwise such
data will be lost.

Non-blocking bucket reads

The apr bucket read function takes an apr read type e argument which determines whether a blocking or
non-blocking read will be performed from the data source. A good filter will first attempt to read from every data
bucket using a non-blocking read; if that fails with APR EAGAIN, then send a FLUSH bucket down the filter chain,
and retry using a blocking read.

This mode of operation ensures that any filters further down the filter chain will flush any buffered buckets if a slow
content source is being used.

A CGI script is an example of a slow content source which is implemented as a bucket type. MOD CGI will send PIPE
buckets which represent the output from a CGI script; reading from such a bucket will block when waiting for the CGI
script to produce more output.

11.10. GUIDE TO WRITING OUTPUT FILTERS 1005

Example code using non-blocking bucket reads

apr_bucket *e;
apr_read_type_e mode = APR_NONBLOCK_READ;

while ((e = APR_BRIGADE_FIRST(bb)) != APR_BRIGADE_SENTINEL(bb)) {
apr_status_t rv;

rv = apr_bucket_read(e, &data, &length, mode);
if (rv == APR_EAGAIN && mode == APR_NONBLOCK_READ) {

/* Pass down a brigade containing a flush bucket: */
APR_BRIGADE_INSERT_TAIL(tmpbb, apr_bucket_flush_create(...));
rv = ap_pass_brigade(f->next, tmpbb);
apr_brigade_cleanup(tmpbb);
if (rv != APR_SUCCESS) return rv;

/* Retry, using a blocking read. */
mode = APR_BLOCK_READ;
continue;

} else if (rv != APR_SUCCESS) {
/* handle errors */

}

/* Next time, try a non-blocking read first. */
mode = APR_NONBLOCK_READ;
...

}

Ten rules for output filters

In summary, here is a set of rules for all output filters to follow:

1. Output filters should not pass empty brigades down the filter chain, but should be tolerant of being passed empty
brigades.

2. Output filters must pass all metadata buckets down the filter chain; FLUSH buckets should be respected by
passing any pending or buffered buckets down the filter chain.

3. Output filters should ignore any buckets following an EOS bucket.

4. Output filters must process a fixed amount of data at a time, to ensure that memory consumption is not propor-
tional to the size of the content being filtered.

5. Output filters should be agnostic with respect to bucket types, and must be able to process buckets of unfamiliar
type.

6. After calling ap pass brigade to pass a brigade down the filter chain, output filters should call
apr brigade cleanup to ensure the brigade is empty before reusing that brigade structure; output filters
should never use apr brigade destroy to "destroy" brigades.

7. Output filters must setaside any buckets which are preserved beyond the duration of the filter function.

8. Output filters must not ignore the return value of ap pass brigade, and must return appropriate errors back
up the filter chain.

9. Output filters must only create a fixed number of bucket brigades for each response, rather than one per invoca-
tion.

1006 CHAPTER 11. DEVELOPER DOCUMENTATION

10. Output filters should first attempt non-blocking reads from each data bucket, and send a FLUSH bucket down
the filter chain if the read blocks, before retrying with a blocking read.

11.11. APACHE HTTP SERVER 2.X THREAD SAFETY ISSUES 1007

11.11 Apache HTTP Server 2.x Thread Safety Issues

When using any of the threaded mpms in the Apache HTTP Server 2.x it is important that every function called from
Apache be thread safe. When linking in 3rd party extensions it can be difficult to determine whether the resulting
server will be thread safe. Casual testing generally won’t tell you this either as thread safety problems can lead to
subtle race conditions that may only show up in certain conditions under heavy load.

Global and static variables

When writing your module or when trying to determine if a module or 3rd party library is thread safe there are some
common things to keep in mind.

First, you need to recognize that in a threaded model each individual thread has its own program counter, stack and
registers. Local variables live on the stack, so those are fine. You need to watch out for any static or global variables.
This doesn’t mean that you are absolutely not allowed to use static or global variables. There are times when you
actually want something to affect all threads, but generally you need to avoid using them if you want your code to be
thread safe.

In the case where you have a global variable that needs to be global and accessed by all threads, be very careful
when you update it. If, for example, it is an incrementing counter, you need to atomically increment it to avoid race
conditions with other threads. You do this using a mutex (mutual exclusion). Lock the mutex, read the current value,
increment it and write it back and then unlock the mutex. Any other thread that wants to modify the value has to first
check the mutex and block until it is cleared.

If you are using APR26, have a look at the apr atomic * functions and the apr thread mutex * functions.

errno

This is a common global variable that holds the error number of the last error that occurred. If one thread calls a low-
level function that sets errno and then another thread checks it, we are bleeding error numbers from one thread into
another. To solve this, make sure your module or library defines REENTRANT or is compiled with -D REENTRANT.
This will make errno a per-thread variable and should hopefully be transparent to the code. It does this by doing
something like this:

#define errno (*(errno location()))

which means that accessing errno will call errno location() which is provided by the libc. Setting
REENTRANT also forces redefinition of some other functions to their * r equivalents and sometimes changes

the common getc/putc macros into safer function calls. Check your libc documentation for specifics. Instead
of, or in addition to REENTRANT the symbols that may affect this are POSIX C SOURCE, THREAD SAFE,
SVID SOURCE, and BSD SOURCE.

Common standard troublesome functions

Not only do things have to be thread safe, but they also have to be reentrant. strtok() is an obvious one. You call
it the first time with your delimiter which it then remembers and on each subsequent call it returns the next token.
Obviously if multiple threads are calling it you will have a problem. Most systems have a reentrant version of of the
function called strtok r() where you pass in an extra argument which contains an allocated char * which the
function will use instead of its own static storage for maintaining the tokenizing state. If you are using APR27 you can
use apr strtok().

26http://apr.apache.org/
27http://apr.apache.org/

http://apr.apache.org/
http://apr.apache.org/

1008 CHAPTER 11. DEVELOPER DOCUMENTATION

crypt() is another function that tends to not be reentrant, so if you run across calls to that function in a library,
watch out. On some systems it is reentrant though, so it is not always a problem. If your system has crypt r()
chances are you should be using that, or if possible simply avoid the whole mess by using md5 instead.

Common 3rd Party Libraries

The following is a list of common libraries that are used by 3rd party Apache modules. You can check to see if your
module is using a potentially unsafe library by using tools such as ldd(1) and nm(1). For PHP28, for example, try
this:

% ldd libphp4.so
libsablot.so.0 => /usr/local/lib/libsablot.so.0 (0x401f6000)
libexpat.so.0 => /usr/lib/libexpat.so.0 (0x402da000)
libsnmp.so.0 => /usr/lib/libsnmp.so.0 (0x402f9000)
libpdf.so.1 => /usr/local/lib/libpdf.so.1 (0x40353000)
libz.so.1 => /usr/lib/libz.so.1 (0x403e2000)
libpng.so.2 => /usr/lib/libpng.so.2 (0x403f0000)
libmysqlclient.so.11 => /usr/lib/libmysqlclient.so.11 (0x40411000)
libming.so => /usr/lib/libming.so (0x40449000)
libm.so.6 => /lib/libm.so.6 (0x40487000)
libfreetype.so.6 => /usr/lib/libfreetype.so.6 (0x404a8000)
libjpeg.so.62 => /usr/lib/libjpeg.so.62 (0x404e7000)
libcrypt.so.1 => /lib/libcrypt.so.1 (0x40505000)
libssl.so.2 => /lib/libssl.so.2 (0x40532000)
libcrypto.so.2 => /lib/libcrypto.so.2 (0x40560000)
libresolv.so.2 => /lib/libresolv.so.2 (0x40624000)
libdl.so.2 => /lib/libdl.so.2 (0x40634000)
libnsl.so.1 => /lib/libnsl.so.1 (0x40637000)
libc.so.6 => /lib/libc.so.6 (0x4064b000)

/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x80000000)

In addition to these libraries you will need to have a look at any libraries linked statically into the module. You can
use nm(1) to look for individual symbols in the module.

Library List

Please drop a note to dev@httpd.apache.org29 if you have additions or corrections to this list.

Library Version Thread Safe? Notes
ASpell/PSpella

ahttp://aspell.sourceforge.net/

?

Berkeley DBa

ahttp://www.sleepycat.com/

3.x, 4.x Yes Be careful about sharing a con-
nection across threads.

bzip2a

ahttp://sources.redhat.com/bzip2/index.html

Yes Both low-level and high-level
APIs are thread-safe. However,
high-level API requires thread-
safe access to errno.

cdba

ahttp://cr.yp.to/cdb.html

?

28http://www.php.net/
29http://httpd.apache.org/lists.html#http-dev

http://aspell.sourceforge.net/
http://www.sleepycat.com/
http://sources.redhat.com/bzip2/index.html
http://cr.yp.to/cdb.html
http://www.php.net/
http://httpd.apache.org/lists.html#http-dev

11.11. APACHE HTTP SERVER 2.X THREAD SAFETY ISSUES 1009

C-Clienta

ahttp://www.washington.edu/imap/

Perhaps c-client uses strtok()
and gethostbyname()
which are not thread-safe
on most C library imple-
mentations. c-client’s static
data is meant to be shared
across threads. If strtok()
and gethostbyname()
are thread-safe on your OS,
c-client may be thread-safe.

libcrypta

ahttp://www.ijg.org/files/

?

Expata

ahttp://expat.sourceforge.net/

Yes Need a separate parser instance
per thread

FreeTDSa

ahttp://www.freetds.org/

?

FreeTypea

ahttp://www.freetype.org/

?

GD 1.8.xa

ahttp://www.boutell.com/gd/

?

GD 2.0.xa

ahttp://www.boutell.com/gd/

?

gdbma

ahttp://www.gnu.org/software/gdbm/gdbm.html

No Errors returned via a static
gdbm error variable

ImageMagicka

ahttp://www.imagemagick.org/

5.2.2 Yes ImageMagick docs claim it is
thread safe since version 5.2.2
(see Change loga).

ahttp://www.imagemagick.com/www/changelog.html
Imlib2a

ahttp://www.enlightenment.org/p.php?p=about/efl&l=en

?

libjpega

ahttp://www.ijg.org/files/

v6b ?

libmysqlclienta

ahttp://mysql.com

Yes Use mysqlclient r library vari-
ant to ensure thread-safety. For
more information, please read
http://dev.mysql.com/doc/mysql/en/Threaded clients.html.

Minga

ahttp://www.opaque.net/ming/

0.2a ?

Net-SNMPa

ahttp://net-
snmp.sourceforge.net/

5.0.x ?

OpenLDAPa

ahttp://www.openldap.org/

2.1.x Yes Use ldap r library variant to
ensure thread-safety.

OpenSSLa

ahttp://www.openssl.org/

0.9.6g Yes Requires proper usage of
CRYPTO num locks,
CRYPTO set locking callback,
CRYPTO set id callback

liboci8 (Oracle 8+)a

ahttp://www.oracle.com/

8.x,9.x ?

http://www.washington.edu/imap/
http://www.ijg.org/files/
http://expat.sourceforge.net/
http://www.freetds.org/
http://www.freetype.org/
http://www.boutell.com/gd/
http://www.boutell.com/gd/
http://www.gnu.org/software/gdbm/gdbm.html
http://www.imagemagick.org/
http://www.imagemagick.com/www/changelog.html
http://www.enlightenment.org/p.php?p=about/efl&l=en
http://www.ijg.org/files/
http://mysql.com
http://www.opaque.net/ming/
http://net-snmp.sourceforge.net/
http://net-snmp.sourceforge.net/
http://www.openldap.org/
http://www.openssl.org/
http://www.oracle.com/

1010 CHAPTER 11. DEVELOPER DOCUMENTATION

pdfliba

ahttp://pdflib.com/

5.0.x Yes PDFLib docs claim it is
thread safe; changes.txt
indicates it has been par-
tially thread-safe since V1.91:
http://www.pdflib.com/products/pdflib-
family/pdflib/.

libpnga

ahttp://www.libpng.org/pub/png/libpng.html

1.0.x ?

libpnga

ahttp://www.libpng.org/pub/png/libpng.html

1.2.x ?

libpq (PostgreSQL)a

ahttp://www.postgresql.org/docs/8.4/static/libpq-
threading.html

8.x Yes Don’t share connections across
threads and watch out for
crypt() calls

Sablotrona

ahttp://www.gingerall.com/charlie/ga/xml/p sab.xml

0.95 ?

zliba

ahttp://www.gzip.org/zlib/

1.1.4 Yes Relies upon thread-safe zalloc
and zfree functions Default is
to use libc’s calloc/free which
are thread-safe.

http://pdflib.com/
http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html
http://www.postgresql.org/docs/8.4/static/libpq-threading.html
http://www.postgresql.org/docs/8.4/static/libpq-threading.html
http://www.gingerall.com/charlie/ga/xml/p_sab.xml
http://www.gzip.org/zlib/

Chapter 12

Glossary and Index

1011

1012 CHAPTER 12. GLOSSARY AND INDEX

12.1 Glossary

This glossary defines some of the common terminology related to Apache in particular, and web serving in general.
More information on each concept is provided in the links.

Definitions

Access Control The restriction of access to network realms. In an Apache context usually the restriction of access to
certain URLs.
See: Authentication, Authorization, and Access Control (p. 217)

Algorithm An unambiguous formula or set of rules for solving a problem in a finite number of steps. Algorithms for
encryption are usually called Ciphers.

APache eXtension Tool (apxs) A perl script that aids in compiling module sources into Dynamic Shared Objects
(DSOs) and helps install them in the Apache Web server.
See: Manual Page: apxs

Apache Portable Runtime (APR) A set of libraries providing many of the basic interfaces between the server and
the operating system. APR is developed parallel to the Apache HTTP Server as an independent project.
See: Apache Portable Runtime Project1

Authentication The positive identification of a network entity such as a server, a client, or a user.
See: Authentication, Authorization, and Access Control (p. 217)

Certificate A data record used for authenticating network entities such as a server or a client. A certificate contains
X.509 information pieces about its owner (called the subject) and the signing Certification Authority (called the
issuer), plus the owner’s public key and the signature made by the CA. Network entities verify these signatures
using CA certificates.
See: SSL/TLS Encryption (p. 182)

Certificate Signing Request (CSR) An unsigned certificate for submission to a Certification Authority, which signs
it with the Private Key of their CA Certificate. Once the CSR is signed, it becomes a real certificate.
See: SSL/TLS Encryption (p. 182)

Certification Authority (CA) A trusted third party whose purpose is to sign certificates for network entities it has
authenticated using secure means. Other network entities can check the signature to verify that a CA has
authenticated the bearer of a certificate.
See: SSL/TLS Encryption (p. 182)

Cipher An algorithm or system for data encryption. Examples are DES, IDEA, RC4, etc.
See: SSL/TLS Encryption (p. 182)

Ciphertext The result after Plaintext is passed through a Cipher.
See: SSL/TLS Encryption (p. 182)

Common Gateway Interface (CGI) A standard definition for an interface between a web server and an external
program that allows the external program to service requests. There is an Informational RFC2 which covers the
specifics.
See: Dynamic Content with CGI (p. 226)

Configuration Directive See: Directive

Configuration File A text file containing Directives that control the configuration of Apache.
See: Configuration Files (p. 30)

1http://apr.apache.org/
2http://www.ietf.org/rfc/rfc3875

http://apr.apache.org/
http://www.ietf.org/rfc/rfc3875

12.1. GLOSSARY 1013

CONNECT An HTTP method for proxying raw data channels over HTTP. It can be used to encapsulate other proto-
cols, such as the SSL protocol.

Context An area in the configuration files where certain types of directives are allowed.
See: Terms Used to Describe Apache Directives (p. 351)

Digital Signature An encrypted text block that validates a certificate or other file. A Certification Authority creates
a signature by generating a hash of the Public Key embedded in a Certificate, then encrypting the hash with its
own Private Key. Only the CA’s public key can decrypt the signature, verifying that the CA has authenticated
the network entity that owns the Certificate.
See: SSL/TLS Encryption (p. 182)

Directive A configuration command that controls one or more aspects of Apache’s behavior. Directives are placed in
the Configuration File
See: Directive Index (p. 1022)

Dynamic Shared Object (DSO) Modules compiled separately from the Apache httpd binary that can be loaded
on-demand.
See: Dynamic Shared Object Support (p. 65)

Environment Variable (env-variable) Named variables managed by the operating system shell and used to store
information and communicate between programs. Apache also contains internal variables that are referred to as
environment variables, but are stored in internal Apache structures, rather than in the shell environment.
See: Environment Variables in Apache (p. 82)

Export-Crippled Diminished in cryptographic strength (and security) in order to comply with the United States’
Export Administration Regulations (EAR). Export-crippled cryptographic software is limited to a small key
size, resulting in Ciphertext which usually can be decrypted by brute force.
See: SSL/TLS Encryption (p. 182)

Filter A process that is applied to data that is sent or received by the server. Input filters process data sent by the
client to the server, while output filters process documents on the server before they are sent to the client. For
example, the INCLUDES output filter processes documents for Server Side Includes.
See: Filters (p. 100)

Fully-Qualified Domain-Name (FQDN) The unique name of a network entity, consisting of a hostname and a do-
main name that can resolve to an IP address. For example, www is a hostname, example.com is a domain
name, and www.example.com is a fully-qualified domain name.

Handler An internal Apache representation of the action to be performed when a file is called. Generally, files have
implicit handlers, based on the file type. Normally, all files are simply served by the server, but certain file types
are "handled" separately. For example, the cgi-script handler designates files to be processed as CGIs.
See: Apache’s Handler Use (p. 98)

Hash A mathematical one-way, irreversible algorithm generating a string with fixed-length from another string of any
length. Different input strings will usually produce different hashes (depending on the hash function).

Header The part of the HTTP request and response that is sent before the actual content, and that contains meta-
information describing the content.

.htaccess A configuration file that is placed inside the web tree and applies configuration directives to the directory
where it is placed and all sub-directories. Despite its name, this file can hold almost any type of directive, not
just access-control directives.
See: Configuration Files (p. 30)

httpd.conf The main Apache configuration file. The default location is
/usr/local/apache2/conf/httpd.conf, but it may be moved using run-time or compile-
time configuration.
See: Configuration Files (p. 30)

1014 CHAPTER 12. GLOSSARY AND INDEX

HyperText Transfer Protocol (HTTP) The standard transmission protocol used on the World Wide Web. Apache
implements version 1.1 of the protocol, referred to as HTTP/1.1 and defined by RFC 26163.

HTTPS The HyperText Transfer Protocol (Secure), the standard encrypted communication mechanism on the World
Wide Web. This is actually just HTTP over SSL.
See: SSL/TLS Encryption (p. 182)

Method In the context of HTTP, an action to perform on a resource, specified on the request line by the client. Some
of the methods available in HTTP are GET, POST, and PUT.

Message Digest A hash of a message, which can be used to verify that the contents of the message have not been
altered in transit.
See: SSL/TLS Encryption (p. 182)

MIME-type A way to describe the kind of document being transmitted. Its name comes from that fact that its format
is borrowed from the Multipurpose Internet Mail Extensions. It consists of a major type and a minor type,
separated by a slash. Some examples are text/html, image/gif, and application/octet-stream.
In HTTP, the MIME-type is transmitted in the Content-Type header.
See: mod mime (p. 699)

Module An independent part of a program. Much of Apache’s functionality is contained in modules that you can
choose to include or exclude. Modules that are compiled into the Apache httpd binary are called static
modules, while modules that are stored separately and can be optionally loaded at run-time are called dynamic
modules or DSOs. Modules that are included by default are called base modules. Many modules are available
for Apache that are not distributed as part of the Apache HTTP Server tarball. These are referred to as third-
party modules.
See: Module Index (p. 1017)

Module Magic Number (MMN) Module Magic Number is a constant defined in the Apache source code that is
associated with binary compatibility of modules. It is changed when internal Apache structures, function calls
and other significant parts of API change in such a way that binary compatibility cannot be guaranteed any more.
On MMN change, all third party modules have to be at least recompiled, sometimes even slightly changed in
order to work with the new version of Apache.

OpenSSL The Open Source toolkit for SSL/TLS
See http://www.openssl.org/#

Pass Phrase The word or phrase that protects private key files. It prevents unauthorized users from encrypting them.
Usually it’s just the secret encryption/decryption key used for Ciphers.
See: SSL/TLS Encryption (p. 182)

Plaintext The unencrypted text.

Private Key The secret key in a Public Key Cryptography system, used to decrypt incoming messages and sign
outgoing ones.
See: SSL/TLS Encryption (p. 182)

Proxy An intermediate server that sits between the client and the origin server. It accepts requests from clients,
transmits those requests on to the origin server, and then returns the response from the origin server to the
client. If several clients request the same content, the proxy can deliver that content from its cache, rather than
requesting it from the origin server each time, thereby reducing response time.
See: mod proxy (p. 727)

Public Key The publicly available key in a Public Key Cryptography system, used to encrypt messages bound for its
owner and to decrypt signatures made by its owner.
See: SSL/TLS Encryption (p. 182)

3http://ietf.org/rfc/rfc2616.txt

http://ietf.org/rfc/rfc2616.txt

12.1. GLOSSARY 1015

Public Key Cryptography The study and application of asymmetric encryption systems, which use one key for en-
cryption and another for decryption. A corresponding pair of such keys constitutes a key pair. Also called
Asymmetric Cryptography.
See: SSL/TLS Encryption (p. 182)

Regular Expression (Regex) A way of describing a pattern in text - for example, "all the words that begin with the
letter A" or "every 10-digit phone number" or even "Every sentence with two commas in it, and no capital letter
Q". Regular expressions are useful in Apache because they let you apply certain attributes against collections
of files or resources in very flexible ways - for example, all .gif and .jpg files under any "images" directory
could be written as "/images/.*(jpg|gif)$". In places where regular expressions are used to replace
strings, the special variables $1 ... $9 contain backreferences to the grouped parts (in parentheses) of the matched
expression. The special variable $0 contains a backreference to the whole matched expression. To write a literal
dollar sign in a replacement string, it can be escaped with a backslash. Historically, the variable & could be
used as alias for $0 in some places. This is no longer possible since version 2.3.6. Apache uses Perl Compatible
Regular Expressions provided by the PCRE4 library. You can find more documentation about PCRE’s regular
expression syntax at that site, or at Wikipedia5.

Reverse Proxy A proxy server that appears to the client as if it is an origin server. This is useful to hide the real
origin server from the client for security reasons, or to load balance.

Secure Sockets Layer (SSL) A protocol created by Netscape Communications Corporation for general communica-
tion authentication and encryption over TCP/IP networks. The most popular usage is HTTPS, i.e. the HyperText
Transfer Protocol (HTTP) over SSL.
See: SSL/TLS Encryption (p. 182)

Server Name Indication (SNI) An SSL function that allows passing the desired server hostname in the initial SSL
handshake message, so that the web server can select the correct virtual host configuration to use in processing
the SSL handshake. It was added to SSL starting with the TLS extensions, RFC 3546.
See: the SSL FAQ (p. 202) and RFC 35466

Server Side Includes (SSI) A technique for embedding processing directives inside HTML files.
See: Introduction to Server Side Includes (p. 233)

Session The context information of a communication in general.

SSLeay The original SSL/TLS implementation library developed by Eric A. Young

Subrequest Apache provides a subrequest API to modules that allows other filesystem or URL paths to be partially
or fully evaluated by the server. Example consumers of this API are DIRECTORYINDEX, MOD AUTOINDEX,
and MOD INCLUDE.

Symmetric Cryptography The study and application of Ciphers that use a single secret key for both encryption and
decryption operations.
See: SSL/TLS Encryption (p. 182)

Tarball A package of files gathered together using the tar utility. Apache distributions are stored in compressed tar
archives or using pkzip.

Transport Layer Security (TLS) The successor protocol to SSL, created by the Internet Engineering Task Force
(IETF) for general communication authentication and encryption over TCP/IP networks. TLS version 1 is
nearly identical with SSL version 3.
See: SSL/TLS Encryption (p. 182)

4http://www.pcre.org/
5http://en.wikipedia.org/wiki/PCRE
6http://www.ietf.org/rfc/rfc3546.txt

http://www.pcre.org/
http://en.wikipedia.org/wiki/PCRE
http://www.ietf.org/rfc/rfc3546.txt

1016 CHAPTER 12. GLOSSARY AND INDEX

Uniform Resource Locator (URL) The name/address of a resource on the Internet. This is the common in-
formal term for what is formally called a Uniform Resource Identifier. URLs are usually made up
of a scheme, like http or https, a hostname, and a path. A URL for this page might be
http://httpd.apache.org/docs/2.4/glossary.html.

Uniform Resource Identifier (URI) A compact string of characters for identifying an abstract or physical resource.
It is formally defined by RFC 23967. URIs used on the world-wide web are commonly referred to as URLs.

Virtual Hosting Serving multiple websites using a single instance of Apache. IP virtual hosting differentiates be-
tween websites based on their IP address, while name-based virtual hosting uses only the name of the host and
can therefore host many sites on the same IP address.
See: Apache Virtual Host documentation (p. 114)

X.509 An authentication certificate scheme recommended by the International Telecommunication Union (ITU-T)
which is used for SSL/TLS authentication.
See: SSL/TLS Encryption (p. 182)

7http://www.ietf.org/rfc/rfc2396.txt

http://www.ietf.org/rfc/rfc2396.txt

12.2. MODULE INDEX 1017

12.2 Module Index

Below is a list of all of the modules that come as part of the Apache HTTP Server distribution. See also the complete
alphabetical list of all Apache HTTP Server directives (p. 1022) .

See also

• Multi-Processing Modules (MPMs) (p. 80)

• Directive Quick Reference (p. 1022)

Core Features and Multi-Processing Modules

core (p. 354) Core Apache HTTP Server features that are always available

mpm common (p. 910) A collection of directives that are implemented by more than one multi-processing module
(MPM)

event (p. 920) A variant of the WORKER MPM with the goal of consuming threads only for connections with active
processing

mpm netware (p. 923) Multi-Processing Module implementing an exclusively threaded web server optimized for
Novell NetWare

mpmt os2 (p. 925) Hybrid multi-process, multi-threaded MPM for OS/2

prefork (p. 926) Implements a non-threaded, pre-forking web server

mpm winnt (p. 929) Multi-Processing Module optimized for Windows NT.

worker (p. 931) Multi-Processing Module implementing a hybrid multi-threaded multi-process web server

Other Modules

mod access compat (p. 410) Group authorizations based on host (name or IP address)

mod actions (p. 415) Execute CGI scripts based on media type or request method.

mod alias (p. 417) Provides for mapping different parts of the host filesystem in the document tree and for URL
redirection

mod allowmethods (p. 423) Easily restrict what HTTP methods can be used on the server

mod asis (p. 424) Sends files that contain their own HTTP headers

mod auth basic (p. 426) Basic HTTP authentication

mod auth digest (p. 430) User authentication using MD5 Digest Authentication

mod auth form (p. 434) Form authentication

mod authn anon (p. 445) Allows "anonymous" user access to authenticated areas

mod authn core (p. 448) Core Authentication

mod authn dbd (p. 452) User authentication using an SQL database

mod authn dbm (p. 455) User authentication using DBM files

1018 CHAPTER 12. GLOSSARY AND INDEX

mod authn file (p. 457) User authentication using text files

mod authn socache (p. 459) Manages a cache of authentication credentials to relieve the load on backends

mod authnz fcgi (p. 462) Allows a FastCGI authorizer application to handle Apache httpd authentication and autho-
rization

mod authnz ldap (p. 469) Allows an LDAP directory to be used to store the database for HTTP Basic authentication.

mod authz core (p. 487) Core Authorization

mod authz dbd (p. 495) Group Authorization and Login using SQL

mod authz dbm (p. 499) Group authorization using DBM files

mod authz groupfile (p. 502) Group authorization using plaintext files

mod authz host (p. 504) Group authorizations based on host (name or IP address)

mod authz owner (p. 507) Authorization based on file ownership

mod authz user (p. 509) User Authorization

mod autoindex (p. 510) Generates directory indexes, automatically, similar to the Unix ls command or the Win32
dir shell command

mod buffer (p. 522) Support for request buffering

mod cache (p. 523) RFC 2616 compliant HTTP caching filter.

mod cache disk (p. 538) Disk based storage module for the HTTP caching filter.

mod cache socache (p. 542) Shared object cache (socache) based storage module for the HTTP caching filter.

mod cern meta (p. 546) CERN httpd metafile semantics

mod cgi (p. 548) Execution of CGI scripts

mod cgid (p. 551) Execution of CGI scripts using an external CGI daemon

mod charset lite (p. 553) Specify character set translation or recoding

mod data (p. 556) Convert response body into an RFC2397 data URL

mod dav (p. 557) Distributed Authoring and Versioning (WebDAV8) functionality

mod dav fs (p. 560) Filesystem provider for MOD DAV

mod dav lock (p. 561) Generic locking module for MOD DAV

mod dbd (p. 562) Manages SQL database connections

mod deflate (p. 567) Compress content before it is delivered to the client

mod dialup (p. 573) Send static content at a bandwidth rate limit, defined by the various old modem standards

mod dir (p. 574) Provides for "trailing slash" redirects and serving directory index files

mod dumpio (p. 579) Dumps all I/O to error log as desired.

mod echo (p. 581) A simple echo server to illustrate protocol modules

mod env (p. 582) Modifies the environment which is passed to CGI scripts and SSI pages
8http://www.webdav.org/

http://www.webdav.org/

12.2. MODULE INDEX 1019

mod example hooks (p. 584) Illustrates the Apache module API

mod expires (p. 586) Generation of Expires and Cache-Control HTTP headers according to user-specified
criteria

mod ext filter (p. 589) Pass the response body through an external program before delivery to the client

mod file cache (p. 593) Caches a static list of files in memory

mod filter (p. 596) Context-sensitive smart filter configuration module

mod headers (p. 604) Customization of HTTP request and response headers

mod heartbeat (p. 610) Sends messages with server status to frontend proxy

mod heartmonitor (p. 611) Centralized monitor for mod heartbeat origin servers

mod ident (p. 613) RFC 1413 ident lookups

mod imagemap (p. 615) Server-side imagemap processing

mod include (p. 619) Server-parsed html documents (Server Side Includes)

mod info (p. 632) Provides a comprehensive overview of the server configuration

mod isapi (p. 635) ISAPI Extensions within Apache for Windows

mod lbmethod bybusyness (p. 639) Pending Request Counting load balancer scheduler algorithm for
MOD PROXY BALANCER

mod lbmethod byrequests (p. 640) Request Counting load balancer scheduler algorithm for
MOD PROXY BALANCER

mod lbmethod bytraffic (p. 642) Weighted Traffic Counting load balancer scheduler algorithm for
MOD PROXY BALANCER

mod lbmethod heartbeat (p. 643) Heartbeat Traffic Counting load balancer scheduler algorithm for
MOD PROXY BALANCER

mod ldap (p. 644) LDAP connection pooling and result caching services for use by other LDAP modules

mod log config (p. 656) Logging of the requests made to the server

mod log debug (p. 662) Additional configurable debug logging

mod log forensic (p. 664) Forensic Logging of the requests made to the server

mod logio (p. 666) Logging of input and output bytes per request

mod lua (p. 668) Provides Lua hooks into various portions of the httpd request processing

mod macro (p. 695) Provides macros within apache httpd runtime configuration files

mod mime (p. 699) Associates the requested filename’s extensions with the file’s behavior (handlers and filters) and
content (mime-type, language, character set and encoding)

mod mime magic (p. 712) Determines the MIME type of a file by looking at a few bytes of its contents

mod negotiation (p. 716) Provides for content negotiation (p. 68)

mod nw ssl (p. 720) Enable SSL encryption for NetWare

mod privileges (p. 721) Support for Solaris privileges and for running virtual hosts under different user IDs.

1020 CHAPTER 12. GLOSSARY AND INDEX

mod proxy (p. 727) Multi-protocol proxy/gateway server

mod proxy ajp (p. 753) AJP support module for MOD PROXY

mod proxy balancer (p. 762) MOD PROXY extension for load balancing

mod proxy connect (p. 766) MOD PROXY extension for CONNECT request handling

mod proxy express (p. 767) Dynamic mass reverse proxy extension for MOD PROXY

mod proxy fcgi (p. 770) FastCGI support module for MOD PROXY

mod proxy fdpass (p. 773) fdpass external process support module for MOD PROXY

mod proxy ftp (p. 774) FTP support module for MOD PROXY

mod proxy html (p. 777) Rewrite HTML links in to ensure they are addressable from Clients’ networks in a proxy
context.

mod proxy http (p. 783) HTTP support module for MOD PROXY

mod proxy scgi (p. 785) SCGI gateway module for MOD PROXY

mod proxy wstunnel (p. 788) Websockets support module for MOD PROXY

mod ratelimit (p. 789) Bandwidth Rate Limiting for Clients

mod reflector (p. 790) Reflect a request body as a response via the output filter stack.

mod remoteip (p. 791) Replaces the original client IP address for the connection with the useragent IP address list
presented by a proxies or a load balancer via the request headers.

mod reqtimeout (p. 795) Set timeout and minimum data rate for receiving requests

mod request (p. 797) Filters to handle and make available HTTP request bodies

mod rewrite (p. 798) Provides a rule-based rewriting engine to rewrite requested URLs on the fly

mod sed (p. 812) Filter Input (request) and Output (response) content using sed syntax

mod session (p. 814) Session support

mod session cookie (p. 821) Cookie based session support

mod session crypto (p. 824) Session encryption support

mod session dbd (p. 828) DBD/SQL based session support

mod setenvif (p. 833) Allows the setting of environment variables based on characteristics of the request

mod slotmem plain (p. 837) Slot-based shared memory provider.

mod slotmem shm (p. 838) Slot-based shared memory provider.

mod so (p. 839) Loading of executable code and modules into the server at start-up or restart time

mod socache dbm (p. 841) DBM based shared object cache provider.

mod socache dc (p. 842) Distcache based shared object cache provider.

mod socache memcache (p. 843) Memcache based shared object cache provider.

mod socache shmcb (p. 844) shmcb based shared object cache provider.

12.2. MODULE INDEX 1021

mod speling (p. 845) Attempts to correct mistaken URLs by ignoring capitalization, or attempting to correct various
minor misspellings.

mod ssl (p. 847) Strong cryptography using the Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
protocols

mod status (p. 885) Provides information on server activity and performance

mod substitute (p. 887) Perform search and replace operations on response bodies

mod suexec (p. 889) Allows CGI scripts to run as a specified user and Group

mod unique id (p. 890) Provides an environment variable with a unique identifier for each request

mod unixd (p. 892) Basic (required) security for Unix-family platforms.

mod userdir (p. 895) User-specific directories

mod usertrack (p. 897) Clickstream logging of user activity on a site

mod version (p. 900) Version dependent configuration

mod vhost alias (p. 902) Provides for dynamically configured mass virtual hosting

mod watchdog (p. 906) provides infrastructure for other modules to periodically run tasks

mod xml2enc (p. 907) Enhanced charset/internationalisation support for libxml2-based filter modules

1022 CHAPTER 12. GLOSSARY AND INDEX

12.3 Directive Quick Reference

The directive quick reference shows the usage, default, status, and context of each Apache configuration directive. For
more information about each of these, see the Directive Dictionary (p. 351) .

The first column gives the directive name and usage. The second column shows the default value of the directive, if a
default exists. If the default is too large to display, it will be truncated and followed by "+".

The third and fourth columns list the contexts where the directive is allowed and the status of the directive according
to the legend tables below.

/ AcceptFilter protocol accept filter s C
Configures optimizations for a Protocol’s Listener Sockets p. 356
AcceptPathInfo On|Off|Default Default svdh C
Resources accept trailing pathname information p. 357
AccessFileName filename [filename]htaccess sv C
Name of the distributed configuration file p. 358
Action action-type cgi-script [virtual] svdh B
Activates a CGI script for a particular handler or content-type p. 415
AddAlt string file [file] ... svdh B
Alternate text to display for a file, instead of an icon selected by filename p. 512
AddAltByEncoding string MIME-encoding [MIME-encoding] ... svdh B
Alternate text to display for a file instead of an icon selected by MIME-encoding p. 512
AddAltByType string MIME-type [MIME-type] ... svdh B
Alternate text to display for a file, instead of an icon selected by MIME content-type p. 513
AddCharset charset extension [extension] ... svdh B
Maps the given filename extensions to the specified content charset p. 702
AddDefaultCharset On|Off|charset Off svdh C
Default charset parameter to be added when a response content-type is text/plain or text/html p. 358
AddDescription string file [file] ... svdh B
Description to display for a file p. 513
AddEncoding encoding extension [extension] ... svdh B
Maps the given filename extensions to the specified encoding type p. 702
AddHandler handler-name extension [extension] ... svdh B
Maps the filename extensions to the specified handler p. 703
AddIcon icon name [name] ... svdh B
Icon to display for a file selected by name p. 514
AddIconByEncoding icon MIME-encoding [MIME-encoding] ... svdh B
Icon to display next to files selected by MIME content-encoding p. 514
AddIconByType icon MIME-type [MIME-type] ... svdh B
Icon to display next to files selected by MIME content-type p. 515
AddInputFilter filter[;filter...] extension [extension]
...

svdh B

Maps filename extensions to the filters that will process client requests p. 703
AddLanguage language-tag extension [extension] ... svdh B
Maps the given filename extension to the specified content language p. 704
AddModuleInfo module-name string sv E
Adds additional information to the module information displayed by the server-info handler p. 634
AddOutputFilter filter[;filter...] extension [extension]
...

svdh B

Maps filename extensions to the filters that will process responses from the server p. 704
AddOutputFilterByType filter[;filter...] media-type
[media-type] ...

svdh B

assigns an output filter to a particular media-type p. 600
AddType media-type extension [extension] ... svdh B
Maps the given filename extensions onto the specified content type p. 705
Alias URL-path file-path|directory-path sv B
Maps URLs to filesystem locations p. 418
AliasMatch regex file-path|directory-path sv B
Maps URLs to filesystem locations using regular expressions p. 418
Allow from all|host|env=[!]env-variable
[host|env=[!]env-variable] ...

dh E

Controls which hosts can access an area of the server p. 411
AllowCONNECT port[-port] [port[-port]] ... 443 563 sv E
Ports that are allowed to CONNECT through the proxy p. 766

12.3. DIRECTIVE QUICK REFERENCE 1023

AllowEncodedSlashes On|Off|NoDecode Off sv C
Determines whether encoded path separators in URLs are allowed to be passed through p. 359
AllowMethods reset|HTTP-method [HTTP-method]... reset d X
Restrict access to the listed HTTP methods p. 423
AllowOverride All|None|directive-type [directive-type] ... None (2.3.9 and lat + d C
Types of directives that are allowed in .htaccess files p. 359
AllowOverrideList None|directive [directive-type] ... None d C
Individual directives that are allowed in .htaccess files p. 361
Anonymous user [user] ... dh E
Specifies userIDs that are allowed access without password verification p. 446
Anonymous LogEmail On|Off On dh E
Sets whether the password entered will be logged in the error log p. 446
Anonymous MustGiveEmail On|Off On dh E
Specifies whether blank passwords are allowed p. 447
Anonymous NoUserID On|Off Off dh E
Sets whether the userID field may be empty p. 447
Anonymous VerifyEmail On|Off Off dh E
Sets whether to check the password field for a correctly formatted email address p. 447
AsyncRequestWorkerFactor factor s M
Limit concurrent connections per process p. 921
AuthBasicAuthoritative On|Off On dh B
Sets whether authorization and authentication are passed to lower level modules p. 426
AuthBasicFake off|username [password] dh B
Fake basic authentication using the given expressions for username and password p. 427
AuthBasicProvider provider-name [provider-name] ... file dh B
Sets the authentication provider(s) for this location p. 428
AuthBasicUseDigestAlgorithm MD5|Off Off dh B
Check passwords against the authentication providers as if Digest Authentication was in force instead of Basic Authentication. p. 428
AuthDBDUserPWQuery query d E
SQL query to look up a password for a user p. 453
AuthDBDUserRealmQuery query d E
SQL query to look up a password hash for a user and realm. p. 454
AuthDBMGroupFile file-path dh E
Sets the name of the database file containing the list of user groups for authorization p. 500
AuthDBMType default|SDBM|GDBM|NDBM|DB default dh E
Sets the type of database file that is used to store passwords p. 455
AuthDBMUserFile file-path dh E
Sets the name of a database file containing the list of users and passwords for authentication p. 456
AuthDigestAlgorithm MD5|MD5-sess MD5 dh E
Selects the algorithm used to calculate the challenge and response hashes in digest authentication p. 431
AuthDigestDomain URI [URI] ... dh E
URIs that are in the same protection space for digest authentication p. 431
AuthDigestNonceLifetime seconds 300 dh E
How long the server nonce is valid p. 431
AuthDigestProvider provider-name [provider-name] ... file dh E
Sets the authentication provider(s) for this location p. 432
AuthDigestQop none|auth|auth-int [auth|auth-int] auth dh E
Determines the quality-of-protection to use in digest authentication p. 432
AuthDigestShmemSize size 1000 s E
The amount of shared memory to allocate for keeping track of clients p. 432
AuthFormAuthoritative On|Off On dh B
Sets whether authorization and authentication are passed to lower level modules p. 439
AuthFormBody fieldname d B
The name of a form field carrying the body of the request to attempt on successful login p. 439
AuthFormDisableNoStore On|Off Off d B
Disable the CacheControl no-store header on the login page p. 439
AuthFormFakeBasicAuth On|Off Off d B
Fake a Basic Authentication header p. 440
AuthFormLocation fieldname d B
The name of a form field carrying a URL to redirect to on successful login p. 440
AuthFormLoginRequiredLocation url d B
The URL of the page to be redirected to should login be required p. 440
AuthFormLoginSuccessLocation url d B
The URL of the page to be redirected to should login be successful p. 441

1024 CHAPTER 12. GLOSSARY AND INDEX

AuthFormLogoutLocation uri d B
The URL to redirect to after a user has logged out p. 441
AuthFormMethod fieldname d B
The name of a form field carrying the method of the request to attempt on successful login p. 441
AuthFormMimetype fieldname d B
The name of a form field carrying the mimetype of the body of the request to attempt on successful login p. 442
AuthFormPassword fieldname d B
The name of a form field carrying the login password p. 442
AuthFormProvider provider-name [provider-name] ... file dh B
Sets the authentication provider(s) for this location p. 442
AuthFormSitePassphrase secret d B
Bypass authentication checks for high traffic sites p. 443
AuthFormSize size d B
The largest size of the form in bytes that will be parsed for the login details p. 443
AuthFormUsername fieldname d B
The name of a form field carrying the login username p. 444
AuthGroupFile file-path dh B
Sets the name of a text file containing the list of user groups for authorization p. 502
AuthLDAPAuthorizePrefix prefix AUTHORIZE dh E
Specifies the prefix for environment variables set during authorization p. 478
AuthLDAPBindAuthoritativeoff|on on dh E
Determines if other authentication providers are used when a user can be mapped to a DN but the server cannot successfully bind with the
user’s credentials. p. 478
AuthLDAPBindDN distinguished-name dh E
Optional DN to use in binding to the LDAP server p. 478
AuthLDAPBindPassword password dh E
Password used in conjuction with the bind DN p. 479
AuthLDAPCharsetConfig file-path s E
Language to charset conversion configuration file p. 479
AuthLDAPCompareAsUser on|off off dh E
Use the authenticated user’s credentials to perform authorization comparisons p. 480
AuthLDAPCompareDNOnServer on|off on dh E
Use the LDAP server to compare the DNs p. 480
AuthLDAPDereferenceAliases never|searching|finding|always always dh E
When will the module de-reference aliases p. 480
AuthLDAPGroupAttribute attribute member uniquemember + dh E
LDAP attributes used to identify the user members of groups. p. 481
AuthLDAPGroupAttributeIsDN on|off on dh E
Use the DN of the client username when checking for group membership p. 481
AuthLDAPInitialBindAsUser off|on off dh E
Determines if the server does the initial DN lookup using the basic authentication users’ own username, instead of anonymously or with
hard-coded credentials for the server p. 481
AuthLDAPInitialBindPatternregex substitution (.*) $1 (remote use + dh E
Specifies the transformation of the basic authentication username to be used when binding to the LDAP server to perform a DN lookup p.
482
AuthLDAPMaxSubGroupDepth Number 10 dh E
Specifies the maximum sub-group nesting depth that will be evaluated before the user search is discontinued. p. 483
AuthLDAPRemoteUserAttribute uid dh E
Use the value of the attribute returned during the user query to set the REMOTE USER environment variable p. 483
AuthLDAPRemoteUserIsDN on|off off dh E
Use the DN of the client username to set the REMOTE USER environment variable p. 483
AuthLDAPSearchAsUser on|off off dh E
Use the authenticated user’s credentials to perform authorization searches p. 484
AuthLDAPSubGroupAttribute attribute dh E
Specifies the attribute labels, one value per directive line, used to distinguish the members of the current group that are groups. p. 484
AuthLDAPSubGroupClass LdapObjectClass groupOfNames groupO + dh E
Specifies which LDAP objectClass values identify directory objects that are groups during sub-group processing. p. 485
AuthLDAPUrl url [NONE|SSL|TLS|STARTTLS] dh E
URL specifying the LDAP search parameters p. 485
AuthMerging Off | And | Or Off dh B
Controls the manner in which each configuration section’s authorization logic is combined with that of preceding configuration sections. p.
490
AuthName auth-domain dh B
Authorization realm for use in HTTP authentication p. 449
AuthnCacheContext directory|server|custom-string d B
Specify a context string for use in the cache key p. 460

12.3. DIRECTIVE QUICK REFERENCE 1025

AuthnCacheEnable s B
Enable Authn caching configured anywhere p. 460
AuthnCacheProvideFor authn-provider [...] dh B
Specify which authn provider(s) to cache for p. 461
AuthnCacheSOCache provider-name[:provider-args] s B
Select socache backend provider to use p. 461
AuthnCacheTimeout timeout (seconds) dh B
Set a timeout for cache entries p. 461
<AuthnProviderAlias baseProvider Alias> ...
</AuthnProviderAlias>

s B

Enclose a group of directives that represent an extension of a base authentication provider and referenced by the specified alias p. 450
AuthnzFcgiCheckAuthnProvider provider-name|None option ... d E
Enables a FastCGI application to handle the check authn authentication hook. p. 467
AuthnzFcgiDefineProvider type provider-name
backend-address

s E

Defines a FastCGI application as a provider for authentication and/or authorization p. 468
AuthType None|Basic|Digest|Form dh B
Type of user authentication p. 450
AuthUserFile file-path dh B
Sets the name of a text file containing the list of users and passwords for authentication p. 457
AuthzDBDLoginToReferer On|Off Off d E
Determines whether to redirect the Client to the Referring page on successful login or logout if a Referer request header is presentp. 497
AuthzDBDQuery query d E
Specify the SQL Query for the required operation p. 498
AuthzDBDRedirectQuery query d E
Specify a query to look up a login page for the user p. 498
AuthzDBMType default|SDBM|GDBM|NDBM|DB default dh E
Sets the type of database file that is used to store list of user groups p. 500
<AuthzProviderAlias baseProvider Alias
Require-Parameters> ... </AuthzProviderAlias>

s B

Enclose a group of directives that represent an extension of a base authorization provider and referenced by the specified alias p. 491
AuthzSendForbiddenOnFailure On|Off Off dh B
Send ’403 FORBIDDEN’ instead of ’401 UNAUTHORIZED’ if authentication succeeds but authorization fails p. 491
BalancerGrowth # 5 sv E
Number of additional Balancers that can be added Post-configuration p. 733
BalancerInherit On|Off On sv E
Inherit ProxyPassed Balancers/Workers from the main server p. 733
BalancerMember [balancerurl] url [key=value [key=value
...]]

d E

Add a member to a load balancing group p. 733
BalancerPersist On|Off Off sv E
Attempt to persist changes made by the Balancer Manager across restarts. p. 734
BrowserMatch regex [!]env-variable[=value]
[[!]env-variable[=value]] ...

svdh B

Sets environment variables conditional on HTTP User-Agent p. 833
BrowserMatchNoCase regex [!]env-variable[=value]
[[!]env-variable[=value]] ...

svdh B

Sets environment variables conditional on User-Agent without respect to case p. 834
BufferedLogs On|Off Off s B
Buffer log entries in memory before writing to disk p. 659
BufferSize integer 131072 svdh E
Maximum size in bytes to buffer by the buffer filter p. 522
CacheDefaultExpire seconds 3600 (one hour) svdh E
The default duration to cache a document when no expiry date is specified. p. 528
CacheDetailHeader on|off off svdh E
Add an X-Cache-Detail header to the response. p. 528
CacheDirLength length 2 sv E
The number of characters in subdirectory names p. 539
CacheDirLevels levels 2 sv E
The number of levels of subdirectories in the cache. p. 539
CacheDisable url-string | on svdh E
Disable caching of specified URLs p. 528
CacheEnable cache type [url-string] svd E
Enable caching of specified URLs using a specified storage manager p. 529

1026 CHAPTER 12. GLOSSARY AND INDEX

CacheFile file-path [file-path] ... s X
Cache a list of file handles at startup time p. 594
CacheHeader on|off off svdh E
Add an X-Cache header to the response. p. 530
CacheIgnoreCacheControl On|Off Off sv E
Ignore request to not serve cached content to client p. 531
CacheIgnoreHeaders header-string [header-string] ... None sv E
Do not store the given HTTP header(s) in the cache. p. 531
CacheIgnoreNoLastMod On|Off Off svdh E
Ignore the fact that a response has no Last Modified header. p. 532
CacheIgnoreQueryString On|Off Off sv E
Ignore query string when caching p. 532
CacheIgnoreURLSessionIdentifiers identifier [identifier]
...

None sv E

Ignore defined session identifiers encoded in the URL when caching p. 533
CacheKeyBaseURL URL http://example.com sv E
Override the base URL of reverse proxied cache keys. p. 533
CacheLastModifiedFactor float 0.1 svdh E
The factor used to compute an expiry date based on the LastModified date. p. 534
CacheLock on|off off sv E
Enable the thundering herd lock. p. 534
CacheLockMaxAge integer 5 sv E
Set the maximum possible age of a cache lock. p. 534
CacheLockPath directory /tmp/mod cache-lock + sv E
Set the lock path directory. p. 535
CacheMaxExpire seconds 86400 (one day) svdh E
The maximum time in seconds to cache a document p. 535
CacheMaxFileSize bytes 1000000 svdh E
The maximum size (in bytes) of a document to be placed in the cache p. 539
CacheMinExpire seconds 0 svdh E
The minimum time in seconds to cache a document p. 535
CacheMinFileSize bytes 1 svdh E
The minimum size (in bytes) of a document to be placed in the cache p. 540
CacheNegotiatedDocs On|Off Off sv B
Allows content-negotiated documents to be cached by proxy servers p. 718
CacheQuickHandler on|off on sv E
Run the cache from the quick handler. p. 535
CacheReadSize bytes 0 svdh E
The minimum size (in bytes) of the document to read and be cached before sending the data downstream p. 540
CacheReadTime milliseconds 0 svdh E
The minimum time (in milliseconds) that should elapse while reading before data is sent downstream p. 540
CacheRoot directory sv E
The directory root under which cache files are stored p. 541
CacheSocache type[:args] sv E
The shared object cache implementation to use p. 543
CacheSocacheMaxSize bytes 102400 svdh E
The maximum size (in bytes) of an entry to be placed in the cache p. 543
CacheSocacheMaxTime seconds 86400 svdh E
The maximum time (in seconds) for a document to be placed in the cache p. 543
CacheSocacheMinTime seconds 600 svdh E
The minimum time (in seconds) for a document to be placed in the cache p. 544
CacheSocacheReadSize bytes 0 svdh E
The minimum size (in bytes) of the document to read and be cached before sending the data downstream p. 544
CacheSocacheReadTime milliseconds 0 svdh E
The minimum time (in milliseconds) that should elapse while reading before data is sent downstream p. 544
CacheStaleOnError on|off on svdh E
Serve stale content in place of 5xx responses. p. 536
CacheStoreExpired On|Off Off svdh E
Attempt to cache responses that the server reports as expired p. 536
CacheStoreNoStore On|Off Off svdh E
Attempt to cache requests or responses that have been marked as no-store. p. 537
CacheStorePrivate On|Off Off svdh E
Attempt to cache responses that the server has marked as private p. 537
CGIDScriptTimeout time[s|ms] svdh B
The length of time to wait for more output from the CGI program p. 551

12.3. DIRECTIVE QUICK REFERENCE 1027

CGIMapExtension cgi-path .extension dh C
Technique for locating the interpreter for CGI scripts p. 362
CGIPassAuth On|Off Off dh C
Enables passing HTTP authorization headers to scripts as CGI variables p. 362
CharsetDefault charset svdh E
Charset to translate into p. 554
CharsetOptions option [option] ... ImplicitAdd svdh E
Configures charset translation behavior p. 554
CharsetSourceEnc charset svdh E
Source charset of files p. 554
CheckCaseOnly on|off Off svdh E
Limits the action of the speling module to case corrections p. 845
CheckSpelling on|off Off svdh E
Enables the spelling module p. 845
ChrootDir /path/to/directory s B
Directory for apache to run chroot(8) after startup. p. 892
ContentDigest On|Off Off svdh C
Enables the generation of Content-MD5 HTTP Response headers p. 362
CookieDomain domain svdh E
The domain to which the tracking cookie applies p. 897
CookieExpires expiry-period svdh E
Expiry time for the tracking cookie p. 898
CookieName token Apache svdh E
Name of the tracking cookie p. 898
CookieStyle Netscape|Cookie|Cookie2|RFC2109|RFC2965 Netscape svdh E
Format of the cookie header field p. 898
CookieTracking on|off off svdh E
Enables tracking cookie p. 899
CoreDumpDirectory directory s M
Directory where Apache HTTP Server attempts to switch before dumping core p. 910
CustomLog file|pipe format|nickname [env=[!]environment-variable|
expr=expression]

sv B

Sets filename and format of log file p. 659
Dav On|Off|provider-name Off d E
Enable WebDAV HTTP methods p. 559
DavDepthInfinity on|off off svd E
Allow PROPFIND, Depth: Infinity requests p. 559
DavGenericLockDB file-path svd E
Location of the DAV lock database p. 561
DavLockDB file-path sv E
Location of the DAV lock database p. 560
DavMinTimeout seconds 0 svd E
Minimum amount of time the server holds a lock on a DAV resource p. 559
DBDExptime time-in-seconds 300 sv E
Keepalive time for idle connections p. 564
DBDInitSQL "SQL statement" sv E
Execute an SQL statement after connecting to a database p. 564
DBDKeep number 2 sv E
Maximum sustained number of connections p. 565
DBDMax number 10 sv E
Maximum number of connections p. 565
DBDMin number 1 sv E
Minimum number of connections p. 565
DBDParams param1=value1[,param2=value2] sv E
Parameters for database connection p. 565
DBDPersist On|Off sv E
Whether to use persistent connections p. 566
DBDPrepareSQL "SQL statement" label sv E
Define an SQL prepared statement p. 566
DBDriver name sv E
Specify an SQL driver p. 566
DefaultIcon url-path svdh B
Icon to display for files when no specific icon is configured p. 515

1028 CHAPTER 12. GLOSSARY AND INDEX

DefaultLanguage language-tag svdh B
Defines a default language-tag to be sent in the Content-Language header field for all resources in the current context that have not been
assigned a language-tag by some other means. p. 706
DefaultRuntimeDir directory-path DEFAULT REL RUNTIME + s C
Base directory for the server run-time files p. 363
DefaultType media-type|none none svdh C
This directive has no effect other than to emit warnings if the value is not none. In prior versions, DefaultType would specify a default
media type to assign to response content for which no other media type configuration could be found. p. 363
Define parameter-name [parameter-value] svd C
Define a variable p. 364
DeflateBufferSize value 8096 sv E
Fragment size to be compressed at one time by zlib p. 570
DeflateCompressionLevel value sv E
How much compression do we apply to the output p. 570
DeflateFilterNote [type] notename sv E
Places the compression ratio in a note for logging p. 570
DeflateInflateLimitRequestBodyvalue svdh E
Maximum size of inflated request bodies p. 571
DeflateInflateRatioBurst value svdh E
Maximum number of times the inflation ratio for request bodies can be crossed p. 571
DeflateInflateRatioLimit value svdh E
Maximum inflation ratio for request bodies p. 572
DeflateMemLevel value 9 sv E
How much memory should be used by zlib for compression p. 572
DeflateWindowSize value 15 sv E
Zlib compression window size p. 572
Deny from all|host|env=[!]env-variable
[host|env=[!]env-variable] ...

dh E

Controls which hosts are denied access to the server p. 412
<Directory "directory-path"> ... </Directory> sv C
Enclose a group of directives that apply only to the named file-system directory, sub-directories, and their contents. p. 364
DirectoryCheckHandler On|Off Off svdh B
Toggle how this module responds when another handler is configured p. 574
DirectoryIndex disabled | local-url [local-url] ... index.html svdh B
List of resources to look for when the client requests a directory p. 575
DirectoryIndexRedirect on | off | permanent | temp |
seeother | 3xx-code

off svdh B

Configures an external redirect for directory indexes. p. 576
<DirectoryMatch regex> ... </DirectoryMatch> sv C
Enclose directives that apply to the contents of file-system directories matching a regular expression. p. 366
DirectorySlash On|Off On svdh B
Toggle trailing slash redirects on or off p. 576
DocumentRoot directory-path "/usr/local/apache/ + sv C
Directory that forms the main document tree visible from the web p. 367
DTracePrivileges On|Off Off s X
Determines whether the privileges required by dtrace are enabled. p. 722
DumpIOInput On|Off Off s E
Dump all input data to the error log p. 579
DumpIOOutput On|Off Off s E
Dump all output data to the error log p. 580
<Else> ... </Else> svdh C
Contains directives that apply only if the condition of a previous <IF> or <ELSEIF> section is not satisfied by a request at runtime p. 367
<ElseIf expression> ... </ElseIf> svdh C
Contains directives that apply only if a condition is satisfied by a request at runtime while the condition of a previous <IF> or <ELSEIF>
section is not satisfied p. 368
EnableExceptionHook On|Off Off s M
Enables a hook that runs exception handlers after a crash p. 911
EnableMMAP On|Off On svdh C
Use memory-mapping to read files during delivery p. 368
EnableSendfile On|Off Off svdh C
Use the kernel sendfile support to deliver files to the client p. 369
Error message svdh C
Abort configuration parsing with a custom error message p. 370
ErrorDocument error-code document svdh C
What the server will return to the client in case of an error p. 370

12.3. DIRECTIVE QUICK REFERENCE 1029

ErrorLog file-path|syslog[:facility] logs/error log (Uni + sv C
Location where the server will log errors p. 372
ErrorLogFormat [connection|request] format sv C

Format specification for error log entries p. 372
Example svdh X
Demonstration directive to illustrate the Apache module API p. 585
ExpiresActive On|Off Off svdh E
Enables generation of Expires headers p. 587
ExpiresByType MIME-type <code>seconds svdh E
Value of the Expires header configured by MIME type p. 587
ExpiresDefault <code>seconds svdh E
Default algorithm for calculating expiration time p. 588
ExtendedStatus On|Off Off[*] s C
Keep track of extended status information for each request p. 374
ExtFilterDefine filtername parameters s E
Define an external filter p. 591
ExtFilterOptions option [option] ... NoLogStderr d E
Configure MOD EXT FILTER options p. 592
FallbackResource disabled | local-url svdh B
Define a default URL for requests that don’t map to a file p. 577
FileETag component ... MTime Size svdh C
File attributes used to create the ETag HTTP response header for static files p. 375
<Files "filename"> ... </Files> svdh C
Contains directives that apply to matched filenames p. 376
<FilesMatch regex> ... </FilesMatch> svdh C
Contains directives that apply to regular-expression matched filenames p. 376
FilterChain [+=-@!]filter-name ... svdh B
Configure the filter chain p. 601
FilterDeclare filter-name [type] svdh B
Declare a smart filter p. 601
FilterProtocol filter-name [provider-name] proto-flags svdh B
Deal with correct HTTP protocol handling p. 602
FilterProvider filter-name provider-name expression svdh B
Register a content filter p. 602
FilterTrace filter-name level svd B
Get debug/diagnostic information from MOD FILTER p. 603
ForceLanguagePriority None|Prefer|Fallback
[Prefer|Fallback]

Prefer svdh B

Action to take if a single acceptable document is not found p. 718
ForceType media-type|None dh C
Forces all matching files to be served with the specified media type in the HTTP Content-Type header field p. 377
ForensicLog filename|pipe sv E
Sets filename of the forensic log p. 665
GprofDir /tmp/gprof/|/tmp/gprof/% sv C
Directory to write gmon.out profiling data to. p. 378
GracefulShutdownTimeout seconds 0 s M
Specify a timeout after which a gracefully shutdown server will exit. p. 911
Group unix-group #-1 s B
Group under which the server will answer requests p. 892
Header [condition] add|append|echo|edit|edit*|merge|set|setifempty|unset|note
header [[expr=]value [replacement] [early|env=[!]varname|expr=expression]]

svdh E

Configure HTTP response headers p. 606
HeaderName filename svdh B
Name of the file that will be inserted at the top of the index listing p. 515
HeartbeatAddress addr:port s X
Multicast address for heartbeat packets p. 610
HeartbeatListenaddr:port s X
multicast address to listen for incoming heartbeat requests p. 611
HeartbeatMaxServers number-of-servers 10 s X
Specifies the maximum number of servers that will be sending heartbeat requests to this server p. 611
HeartbeatStorage file-path logs/hb.dat s X
Path to store heartbeat data p. 612
HeartbeatStorage file-path logs/hb.dat s X
Path to read heartbeat data p. 643

1030 CHAPTER 12. GLOSSARY AND INDEX

HostnameLookups On|Off|Double Off svd C
Enables DNS lookups on client IP addresses p. 378
IdentityCheck On|Off Off svd E
Enables logging of the RFC 1413 identity of the remote user p. 613
IdentityCheckTimeout seconds 30 svd E
Determines the timeout duration for ident requests p. 613
<If expression> ... </If> svdh C
Contains directives that apply only if a condition is satisfied by a request at runtime p. 379
<IfDefine [!]parameter-name> ... </IfDefine> svdh C
Encloses directives that will be processed only if a test is true at startup p. 379
<IfModule [!]module-file|module-identifier> ...
</IfModule>

svdh C

Encloses directives that are processed conditional on the presence or absence of a specific module p. 380
<IfVersion [[!]operator] version> ... </IfVersion> svdh E
contains version dependent configuration p. 900
ImapBase map|referer|URL http://servername/ svdh B
Default base for imagemap files p. 617
ImapDefault error|nocontent|map|referer|URL nocontent svdh B
Default action when an imagemap is called with coordinates that are not explicitly mapped p. 618
ImapMenu none|formatted|semiformatted|unformatted formatted svdh B
Action if no coordinates are given when calling an imagemap p. 618
Include file-path|directory-path|wildcard svd C
Includes other configuration files from within the server configuration files p. 381
IncludeOptional file-path|directory-path|wildcard svd C
Includes other configuration files from within the server configuration files p. 382
IndexHeadInsert "markup ..." svdh B
Inserts text in the HEAD section of an index page. p. 516
IndexIgnore file [file] ... "." svdh B
Adds to the list of files to hide when listing a directory p. 516
IndexIgnoreReset ON|OFF svdh B
Empties the list of files to hide when listing a directory p. 517
IndexOptions [+|-]option [[+|-]option] ... svdh B
Various configuration settings for directory indexing p. 517
IndexOrderDefault Ascending|Descending
Name|Date|Size|Description

Ascending Name svdh B

Sets the default ordering of the directory index p. 520
IndexStyleSheet url-path svdh B
Adds a CSS stylesheet to the directory index p. 521
InputSed sed-command dh X
Sed command to filter request data (typically POST data) p. 813
ISAPIAppendLogToErrors on|off off svdh B
Record HSE APPEND LOG PARAMETER requests from ISAPI extensions to the error log p. 637
ISAPIAppendLogToQuery on|off on svdh B
Record HSE APPEND LOG PARAMETER requests from ISAPI extensions to the query field p. 637
ISAPICacheFile file-path [file-path] ... sv B
ISAPI .dll files to be loaded at startup p. 637
ISAPIFakeAsync on|off off svdh B
Fake asynchronous support for ISAPI callbacks p. 638
ISAPILogNotSupported on|off off svdh B
Log unsupported feature requests from ISAPI extensions p. 638
ISAPIReadAheadBuffer size 49152 svdh B
Size of the Read Ahead Buffer sent to ISAPI extensions p. 638
KeepAlive On|Off On sv C
Enables HTTP persistent connections p. 382
KeepAliveTimeout num[ms] 5 sv C
Amount of time the server will wait for subsequent requests on a persistent connection p. 382
KeptBodySize maximum size in bytes 0 d B
Keep the request body instead of discarding it up to the specified maximum size, for potential use by filters such as mod include. p. 797
LanguagePriority MIME-lang [MIME-lang] ... svdh B
The precendence of language variants for cases where the client does not express a preference p. 719
LDAPCacheEntries number 1024 s E
Maximum number of entries in the primary LDAP cache p. 649
LDAPCacheTTL seconds 600 s E
Time that cached items remain valid p. 650

12.3. DIRECTIVE QUICK REFERENCE 1031

LDAPConnectionPoolTTL n -1 sv E
Discard backend connections that have been sitting in the connection pool too long p. 650
LDAPConnectionTimeout seconds s E
Specifies the socket connection timeout in seconds p. 650
LDAPLibraryDebug 7 s E
Enable debugging in the LDAP SDK p. 651
LDAPOpCacheEntries number 1024 s E
Number of entries used to cache LDAP compare operations p. 651
LDAPOpCacheTTL seconds 600 s E
Time that entries in the operation cache remain valid p. 651
LDAPReferralHopLimit number dh E
The maximum number of referral hops to chase before terminating an LDAP query. p. 652
LDAPReferrals On|Off|default On dh E
Enable referral chasing during queries to the LDAP server. p. 652
LDAPRetries number-of-retries 3 s E
Configures the number of LDAP server retries. p. 652
LDAPRetryDelay seconds 0 s E
Configures the delay between LDAP server retries. p. 653
LDAPSharedCacheFile directory-path/filename s E
Sets the shared memory cache file p. 653
LDAPSharedCacheSize bytes 500000 s E
Size in bytes of the shared-memory cache p. 653
LDAPTimeout seconds 60 s E
Specifies the timeout for LDAP search and bind operations, in seconds p. 653
LDAPTrustedClientCert type directory-path/filename/nickname
[password]

dh E

Sets the file containing or nickname referring to a per connection client certificate. Not all LDAP toolkits support per connection client
certificates. p. 654
LDAPTrustedGlobalCert type directory-path/filename
[password]

s E

Sets the file or database containing global trusted Certificate Authority or global client certificates p. 654
LDAPTrustedMode type sv E
Specifies the SSL/TLS mode to be used when connecting to an LDAP server. p. 655
LDAPVerifyServerCert On|Off On s E
Force server certificate verification p. 655
<Limit method [method] ... > ... </Limit> dh C
Restrict enclosed access controls to only certain HTTP methods p. 383
<LimitExcept method [method] ... > ... </LimitExcept> dh C
Restrict access controls to all HTTP methods except the named ones p. 384
LimitInternalRecursion number [number] 10 sv C
Determine maximum number of internal redirects and nested subrequests p. 384
LimitRequestBody bytes 0 svdh C
Restricts the total size of the HTTP request body sent from the client p. 384
LimitRequestFields number 100 sv C
Limits the number of HTTP request header fields that will be accepted from the client p. 385
LimitRequestFieldSize bytes 8190 sv C
Limits the size of the HTTP request header allowed from the client p. 386
LimitRequestLine bytes 8190 sv C
Limit the size of the HTTP request line that will be accepted from the client p. 386
LimitXMLRequestBody bytes 1000000 svdh C
Limits the size of an XML-based request body p. 387
Listen [IP-address:]portnumber [protocol] s M
IP addresses and ports that the server listens to p. 912
ListenBacklog backlog s M
Maximum length of the queue of pending connections p. 913
LoadFile filename [filename] ... sv E
Link in the named object file or library p. 840
LoadModule module filename sv E
Links in the object file or library, and adds to the list of active modules p. 840
<Location "URL-path|URL"> ... </Location> sv C
Applies the enclosed directives only to matching URLs p. 387
<LocationMatch regex> ... </LocationMatch> sv C
Applies the enclosed directives only to regular-expression matching URLs p. 389
LogFormat format|nickname [nickname] "%h %l %u %t \"%r\" + sv B
Describes a format for use in a log file p. 660

1032 CHAPTER 12. GLOSSARY AND INDEX

LogIOTrackTTFB ON|OFF OFF svdh E
Enable tracking of time to first byte (TTFB) p. 667
LogLevel [module:]level [module:level] ... warn svd C
Controls the verbosity of the ErrorLog p. 389
LogMessage message [hook=hook] [expr=expression] d X
Log user-defined message to error log p. 662
LuaAuthzProvider provider name /path/to/lua/script.lua
function name

s X

Plug an authorization provider function into MOD AUTHZ CORE p. 684
LuaCodeCache stat|forever|never stat svdh X
Configure the compiled code cache. p. 684
LuaHookAccessChecker /path/to/lua/script.lua
hook function name [early|late]

svdh X

Provide a hook for the access checker phase of request processing p. 685
LuaHookAuthChecker /path/to/lua/script.lua
hook function name [early|late]

svdh X

Provide a hook for the auth checker phase of request processing p. 685
LuaHookCheckUserID /path/to/lua/script.lua
hook function name [early|late]

svdh X

Provide a hook for the check user id phase of request processing p. 686
LuaHookFixups /path/to/lua/script.lua hook function name svdh X
Provide a hook for the fixups phase of a request processing p. 686
LuaHookInsertFilter /path/to/lua/script.lua
hook function name

svdh X

Provide a hook for the insert filter phase of request processing p. 687
LuaHookLog /path/to/lua/script.lua log function name svdh X
Provide a hook for the access log phase of a request processing p. 687
LuaHookMapToStorage /path/to/lua/script.lua
hook function name

svdh X

Provide a hook for the map to storage phase of request processing p. 688
LuaHookTranslateName /path/to/lua/script.lua
hook function name [early|late]

sv X

Provide a hook for the translate name phase of request processing p. 688
LuaHookTypeChecker /path/to/lua/script.lua
hook function name

svdh X

Provide a hook for the type checker phase of request processing p. 689
LuaInherit none|parent-first|parent-last parent-first svdh X
Controls how parent configuration sections are merged into children p. 690
LuaInputFilter filter name /path/to/lua/script.lua
function name

s X

Provide a Lua function for content input filtering p. 690
LuaMapHandler uri-pattern /path/to/lua/script.lua
[function-name]

svdh X

Map a path to a lua handler p. 691
LuaOutputFilter filter name /path/to/lua/script.lua
function name

s X

Provide a Lua function for content output filtering p. 691
LuaPackageCPath /path/to/include/?.soa svdh X
Add a directory to lua’s package.cpath p. 692
LuaPackagePath /path/to/include/?.lua svdh X
Add a directory to lua’s package.path p. 692
LuaQuickHandler /path/to/script.lua hook function name sv X
Provide a hook for the quick handler of request processing p. 693
LuaRoot /path/to/a/directory svdh X
Specify the base path for resolving relative paths for mod lua directives p. 693
LuaScope once|request|conn|thread|server [min] [max] once svdh X
One of once, request, conn, thread – default is once p. 693
<Macro name [par1 .. parN]> ... </Macro> svd B

Define a configuration file macro p. 697
MaxConnectionsPerChild number 0 s M
Limit on the number of connections that an individual child server will handle during its life p. 913
MaxKeepAliveRequests number 100 sv C
Number of requests allowed on a persistent connection p. 391
MaxMemFree KBytes 2048 s M
Maximum amount of memory that the main allocator is allowed to hold without calling free() p. 913

12.3. DIRECTIVE QUICK REFERENCE 1033

MaxRangeOverlaps default | unlimited | none |
number-of-ranges

20 svd C

Number of overlapping ranges (eg: 100-200,150-300) allowed before returning the complete resource p. 391
MaxRangeReversals default | unlimited | none |
number-of-ranges

20 svd C

Number of range reversals (eg: 100-200,50-70) allowed before returning the complete resource p. 391
MaxRanges default | unlimited | none | number-of-ranges 200 svd C
Number of ranges allowed before returning the complete resource p. 392
MaxRequestWorkers number s M
Maximum number of connections that will be processed simultaneously p. 914
MaxSpareServers number 10 s M
Maximum number of idle child server processes p. 927
MaxSpareThreads number s M
Maximum number of idle threads p. 914
MaxThreads number 2048 s M
Set the maximum number of worker threads p. 924
MergeTrailers [on|off] off sv C
Determines whether trailers are merged into headers p. 392
MetaDir directory .web svdh E
Name of the directory to find CERN-style meta information files p. 546
MetaFiles on|off off svdh E
Activates CERN meta-file processing p. 547
MetaSuffix suffix .meta svdh E
File name suffix for the file containing CERN-style meta information p. 547
MimeMagicFile file-path sv E
Enable MIME-type determination based on file contents using the specified magic file p. 715
MinSpareServers number 5 s M
Minimum number of idle child server processes p. 927
MinSpareThreads number s M
Minimum number of idle threads available to handle request spikes p. 915
MMapFile file-path [file-path] ... s X
Map a list of files into memory at startup time p. 594
ModemStandard V.21|V.26bis|V.32|V.92 d X
Modem standard to simulate p. 573
ModMimeUsePathInfo On|Off Off d B
Tells MOD MIME to treat path info components as part of the filename p. 707
MultiviewsMatch Any|NegotiatedOnly|Filters|Handlers
[Handlers|Filters]

NegotiatedOnly svdh B

The types of files that will be included when searching for a matching file with MultiViews p. 707
Mutex mechanism [default|mutex-name] ... [OmitPID] default s C
Configures mutex mechanism and lock file directory for all or specified mutexes p. 392
NameVirtualHost addr[:port] s C
DEPRECATED: Designates an IP address for name-virtual hosting p. 395
NoProxy host [host] ... sv E
Hosts, domains, or networks that will be connected to directly p. 734
NWSSLTrustedCerts filename [filename] ... s B
List of additional client certificates p. 720
NWSSLUpgradeable [IP-address:]portnumber s B
Allows a connection to be upgraded to an SSL connection upon request p. 720
Options [+|-]option [[+|-]option] ... FollowSymlinks svdh C
Configures what features are available in a particular directory p. 395
Order ordering Deny,Allow dh E

Controls the default access state and the order in which ALLOW and DENY are evaluated. p. 412
OutputSed sed-command dh X
Sed command for filtering response content p. 813
PassEnv env-variable [env-variable] ... svdh B
Passes environment variables from the shell p. 582
PidFile filename logs/httpd.pid s M
File where the server records the process ID of the daemon p. 915
PrivilegesMode FAST|SECURE|SELECTIVE FAST svd X
Trade off processing speed and efficiency vs security against malicious privileges-aware code. p. 722
Protocol protocol sv C
Protocol for a listening socket p. 396
ProtocolEcho On|Off Off sv X
Turn the echo server on or off p. 581

1034 CHAPTER 12. GLOSSARY AND INDEX

<Proxy wildcard-url> ...</Proxy> sv E
Container for directives applied to proxied resources p. 735
ProxyAddHeaders Off|On On svd E
Add proxy information in X-Forwarded-* headers p. 736
ProxyBadHeader IsError|Ignore|StartBody IsError sv E
Determines how to handle bad header lines in a response p. 736
ProxyBlock *|word|host|domain [word|host|domain] ... sv E
Words, hosts, or domains that are banned from being proxied p. 737
ProxyDomain Domain sv E
Default domain name for proxied requests p. 737
ProxyErrorOverride On|Off Off svd E
Override error pages for proxied content p. 737
ProxyExpressDBMFile <pathname> sv E
Pathname to DBM file. p. 768
ProxyExpressDBMFile <type> sv E
DBM type of file. p. 768
ProxyExpressEnable [on|off] sv E
Enable the module functionality. p. 769
ProxyFtpDirCharset character set ISO-8859-1 svd E
Define the character set for proxied FTP listings p. 776
ProxyFtpEscapeWildcards [on|off] svd E
Whether wildcards in requested filenames are escaped when sent to the FTP server p. 776
ProxyFtpListOnWildcard [on|off] svd E
Whether wildcards in requested filenames trigger a file listing p. 776
ProxyHTMLBufSize bytes svd B
Sets the buffer size increment for buffering inline scripts and stylesheets. p. 777
ProxyHTMLCharsetOut Charset | * svd B
Specify a charset for mod proxy html output. p. 778
ProxyHTMLDocType HTML|XHTML [Legacy]
OR
ProxyHTMLDocType fpi [SGML|XML]

svd B

Sets an HTML or XHTML document type declaration. p. 778
ProxyHTMLEnable On|Off Off svd B
Turns the proxy html filter on or off. p. 779
ProxyHTMLEvents attribute [attribute ...] svd B
Specify attributes to treat as scripting events. p. 779
ProxyHTMLExtended On|Off Off svd B
Determines whether to fix links in inline scripts, stylesheets, and scripting events. p. 779
ProxyHTMLFixups [lowercase] [dospath] [reset] svd B
Fixes for simple HTML errors. p. 780
ProxyHTMLInterp On|Off Off svd B
Enables per-request interpolation of PROXYHTMLURLMAP rules. p. 780
ProxyHTMLLinks element attribute [attribute2 ...] svd B
Specify HTML elements that have URL attributes to be rewritten. p. 780
ProxyHTMLMeta On|Off Off svd B
Turns on or off extra pre-parsing of metadata in HTML <head> sections. p. 781
ProxyHTMLStripComments On|Off Off svd B
Determines whether to strip HTML comments. p. 781
ProxyHTMLURLMap from-pattern to-pattern [flags] [cond] svd B
Defines a rule to rewrite HTML links p. 781
ProxyIOBufferSize bytes 8192 sv E
Determine size of internal data throughput buffer p. 738
<ProxyMatch regex> ...</ProxyMatch> sv E
Container for directives applied to regular-expression-matched proxied resources p. 738
ProxyMaxForwards number -1 sv E
Maximium number of proxies that a request can be forwarded through p. 739
ProxyPass [path] !|url [key=value [key=value ...]]
[nocanon] [interpolate] [noquery]

svd E

Maps remote servers into the local server URL-space p. 739
ProxyPassInherit On|Off On sv E
Inherit ProxyPass directives defined from the main server p. 746
ProxyPassInterpolateEnv On|Off Off svd E
Enable Environment Variable interpolation in Reverse Proxy configurations p. 746
ProxyPassMatch [regex] !|url [key=value [key=value ...]] svd E
Maps remote servers into the local server URL-space using regular expressions p. 746

12.3. DIRECTIVE QUICK REFERENCE 1035

ProxyPassReverse [path] url [interpolate] svd E
Adjusts the URL in HTTP response headers sent from a reverse proxied server p. 747
ProxyPassReverseCookieDomain internal-domain public-domain
[interpolate]

svd E

Adjusts the Domain string in Set-Cookie headers from a reverse- proxied server p. 748
ProxyPassReverseCookiePath internal-path public-path
[interpolate]

svd E

Adjusts the Path string in Set-Cookie headers from a reverse- proxied server p. 748
ProxyPreserveHost On|Off Off svd E
Use incoming Host HTTP request header for proxy request p. 749
ProxyReceiveBufferSize bytes 0 sv E
Network buffer size for proxied HTTP and FTP connections p. 749
ProxyRemote match remote-server sv E
Remote proxy used to handle certain requests p. 749
ProxyRemoteMatch regex remote-server sv E
Remote proxy used to handle requests matched by regular expressions p. 750
ProxyRequests On|Off Off sv E
Enables forward (standard) proxy requests p. 750
ProxySCGIInternalRedirect On|Off|Headername On svd E
Enable or disable internal redirect responses from the backend p. 786
ProxySCGISendfile On|Off|Headername Off svd E
Enable evaluation of X-Sendfile pseudo response header p. 786
ProxySet url key=value [key=value ...] d E
Set various Proxy balancer or member parameters p. 751
ProxySourceAddress address sv E
Set local IP address for outgoing proxy connections p. 751
ProxyStatus Off|On|Full Off sv E
Show Proxy LoadBalancer status in mod status p. 751
ProxyTimeout seconds sv E
Network timeout for proxied requests p. 752
ProxyVia On|Off|Full|Block Off sv E
Information provided in the Via HTTP response header for proxied requests p. 752
ReadmeName filename svdh B
Name of the file that will be inserted at the end of the index listing p. 521
ReceiveBufferSize bytes 0 s M
TCP receive buffer size p. 916
Redirect [status] URL-path URL svdh B
Sends an external redirect asking the client to fetch a different URL p. 419
RedirectMatch [status] regex URL svdh B
Sends an external redirect based on a regular expression match of the current URL p. 420
RedirectPermanent URL-path URL svdh B
Sends an external permanent redirect asking the client to fetch a different URL p. 421
RedirectTemp URL-path URL svdh B
Sends an external temporary redirect asking the client to fetch a different URL p. 421
ReflectorHeader inputheader [outputheader] svdh B
Reflect an input header to the output headers p. 790
RemoteIPHeader header-field sv B
Declare the header field which should be parsed for useragent IP addresses p. 792
RemoteIPInternalProxy proxy-ip|proxy-ip/subnet|hostname
...

sv B

Declare client intranet IP addresses trusted to present the RemoteIPHeader value p. 792
RemoteIPInternalProxyList filename sv B
Declare client intranet IP addresses trusted to present the RemoteIPHeader value p. 793
RemoteIPProxiesHeader HeaderFieldName sv B
Declare the header field which will record all intermediate IP addresses p. 793
RemoteIPTrustedProxy proxy-ip|proxy-ip/subnet|hostname ... sv B
Declare client intranet IP addresses trusted to present the RemoteIPHeader value p. 794
RemoteIPTrustedProxyList filename sv B
Declare client intranet IP addresses trusted to present the RemoteIPHeader value p. 794
RemoveCharset extension [extension] ... vdh B
Removes any character set associations for a set of file extensions p. 708
RemoveEncoding extension [extension] ... vdh B
Removes any content encoding associations for a set of file extensions p. 708
RemoveHandler extension [extension] ... vdh B
Removes any handler associations for a set of file extensions p. 709

1036 CHAPTER 12. GLOSSARY AND INDEX

RemoveInputFilter extension [extension] ... vdh B
Removes any input filter associations for a set of file extensions p. 709
RemoveLanguage extension [extension] ... vdh B
Removes any language associations for a set of file extensions p. 710
RemoveOutputFilter extension [extension] ... vdh B
Removes any output filter associations for a set of file extensions p. 710
RemoveType extension [extension] ... vdh B
Removes any content type associations for a set of file extensions p. 710
RequestHeader add|append|edit|edit*|merge|set|setifempty|unset
header [[expr=]value [replacement] [early|env=[!]varname|expr=expression]]

svdh E

Configure HTTP request headers p. 608
RequestReadTimeout [header=timeout[-maxtimeout][,MinRate=rate]
[body=timeout[-maxtimeout][,MinRate=rate]

sv E

Set timeout values for receiving request headers and body from client. p. 795
Require [not] entity-name [entity-name] ... dh B
Tests whether an authenticated user is authorized by an authorization provider. p. 491
<RequireAll> ... </RequireAll> dh B
Enclose a group of authorization directives of which none must fail and at least one must succeed for the enclosing directive to succeed. p.
493
<RequireAny> ... </RequireAny> dh B
Enclose a group of authorization directives of which one must succeed for the enclosing directive to succeed. p. 493
<RequireNone> ... </RequireNone> dh B
Enclose a group of authorization directives of which none must succeed for the enclosing directive to not fail. p. 494
RewriteBase URL-path dh E
Sets the base URL for per-directory rewrites p. 799
RewriteCond TestString CondPattern svdh E

Defines a condition under which rewriting will take place p. 799
RewriteEngine on|off off svdh E
Enables or disables runtime rewriting engine p. 804
RewriteMap MapName MapType:MapSource sv E
Defines a mapping function for key-lookup p. 805
RewriteOptions Options svdh E
Sets some special options for the rewrite engine p. 806
RewriteRule Pattern Substitution [flags] svdh E
Defines rules for the rewriting engine p. 807
RLimitCPU seconds|max [seconds|max] svdh C
Limits the CPU consumption of processes launched by Apache httpd children p. 397
RLimitMEM bytes|max [bytes|max] svdh C
Limits the memory consumption of processes launched by Apache httpd children p. 397
RLimitNPROC number|max [number|max] svdh C
Limits the number of processes that can be launched by processes launched by Apache httpd children p. 398
Satisfy Any|All All dh E
Interaction between host-level access control and user authentication p. 414
ScoreBoardFile file-path logs/apache runtime + s M
Location of the file used to store coordination data for the child processes p. 916
Script method cgi-script svd B
Activates a CGI script for a particular request method. p. 416
ScriptAlias URL-path file-path|directory-path sv B
Maps a URL to a filesystem location and designates the target as a CGI script p. 421
ScriptAliasMatch regex file-path|directory-path sv B
Maps a URL to a filesystem location using a regular expression and designates the target as a CGI script p. 422
ScriptInterpreterSource Registry|Registry-Strict|Script Script svdh C
Technique for locating the interpreter for CGI scripts p. 398
ScriptLog file-path sv B
Location of the CGI script error logfile p. 549
ScriptLogBuffer bytes 1024 sv B
Maximum amount of PUT or POST requests that will be recorded in the scriptlog p. 550
ScriptLogLength bytes 10385760 sv B
Size limit of the CGI script logfile p. 550
ScriptSock file-path cgisock s B
The filename prefix of the socket to use for communication with the cgi daemon p. 552
SecureListen [IP-address:]portnumber Certificate-Name
[MUTUAL]

s B

Enables SSL encryption for the specified port p. 720

12.3. DIRECTIVE QUICK REFERENCE 1037

SeeRequestTail On|Off Off s C
Determine if mod status displays the first 63 characters of a request or the last 63, assuming the request itself is greater than 63 chars.p. 399
SendBufferSize bytes 0 s M
TCP buffer size p. 916
ServerAdmin email-address|URL sv C
Email address that the server includes in error messages sent to the client p. 400
ServerAlias hostname [hostname] ... v C
Alternate names for a host used when matching requests to name-virtual hosts p. 400
ServerLimit number s M
Upper limit on configurable number of processes p. 917
ServerName [scheme://]fully-qualified-domain-name[:port] sv C
Hostname and port that the server uses to identify itself p. 401
ServerPath URL-path v C
Legacy URL pathname for a name-based virtual host that is accessed by an incompatible browser p. 402
ServerRoot directory-path /usr/local/apache s C
Base directory for the server installation p. 402
ServerSignature On|Off|EMail Off svdh C
Configures the footer on server-generated documents p. 402
ServerTokens Major|Minor|Min[imal]|Prod[uctOnly]|OS|Full Full s C
Configures the Server HTTP response header p. 403
Session On|Off Off svdh E
Enables a session for the current directory or location p. 818
SessionCookieName name attributes svdh E
Name and attributes for the RFC2109 cookie storing the session p. 822
SessionCookieName2 name attributes svdh E
Name and attributes for the RFC2965 cookie storing the session p. 822
SessionCookieRemove On|Off Off svdh E
Control for whether session cookies should be removed from incoming HTTP headers p. 822
SessionCryptoCipher name svdh X
The crypto cipher to be used to encrypt the session p. 825
SessionCryptoDriver name [param[=value]] s X
The crypto driver to be used to encrypt the session p. 825
SessionCryptoPassphrase secret [secret ...] svdh X
The key used to encrypt the session p. 826
SessionCryptoPassphraseFile filename svd X
File containing keys used to encrypt the session p. 827
SessionDBDCookieName name attributes svdh E
Name and attributes for the RFC2109 cookie storing the session ID p. 830
SessionDBDCookieName2 name attributes svdh E
Name and attributes for the RFC2965 cookie storing the session ID p. 830
SessionDBDCookieRemove On|Off On svdh E
Control for whether session ID cookies should be removed from incoming HTTP headers p. 831
SessionDBDDeleteLabel label deletesession svdh E
The SQL query to use to remove sessions from the database p. 831
SessionDBDInsertLabel label insertsession svdh E
The SQL query to use to insert sessions into the database p. 831
SessionDBDPerUser On|Off Off svdh E
Enable a per user session p. 831
SessionDBDSelectLabel label selectsession svdh E
The SQL query to use to select sessions from the database p. 832
SessionDBDUpdateLabel label updatesession svdh E
The SQL query to use to update existing sessions in the database p. 832
SessionEnv On|Off Off svdh E
Control whether the contents of the session are written to the HTTP SESSION environment variable p. 818
SessionExclude path svdh E
Define URL prefixes for which a session is ignored p. 818
SessionHeader header svdh E
Import session updates from a given HTTP response header p. 819
SessionInclude path svdh E
Define URL prefixes for which a session is valid p. 819
SessionMaxAge maxage 0 svdh E
Define a maximum age in seconds for a session p. 820
SetEnv env-variable [value] svdh B
Sets environment variables p. 582

1038 CHAPTER 12. GLOSSARY AND INDEX

SetEnvIf attribute regex [!]env-variable[=value]
[[!]env-variable[=value]] ...

svdh B

Sets environment variables based on attributes of the request p. 834
SetEnvIfExpr expr [!]env-variable[=value]
[[!]env-variable[=value]] ...

svdh B

Sets environment variables based on an ap expr expression p. 836
SetEnvIfNoCase attribute regex [!]env-variable[=value]
[[!]env-variable[=value]] ...

svdh B

Sets environment variables based on attributes of the request without respect to case p. 836
SetHandler handler-name|None svdh C
Forces all matching files to be processed by a handler p. 403
SetInputFilter filter[;filter...] svdh C
Sets the filters that will process client requests and POST input p. 404
SetOutputFilter filter[;filter...] svdh C
Sets the filters that will process responses from the server p. 405
SSIEndTag tag "–>" sv B
String that ends an include element p. 627
SSIErrorMsg message "[an error occurred + svdh B
Error message displayed when there is an SSI error p. 628
SSIETag on|off off dh B
Controls whether ETags are generated by the server. p. 628
SSILastModified on|off off dh B
Controls whether Last-Modified headers are generated by the server. p. 628
SSILegacyExprParser on|off off dh B
Enable compatibility mode for conditional expressions. p. 629
SSIStartTag tag "<!–#" sv B
String that starts an include element p. 629
SSITimeFormat formatstring "%A, %d-%b-%Y %H:%M + svdh B
Configures the format in which date strings are displayed p. 630
SSIUndefinedEcho string "(none)" svdh B
String displayed when an unset variable is echoed p. 630
SSLCACertificateFile file-path sv E
File of concatenated PEM-encoded CA Certificates for Client Auth p. 851
SSLCACertificatePath directory-path sv E
Directory of PEM-encoded CA Certificates for Client Auth p. 852
SSLCADNRequestFile file-path sv E
File of concatenated PEM-encoded CA Certificates for defining acceptable CA names p. 852
SSLCADNRequestPath directory-path sv E
Directory of PEM-encoded CA Certificates for defining acceptable CA names p. 852
SSLCARevocationCheck chain|leaf|none none sv E
Enable CRL-based revocation checking p. 853
SSLCARevocationFile file-path sv E
File of concatenated PEM-encoded CA CRLs for Client Auth p. 853
SSLCARevocationPath directory-path sv E
Directory of PEM-encoded CA CRLs for Client Auth p. 854
SSLCertificateChainFile file-path sv E
File of PEM-encoded Server CA Certificates p. 854
SSLCertificateFile file-path sv E
Server PEM-encoded X.509 certificate data file p. 855
SSLCertificateKeyFile file-path sv E
Server PEM-encoded private key file p. 855
SSLCipherSuite cipher-spec DEFAULT (depends on + svdh E
Cipher Suite available for negotiation in SSL handshake p. 856
SSLCompression on|off off sv E
Enable compression on the SSL level p. 859
SSLCryptoDevice engine builtin s E
Enable use of a cryptographic hardware accelerator p. 859
SSLEngine on|off|optional off sv E
SSL Engine Operation Switch p. 859
SSLFIPS on|off off s E
SSL FIPS mode Switch p. 860
SSLHonorCipherOrder on|off off sv E
Option to prefer the server’s cipher preference order p. 860
SSLInsecureRenegotiation on|off off sv E
Option to enable support for insecure renegotiation p. 860

12.3. DIRECTIVE QUICK REFERENCE 1039

SSLOCSDefaultResponder uri sv E
Set the default responder URI for OCSP validation p. 861
SSLOCSPEnable on|off off sv E
Enable OCSP validation of the client certificate chain p. 861
SSLOCSPOverrideResponder on|off off sv E
Force use of the default responder URI for OCSP validation p. 862
SSLOCSPResponderTimeout seconds 10 sv E
Timeout for OCSP queries p. 862
SSLOCSPResponseMaxAge seconds -1 sv E
Maximum allowable age for OCSP responses p. 862
SSLOCSPResponseTimeSkew seconds 300 sv E
Maximum allowable time skew for OCSP response validation p. 862
SSLOCSPUseRequestNonce on|off on sv E
Use a nonce within OCSP queries p. 863
SSLOpenSSLConfCmd command-name command-value sv E
Configure OpenSSL parameters through its SSL CONF API p. 863
SSLOptions [+|-]option ... svdh E
Configure various SSL engine run-time options p. 863
SSLPassPhraseDialog type builtin s E
Type of pass phrase dialog for encrypted private keys p. 865
SSLProtocol [+|-]protocol ... all sv E
Configure usable SSL/TLS protocol versions p. 866
SSLProxyCACertificateFile file-path sv E
File of concatenated PEM-encoded CA Certificates for Remote Server Auth p. 866
SSLProxyCACertificatePath directory-path sv E
Directory of PEM-encoded CA Certificates for Remote Server Auth p. 867
SSLProxyCARevocationCheck chain|leaf|none none sv E
Enable CRL-based revocation checking for Remote Server Auth p. 867
SSLProxyCARevocationFile file-path sv E
File of concatenated PEM-encoded CA CRLs for Remote Server Auth p. 868
SSLProxyCARevocationPath directory-path sv E
Directory of PEM-encoded CA CRLs for Remote Server Auth p. 868
SSLProxyCheckPeerCN on|off on sv E
Whether to check the remote server certificate’s CN field p. 868
SSLProxyCheckPeerExpire on|off on sv E
Whether to check if remote server certificate is expired p. 869
SSLProxyCheckPeerName on|off on sv E
Configure host name checking for remote server certificates p. 869
SSLProxyCipherSuite cipher-spec ALL:!ADH:RC4+RSA:+H + svdh E
Cipher Suite available for negotiation in SSL proxy handshake p. 869
SSLProxyEngine on|off off sv E
SSL Proxy Engine Operation Switch p. 870
SSLProxyMachineCertificateChainFile filename s E
File of concatenated PEM-encoded CA certificates to be used by the proxy for choosing a certificate p. 870
SSLProxyMachineCertificateFile filename s E
File of concatenated PEM-encoded client certificates and keys to be used by the proxy p. 871
SSLProxyMachineCertificatePath directory s E
Directory of PEM-encoded client certificates and keys to be used by the proxy p. 871
SSLProxyProtocol [+|-]protocol ... all sv E
Configure usable SSL protocol flavors for proxy usage p. 871
SSLProxyVerify level none sv E
Type of remote server Certificate verification p. 872
SSLProxyVerifyDepth number 1 sv E
Maximum depth of CA Certificates in Remote Server Certificate verification p. 872
SSLRandomSeed context source [bytes] s E
Pseudo Random Number Generator (PRNG) seeding source p. 873
SSLRenegBufferSize bytes 131072 dh E
Set the size for the SSL renegotiation buffer p. 874
SSLRequire expression dh E
Allow access only when an arbitrarily complex boolean expression is true p. 874
SSLRequireSSL dh E
Deny access when SSL is not used for the HTTP request p. 876
SSLSessionCache type none s E
Type of the global/inter-process SSL Session Cache p. 876

1040 CHAPTER 12. GLOSSARY AND INDEX

SSLSessionCacheTimeout seconds 300 sv E
Number of seconds before an SSL session expires in the Session Cache p. 877
SSLSessionTicketKeyFile file-path sv E
Persistent encryption/decryption key for TLS session tickets p. 878
SSLSessionTickets on|off on sv E
Enable or disable use of TLS session tickets p. 878
SSLSRPUnknownUserSeed secret-string sv E
SRP unknown user seed p. 879
SSLSRPVerifierFile file-path sv E
Path to SRP verifier file p. 879
SSLStaplingCache type s E
Configures the OCSP stapling cache p. 879
SSLStaplingErrorCacheTimeout seconds 600 sv E
Number of seconds before expiring invalid responses in the OCSP stapling cache p. 880
SSLStaplingFakeTryLater on|off on sv E
Synthesize "tryLater" responses for failed OCSP stapling queries p. 880
SSLStaplingForceURL uri sv E
Override the OCSP responder URI specified in the certificate’s AIA extension p. 880
SSLStaplingResponderTimeout seconds 10 sv E
Timeout for OCSP stapling queries p. 880
SSLStaplingResponseMaxAge seconds -1 sv E
Maximum allowable age for OCSP stapling responses p. 881
SSLStaplingResponseTimeSkew seconds 300 sv E
Maximum allowable time skew for OCSP stapling response validation p. 881
SSLStaplingReturnResponderErrors on|off on sv E
Pass stapling related OCSP errors on to client p. 881
SSLStaplingStandardCacheTimeout seconds 3600 sv E
Number of seconds before expiring responses in the OCSP stapling cache p. 881
SSLStrictSNIVHostCheck on|off off sv E
Whether to allow non-SNI clients to access a name-based virtual host. p. 882
SSLUserName varname sdh E
Variable name to determine user name p. 882
SSLUseStapling on|off off sv E
Enable stapling of OCSP responses in the TLS handshake p. 882
SSLVerifyClient level none svdh E
Type of Client Certificate verification p. 883
SSLVerifyDepth number 1 svdh E
Maximum depth of CA Certificates in Client Certificate verification p. 884
StartServers number s M
Number of child server processes created at startup p. 917
StartThreads number s M
Number of threads created on startup p. 918
Substitute s/pattern/substitution/[infq] dh E
Pattern to filter the response content p. 887
SubstituteMaxLineLength bytes(b|B|k|K|m|M|g|G) 1m dh E
Set the maximum line size p. 888
Suexec On|Off s B
Enable or disable the suEXEC feature p. 893
SuexecUserGroup User Group sv E
User and group for CGI programs to run as p. 889
ThreadLimit number s M
Sets the upper limit on the configurable number of threads per child process p. 918
ThreadsPerChild number s M
Number of threads created by each child process p. 918
ThreadStackSize size s M
The size in bytes of the stack used by threads handling client connections p. 919
TimeOut seconds 60 sv C
Amount of time the server will wait for certain events before failing a request p. 405
TraceEnable [on|off|extended] on sv C
Determines the behavior on TRACE requests p. 405
TransferLog file|pipe sv B
Specify location of a log file p. 661
TypesConfig file-path conf/mime.types s B
The location of the mime.types file p. 711

12.3. DIRECTIVE QUICK REFERENCE 1041

UnDefine parameter-name s C
Undefine the existence of a variable p. 406
UndefMacro name svd B
Undefine a macro p. 697
UnsetEnv env-variable [env-variable] ... svdh B
Removes variables from the environment p. 583
Use name [value1 ... valueN] svd B
Use a macro p. 698
UseCanonicalName On|Off|DNS Off svd C
Configures how the server determines its own name and port p. 406
UseCanonicalPhysicalPort On|Off Off svd C
Configures how the server determines its own port p. 407
User unix-userid #-1 s B
The userid under which the server will answer requests p. 893
UserDir directory-filename [directory-filename] ... sv B
Location of the user-specific directories p. 895
VHostCGIMode On|Off|Secure On v X
Determines whether the virtualhost can run subprocesses, and the privileges available to subprocesses. p. 723
VHostPrivs [+-]?privilege-name [[+-]?privilege-name] ... v X
Assign arbitrary privileges to subprocesses created by a virtual host. p. 724
VHostGroup unix-groupid v X
Sets the Group ID under which a virtual host runs. p. 724
VHostPrivs [+-]?privilege-name [[+-]?privilege-name] ... v X
Assign arbitrary privileges to a virtual host. p. 725
VHostSecure On|Off On v X
Determines whether the server runs with enhanced security for the virtualhost. p. 725
VHostUser unix-userid v X
Sets the User ID under which a virtual host runs. p. 726
VirtualDocumentRoot interpolated-directory|none none sv E
Dynamically configure the location of the document root for a given virtual host p. 904
VirtualDocumentRootIP interpolated-directory|none none sv E
Dynamically configure the location of the document root for a given virtual host p. 904
<VirtualHost addr[:port] [addr[:port]] ...> ...
</VirtualHost>

s C

Contains directives that apply only to a specific hostname or IP address p. 408
VirtualScriptAlias interpolated-directory|none none sv E
Dynamically configure the location of the CGI directory for a given virtual host p. 905
VirtualScriptAliasIP interpolated-directory|none none sv E
Dynamically configure the location of the CGI directory for a given virtual host p. 905
WatchdogInterval number-of-seconds 1 s B
Watchdog interval in seconds p. 906
XBitHack on|off|full off svdh B
Parse SSI directives in files with the execute bit set p. 630
xml2EncAlias charset alias [alias ...] s B
Recognise Aliases for encoding values p. 908
xml2EncDefault name svdh B
Sets a default encoding to assume when absolutely no information can be automatically detected p. 908
xml2StartParse element [element ...] svdh B
Advise the parser to skip leading junk. p. 909

	Release Notes
	Upgrading to 2.4 from 2.2
	Overview of new features in Apache HTTP Server 2.4
	Overview of new features in Apache HTTP Server 2.2
	Overview of new features in Apache HTTP Server 2.0
	The Apache License, Version 2.0

	Using the Apache HTTP Server
	Compiling and Installing
	Starting Apache
	Stopping and Restarting Apache HTTP Server
	Configuration Files
	Configuration Sections
	Caching Guide
	Server-Wide Configuration
	Log Files
	Mapping URLs to Filesystem Locations
	Dynamic Shared Object (DSO) Support
	Content Negotiation
	Custom Error Responses
	Binding to Addresses and Ports
	Multi-Processing Modules (MPMs)
	Environment Variables in Apache
	Expressions in Apache HTTP Server
	Apache's Handler Use
	Filters
	Shared Object Cache in Apache HTTP Server
	suEXEC Support
	Issues Regarding DNS and Apache HTTP Server

	Apache Virtual Host documentation
	Apache Virtual Host documentation
	Name-based Virtual Host Support
	Apache IP-based Virtual Host Support
	Dynamically Configured Mass Virtual Hosting
	VirtualHost Examples
	An In-Depth Discussion of Virtual Host Matching
	File Descriptor Limits

	URL Rewriting Guide
	Apache mod_rewrite
	Apache mod_rewrite Introduction
	Redirecting and Remapping with mod_rewrite
	Using mod_rewrite to control access
	Dynamic mass virtual hosts with mod_rewrite
	Using mod_rewrite for Proxying
	Using RewriteMap
	Advanced Techniques with mod_rewrite
	When not to use mod_rewrite
	RewriteRule Flags
	Apache mod_rewrite Technical Details

	Apache SSL/TLS Encryption
	Apache SSL/TLS Encryption
	SSL/TLS Strong Encryption: An Introduction
	SSL/TLS Strong Encryption: Compatibility
	SSL/TLS Strong Encryption: How-To
	SSL/TLS Strong Encryption: FAQ

	Guides, Tutorials, and HowTos
	How-To / Tutorials
	Authentication and Authorization
	Access Control
	Apache Tutorial: Dynamic Content with CGI
	Apache httpd Tutorial: Introduction to Server Side Includes
	Apache HTTP Server Tutorial: .htaccess files
	Per-user web directories

	Platform-specific Notes
	Platform Specific Notes
	Using Apache HTTP Server on Microsoft Windows
	Compiling Apache for Microsoft Windows
	Using Apache With RPM Based Systems (Redhat / CentOS / Fedora)
	Using Apache With Novell NetWare
	Running a High-Performance Web Server on HPUX
	The Apache EBCDIC Port

	Apache HTTP Server and Supporting Programs
	Server and Supporting Programs
	httpd - Apache Hypertext Transfer Protocol Server
	ab - Apache HTTP server benchmarking tool
	apachectl - Apache HTTP Server Control Interface
	apxs - APache eXtenSion tool
	configure - Configure the source tree
	dbmmanage - Manage user authentication files in DBM format
	fcgistarter - Start a FastCGI program
	htcacheclean - Clean up the disk cache
	htdbm - Manipulate DBM password databases
	htdigest - manage user files for digest authentication
	htpasswd - Manage user files for basic authentication
	httxt2dbm - Generate dbm files for use with RewriteMap
	logresolve - Resolve IP-addresses to hostnames in Apache log files
	log_server_status - Log periodic status summaries
	rotatelogs - Piped logging program to rotate Apache logs
	split-logfile - Split up multi-vhost logfiles
	suexec - Switch user before executing external programs
	Other Programs

	Apache Miscellaneous Documentation
	Apache Miscellaneous Documentation
	Apache Performance Tuning
	Security Tips
	Relevant Standards
	Password Formats

	Apache modules
	Terms Used to Describe Modules
	Terms Used to Describe Directives
	Apache Module core
	Apache Module mod_access_compat
	Apache Module mod_actions
	Apache Module mod_alias
	Apache Module mod_allowmethods
	Apache Module mod_asis
	Apache Module mod_auth_basic
	Apache Module mod_auth_digest
	Apache Module mod_auth_form
	Apache Module mod_authn_anon
	Apache Module mod_authn_core
	Apache Module mod_authn_dbd
	Apache Module mod_authn_dbm
	Apache Module mod_authn_file
	Apache Module mod_authn_socache
	Apache Module mod_authnz_fcgi
	Apache Module mod_authnz_ldap
	Apache Module mod_authz_core
	Apache Module mod_authz_dbd
	Apache Module mod_authz_dbm
	Apache Module mod_authz_groupfile
	Apache Module mod_authz_host
	Apache Module mod_authz_owner
	Apache Module mod_authz_user
	Apache Module mod_autoindex
	Apache Module mod_buffer
	Apache Module mod_cache
	Apache Module mod_cache_disk
	Apache Module mod_cache_socache
	Apache Module mod_cern_meta
	Apache Module mod_cgi
	Apache Module mod_cgid
	Apache Module mod_charset_lite
	Apache Module mod_data
	Apache Module mod_dav
	Apache Module mod_dav_fs
	Apache Module mod_dav_lock
	Apache Module mod_dbd
	Apache Module mod_deflate
	Apache Module mod_dialup
	Apache Module mod_dir
	Apache Module mod_dumpio
	Apache Module mod_echo
	Apache Module mod_env
	Apache Module mod_example_hooks
	Apache Module mod_expires
	Apache Module mod_ext_filter
	Apache Module mod_file_cache
	Apache Module mod_filter
	Apache Module mod_headers
	Apache Module mod_heartbeat
	Apache Module mod_heartmonitor
	Apache Module mod_ident
	Apache Module mod_imagemap
	Apache Module mod_include
	Apache Module mod_info
	Apache Module mod_isapi
	Apache Module mod_lbmethod_bybusyness
	Apache Module mod_lbmethod_byrequests
	Apache Module mod_lbmethod_bytraffic
	Apache Module mod_lbmethod_heartbeat
	Apache Module mod_ldap
	Apache Module mod_log_config
	Apache Module mod_log_debug
	Apache Module mod_log_forensic
	Apache Module mod_logio
	Apache Module mod_lua
	Apache Module mod_macro
	Apache Module mod_mime
	Apache Module mod_mime_magic
	Apache Module mod_negotiation
	Apache Module mod_nw_ssl
	Apache Module mod_privileges
	Apache Module mod_proxy
	Apache Module mod_proxy_ajp
	Apache Module mod_proxy_balancer
	Apache Module mod_proxy_connect
	Apache Module mod_proxy_express
	Apache Module mod_proxy_fcgi
	Apache Module mod_proxy_fdpass
	Apache Module mod_proxy_ftp
	Apache Module mod_proxy_html
	Apache Module mod_proxy_http
	Apache Module mod_proxy_scgi
	Apache Module mod_proxy_wstunnel
	Apache Module mod_ratelimit
	Apache Module mod_reflector
	Apache Module mod_remoteip
	Apache Module mod_reqtimeout
	Apache Module mod_request
	Apache Module mod_rewrite
	Apache Module mod_sed
	Apache Module mod_session
	Apache Module mod_session_cookie
	Apache Module mod_session_crypto
	Apache Module mod_session_dbd
	Apache Module mod_setenvif
	Apache Module mod_slotmem_plain
	Apache Module mod_slotmem_shm
	Apache Module mod_so
	Apache Module mod_socache_dbm
	Apache Module mod_socache_dc
	Apache Module mod_socache_memcache
	Apache Module mod_socache_shmcb
	Apache Module mod_speling
	Apache Module mod_ssl
	Apache Module mod_status
	Apache Module mod_substitute
	Apache Module mod_suexec
	Apache Module mod_unique_id
	Apache Module mod_unixd
	Apache Module mod_userdir
	Apache Module mod_usertrack
	Apache Module mod_version
	Apache Module mod_vhost_alias
	Apache Module mod_watchdog
	Apache Module mod_xml2enc
	Apache Module mpm_common
	Apache Module event
	Apache Module mpm_netware
	Apache Module mpmt_os2
	Apache Module prefork
	Apache Module mpm_winnt
	Apache Module worker

	Developer Documentation
	Developer Documentation for the Apache HTTP Server 2.4
	Apache 1.3 API notes
	API Changes in Apache HTTP Server 2.4 since 2.2
	Developing modules for the Apache HTTP Server 2.4
	Documenting code in Apache 2.4
	Hook Functions in the Apache HTTP Server 2.x
	Converting Modules from Apache 1.3 to Apache 2.0
	Request Processing in the Apache HTTP Server 2.x
	How filters work in Apache 2.0
	Guide to writing output filters
	Apache HTTP Server 2.x Thread Safety Issues

	Glossary and Index
	Glossary
	Module Index
	Directive Quick Reference

