
An Informed Search for the WWW using a Hybrid Implementation of A*

By Daniel J. Sullivan

For I460/I461 Senior Thesis Requirements

ABSTRACT: This work explores the application of the A* heuristic search function to the

problem of document retrieval and classification based upon a relevancy criterion. This work

includes a modification of A* and proposes a means of determining relevancy as a function of

independent textual mappings.

Table of Contents

SECTION PAGE

1.0 Background 3

1.1 AI and Expert Systems 3-4

1.2 Intelligent Agents and their Users 4-5

1.3 Web Spiders 5-7

1.4 The Problem of Information Discovery 7

2.0 Statement of the Problem 8

3.0 Methodology 9

3.1 Goal Nodes for Document Search 9-12

3.2 Hybrid A* Implementation of Heuristic

Search for Documents1 13-15

3.3 Document Relevance Criteria for

Heuristic Search 15-20

4.0 Results 21

4.1 A* Run Data 21-27

4.2 Maximum Spanning Tree Mapping Data 27-29

5.0 Discussion and Conclusions 30

5.1 Observations 30-31

5.2 Lessons Learned 31-32

5.3 Future Work 32-33

5.4 Conclusion 33-34

6.0 Experimental 35

6.1 Program Design 35-37

6.2 Maximum Spanning Tree Algorithm 37-38

7.0 Bibliography 39-42

8.0 Perl SA Source Code

9.0 C++ Graph Source Code

1 A* is pronounced “a star” for purposes of discussion.

2

1.0 – Background

The topic of this work builds upon the history of intelligent systems in the context of

internet and explores these related areas as a prelude to the main problem – the search for useful

and relevant information. In providing background for this story, this work will limit the

discussion of this topic to those relevant events taking place between the end of WWII and the

present time. A thorough exploration of the history of Information Retrieval (IR) would begin

with Aristotle and catalog the wider history of indexing and classification - which would be

beyond the scope of this work.2 For this work, however, just enough of the history will be

presented.

1.1 – AI and Expert Systems

Allen Turing, considered to be one of the principal founding fathers of computer science,

began thinking about computers outside the context of computation. Before Turing and during

his professional career, automated systems for information processing were in their infancy.

Systems like the ENIAC (the first electronic computer) and Charles Babbage’s calculating

machine (developed a century earlier) were mainly directed at solving arithmetic problems.

ENIAC3 was built to calculate trajectories for artillery, which was a human-resource intensive

process up to that point.4 Babbage was fundamentally interested in the same problem – the Royal

Navy needed to calculate navigation tables and Babbage saw this process as something a

machine could accomplish. Turing provided computer science with the theoretical foundation for

progress, and his idealization of a computer (the turing machine) is in many ways the first system

for searching information.5 Turing saw potential far beyond mere calculation, and so in many

ways he is also the father of artificial intelligence, or AI6.

Artificial Intelligence would not be used as a term until 1956, when John McCarthy first

used the term in a letter submitted to his peers – a letter which proposed a conference on the

matter of AI. AI began as an exploration of human-like problem solving and learning –

2 [Belew, 2000, pg. xv]
3 ENIAC (electronic numerical integrator and computer), was designed and constructed during WWII. It was only
programmable in the sense that you could rewire its logic circuits to solve new problems.
4 [Luger, 2002, pgs. 10-11]
5 Turing machines are a mathematical abstraction, but in most ways they represent the basic and critical components
of any modern computer (this is especially interesting, since this model was developed in the 1930’s). Since they
operate with an external storage (or tape) they also have some of the aspects of the search agent about them. The
universe of a turing machine is simplified, but it is a powerful metaphor for any information processing system.
6 Turing proposed the now famous test (or thought experiment) which would help a researcher determine whether a
computer is intelligent. A person at a terminal, after a process of asking questions to two unknown agents (one
computer and one human), is asked to decide which agent was human and which was not. If the person does not
know the difference or makes an incorrect choice (according to Turing) you must grant that the computer is
intelligent.

3

languages such as LISP7 were developed to assist in the process. By the late 1960’s a subset of

AI research was beginning to grow – the first expert systems 8 were proposed, designed and

programmed.

An expert system is a program that internalizes and uses some domain specific

knowledge base.9 It can be programmed in almost any language, but languages have been

designed almost solely for the development of expert systems.10 Expert systems are limited to a

narrow problem domain. A knowledge engineer (expert system designer) can gather as much

explicit and implicit knowledge as possible, from domain experts (e.g. Doctors, Mechanics, and

Military Professionals), and program the computer with strategies for finding the correct solution

to a particular problem. The computer is restricted to whatever knowledge base it possesses and

with the exception of probabilistic reasoning it cannot infer anything that is not in its knowledge

base. Expert systems can appear to be creative problem solvers, but they are really procedural

problem solvers and cannot make inferences outside of their narrowly defined domain.11

1.2 – Intelligent Agents and their Users

During the 1980’s, changes in AI, computer science and other fields began affecting our

understanding of human problem solving, some of this revolved around the field of cognitive

science.12 Fuzzy Logic, for instance, proposed a system of approximate reasoning where

solutions were not solely true or false. Chaos Theory described a world of complex (and

apparently random) interactions which enabled at least the perception of stability. And, greater

understanding of the architecture of the human brain gave scientists an alternative to the

previously popular symbol/algorithm focus of problem solving. Neural Networks would impact

this quest in two ways: first by changing the focus of algorithm development and second by

showing that part of the problem may be the lack of parallelism in the architecture itself. A few

7 LISP (List Processing) is a language which is purely functional in nature. To achieve iteration, a function must
“call-itself” (recursion).
8 An expert system is a computer program designed to make correct decisions within a narrow problem domain, and
it is expected that its decisions will be as good as a human agent. Many of these systems are in fact collections of
subsystems (databases, programs, OS) that are designed to work together to produce intelligent answers to problems.
Often these systems are programmed in specialized knowledge representation languages like PROLOG.
9 You can think of a knowledge base as a set of rules and facts. These rules and facts enable a computer to reason
logically about a problem and to derive conclusions that are similar to those which humans would derive. Within the
small world of the computer’s knowledge base, the computer can be quite competent at a number of different tasks.
10 PROLOG (Programming Logic) was developed during the late 1970’s and early 1980’s. A version of this system
runs on UNIX platforms today called XSB. The syntax of this language is
11 [Luger, 2002, pgs. 258-262]
12 Cognitive science is an extension of what began as cognitive psychology. This trend began almost 50 years ago
during the period when behaviorism (stimulus – response) had its greatest influence. Instead of taking the black-box
approach to human intelligence, cognitive researchers are interested in the internal representations and processes by
which intelligent minds solve problems.

4

researchers began to think more in terms of artificial life.13 This view was further affected by the

coming of pervasive networks, most notably the arrival of the WWW14 (World Wide Web). The

web presented, and still presents, an almost ideal environment within which to place intelligent

agents.15

Intelligent agents are software designed to assist users and also act on their behalf. They

are like expert systems in that they are narrow in scope and targeted to a particular user/problem

domain; however, they are designed to learn from the user and they are designed to be semi-

autonomous.16 Where the expert systems of the past were thought of as completely autonomous,

these systems are seen in the context of their relation to human beings and how they collaborate

with these human users. To formally state the distinction; expert systems mimic human thought

and do so statically with explicit decision rules within a specific domain. Intelligent agents learn

from people and do so dynamically using various design techniques. They are envisioned as

partners in problem solving.17

1.3 – Web Spiders18

A web spider is a special kind of agent. Actually, it is designed to be much more

autonomous than some other kinds of agents. Search engine providers, such as Google19, design

spiders to find new links and retrieve enough information to enable some kind of indexing by the

search engine. The nature of this work is in some ways reminiscent of Babbage’s calculating

machine – it is repetitive, and at times formulaic. A better analogy may be that of the late 19th

Century factory worker who simply sits next to a lever and pulls it periodically. Apparently,

computers are not yet conscious, and are appropriate for this kind of boring work.

Internet search companies like Yahoo developed solutions to this problem during the web

boom of the late 90’s. Their business model required them to solicit users to submit the user’s

13 Artificial Life is a general category of experimentation based upon researcher methods which simulate the
environment and constraints of living organisms. In these cases, it is evolution which is often the target and the
means by which the intelligent systems improve.
14 The WWW, or World Wide Web, is really a heterogeneous mixture of technologies which enable the sharing of
files and access to servers. It began solely as a means of sharing files and linking them together but it has become a
world encompassing domain. Since any reasonable description could be a paper by itself, I will avoid going into too
much detail here. Important aspects of this history include the history of its progenitors – DARPANET and the
internet.
15 [Maes, 1995, pgs. 1-4]
16 [Maes, 1994, pgs. 1-7]
17 [Rhodes and Starner, 1996, pgs. 1-7]
18 The term web spider is synonymous with web crawler. The reason for calling these systems spiders was because
of a notion of these programs traversing the web, on their own, like a spider. This is not what is actually taking
place. Web spiders are much more like telephone auto-dialers, with intelligence, and they have a purpose similar to
that of the telemarketer or telephone researcher fishing for information about a person. Where telephone researchers
want to map the demographic pattern, web spiders seek to map the information domain. Spiders surf the web, but
they do so within the narrow confines of what intelligence they possess.
19 Google is a company specializing in search engine technology.

5

website address, offer paid web services to companies and individuals (and free web services),

and build applications that would discover and help categorize web sites. In addition to this, and

other proposed services, these companies constructed (and still construct) complex ontologies in

which to place all of this information.

One possible solution to this problem is the use of standardized markup languages which

provide additional indications of meaning, like RDF (Resource Description Framework).20 When

the WWW was in its infancy, Tim Berners-Lee (and others) gave us the means to make the

technology of the internet more flexible and accessible to ordinary people. There have been

many forces which have made access to the WWW more democratic. Because of the yearly

decrease in the cost of computing (especially relative to computing power), computers are

becoming affordable to even the lowest income Americans. Unlike the printing press, the rich

will not monopolize this technology and it is already having the effect of changing the rules of

human communication. While all of this expansion of communication and openness is true, rules

and standards must be followed to make the system work.21

The value of standard markups is beyond the scope of this work, but it is arguable that

this standard should be limited to a practical minimum; otherwise we could spend a tremendous

amount of time identifying the meanings of these documents and updating these meanings.

Ultimately it is akin to a Ptolemaic22 adjustment and as we consistently extend the labeling, we

may be ignoring a more long term solution – the development of effective information agents

that assist and cooperate with the user to find relevant information.23

Organizations are faced with the same problem which plagues individuals: too much

information with few, if any, useful and effective means of prioritizing its use. More standard

operating procedures produced by information technology professionals might off-set some of

this disorganization. Human beings are creative thinkers. Procedures can be useful in addressing

some of these problems, but it is unlikely that the solution to the problem is more structure and

restrictions on the creative expression of people.24

1.4 – The Problem of Information Discovery

The problem domain of this work is directly related to scholarship. As an example, the

work of students researching and writing term papers is tied to the methods and practice of

20 [WW3C 1999, (internet document)]
21 [Berners-Lee, 1999]
22 Ptolemy developed an astronomical theory in ancient times and medieval theologians and philosophers made
adjustments to the system so it could keep up with current facts – rather than simply developing a new theory.
23 [Berners-Lee, 1999, pgs. 177-179] **I think Berners-Lee clearly contends that this is a two pronged strategy,
develop standards of markup which enable a semantic web and develop effective search agents to traverse and to
analyze this environment.
24 [Fayyad, Piatetsky-Shapiro and Smyth, 1996, pgs. 27-30]

6

information discovery. Even with the changes the internet has brought, the problem of finding

relevant information has not changed that much. Libraries are still necessary and the old-

fashioned methods are still important because there is no quality control in cyberspace.25

This work addresses some of the design issues involving the abstract idealization of a

Search Agent26 (SA). While certain aspects of this work address specific problems, it is

important to keep in mind that the data itself can be treated generically from the standpoint of the

SA. The SA is given a sample or a request, and it is the job of the SA to find additional

information which is related in some well defined way. Because of the complexity of the subject,

and the time constraints of this research project, many interesting aspects of this problem are not

explored. Those issues not explored will be left for future work.

2.0 – Statement of the Problem

The general problem domain is finding and retrieving useful information. This work

addresses this problem with respect to one kind of WWW medium – HTML documents.27 This

work explores an automated approach to seeking information in the WWW. There are many

approaches to this problem, so the scope has been limited to the application of search algorithms

developed by AI researchers.

The thesis of this work is the following:

Searching the WWW for relevant information is described in this work as an instance

of the graph search problem, and as such it is possible to apply previously developed informed

search techniques which use a domain specific heuristic.

In this kind of search there is no clear, single ‘goal state’. Without a single identifiable

goal state, there may be multiple states or clusters of acceptable states.28 This entire search is

constrained by the amount of information gained and the resources expended. In contrast, this

25 This is a generalization. Yahoo and Google (and all the others) stake a claim to doing the best job possible. Given
the circumstances and the lack of any history of this kind of work it is unfair to be too critical. But the notion of
Quality Information is new. To some extent, the Quality revolution has not yet impacted the information revolution.
26 A search agent is a very general notion, it is specific to the problem of search, but the domain may not be an
information space. The domain of search can be any complex set of states, each of which may or may not contain
something the agent needs.
27 HTML is an abbreviation for Hyper Text Markup Language. The development of this formatting language
28 Acceptable, in this context, can only be defined as a result the user is satisfied with. There are many factors which
go into a user’s interests and profile which are beyond the scope of this work, but these factors would help to define
in a systematic way a reasonable definition of ‘acceptable’.

7

work describes one heuristic search solution which is appropriate to this problem domain and

which accommodates the potential of many goal states.

3.0 – Methodology

This section explores the design of a search heuristic used to evaluate best moves for the

SA (Search Agent). The set of search algorithms to be investigated are the informed or

heuristic29 search techniques. Unlike the DFS (Depth First Search) or BFS (Breadth First

Search), informed searches use knowledge about the domain to help in determining the next best

move. A* search is one kind of algorithm in this class. A* evaluates next best moves based upon

two conditions, the current cost of the search [G] and the expected cost to completion [H] from

the current node. However, A* is not intended to work in environments where there is no clearly

defined goal state or where there is no fixed or well understood admissibility constraints. Put

another way, when human agents search the WWW, they don’t always know if they have

reached their goal, or they may not immediately understand the value of information found.

There may be no way of knowing if a human agent retrieved the most relevant information for

the least cost without a great deal of study. To simplify the problem of cost, this work will use

time as the primary economic factor in the process of search. Human agents typically use time as

a constraint on a search and as a means of evaluating their performance. 30

3.1 - Goal Nodes for Document Search
29 Heuristic: basically this is a method or rule of thumb which is not guaranteed to solve the problem, but will solve a
class of problems in a domain faster than the algorithmic approach. It is like a shortcut, but often shortcuts can lead
us into the wrong direction.
30 There are many resources being consumed by agents (human or computer) while searching a file space (like the
internet). But most of these costs can be accounted for in terms of time. To simplify my implementation of A* I
have decided to use time as the principal cost measure accounted for.

8

Original Sample Document

Disconnected Document set

Figure 1: One Connected Cluster and Two Disconnected subsets

Disconnected Document set

A

B

C
Document Relationships

The algorithm being discussed uses information gained from an initial sample (or

samples) to generate the first set of nodes (WWW based html documents) to visit. What we are

interested in are those documents which appear similar to the initial sample; this similarity will

be based upon a number of factors. The principal set of factors will be discussed in dept in

section 3.3.

What does it means to reach a goal while searching for information? It probably doesn’t

mean retrieving a single relevant document; otherwise a great mass of information would be

discarded.31 It can be intuitively suggested that there is more than one document published to the

internet which would be similar to our sample - with varying degrees of similarity. Clearly, the

target of our search is a set of documents which are similar, but is there any reasonable way to

determine how large this set is and whether it is all contained in one connected graph? (See

Figure 1 below)

Figure 1 is an abstract description of what may be the state of document linkage in the

WWW and so it is conjecture. This work proposes, for this problem domain, that there are large

sets (or networks) of files which are connected (associated by some linking mechanism) and

contain like information, but the set of all documents similar to a single document is probably

not connected (or ordered).32 This WWW’s ordering mechanism is not based on a universal

31 In this case we are assuming a search where what the agent wants is raw information related to a topic and not
necessarily one specific file or document. To find a specific piece of information would be, in many ways, a
different problem.
32 There is a set of all html documents H, and a set of related documents RD  H. For RD, there is a set of all links
retrieved from elements in RD and this set is built using the link from the document in RD (the link for this page)
and the links present on the page as an ordered pair (a,b), we call this set LK. My argument is that there is no
relation on LK, where xRx achieves transitive closure. This is a conjecture, but I think it guarantees that there really
is no way of simply traversing links and retrieving all related documents. However, since there are multiple

9

ontology, but rather is a partially ordered heterogeneous set of information. In addition to this,

there may not be any guarantee of knowing what set constitutes enough relevant information for

the SA to determine it has reached its goal. However, the process of getting this related material

seems to be a search in the purest sense – a search without well defined closure. Sets A, B and C

in figure 1 may each represent acceptable sets of information or maybe only the union of these

would be acceptable; in either case this is not simply a problem of finding a goal state.

The goal state for our proposed SA is the complete retrieval of one set of relevant

documents. The following are possible halting conditions for the SA and are not equivalent to

goal states where the SA has achieved its best path solution:

1. Maximum Depth: this would be calculated as the number of levels of expansion, which
in the case of the WWW may not be useful. Considering that the branching factor is both
unpredictable and probably unmanageable.

2. Maximum Number of Visits (downloads): this would be very straight forward and
would allow the user to control the total number of connections. If a visit includes
successful and unsuccessful connections then there would be absolute control of the
number of steps the SA takes.

3. Maximum Time Limit: given the unpredictability of connecting to sites on the internet,
this may be the best and most complete method of control. A central time clock can
represent total cost and ensure that the SA does not simply get locked up on a particular
search.

4. File Memory Usage Limit: it may be critical to limit the number of bytes received as a
result of a connection. This may not be the best method to control search at the highest
level but might indicate a means of control at a lower level to prevent certain processes
from overloading file space.

5. Constant User Supervision and Control: if the SA is bundled as part of a total
computer-user system, then there could be direct control of the agent on a monitoring
basis. This kind of control would be related to the others but would involve the user at
critical points to select or reject paths, and to potentially halt the SA.

None of the triggers mentioned for halting the program gives a justification related to the

problem, they are subjective/context limits based upon the needs of the user. They are simply

means of stopping the SA, not of determining why the search should be stopped. The goal of a

human agent searching the web is to find as much relevant material as possible, given a finite

amount of time. So, the method which provides the most relevant material over time may be the

best. The user will not likely know what this value is, but it may not be a constant. Yet, it is

unrelated documents that link these subsets, there is transitive closure on the whole – as we would expect in a bi-
partite graph. This is an oversimplification, but if we think of this as a bipartite problem, then to reach transitive
closure means to leave the relevant sub-graph and branch into materials less relevant to get back to more relevant
material. I say this is a bipartite graph, because we might conceive of two different kinds of nodes, nodes of interest
and those that are of no interest. So, there may be a path leading to closure, but it must traverse both kinds of nodes.

10

conceivable that no system will perform better than perfection. So, maybe we should consider

the goal state for an SA not as a place reached but rather as an amount of work performed given

the constraint of time.33

A perfect system which only locates relevant materials and never gets side-tracked could

never do better than the band-width of its perception. Humans, who make mistakes, are limited

by the amount of information over time they can process. As part of this heuristic, we are going

to assume that the number of bytes over time of all relevant materials will be [(network

bandwidth)*time] for a perfect agent. Network bandwidth will vary, so for this example I am

going to assume a value of 50 kilobytes per second. This is an arbitrary value, and a better value

should be chosen based upon the real capabilities of a network. For this discussion, the following

assumptions are made; 1) network bandwidth is 50k/s, 2) a perfect agent would only select

related materials, 3) we will work with time in terms of seconds, 4) for a perfect agent, the total

information retrieved is roughly bandwidth multiplied by time.

We may therefore assume that the best path for information searching is a value of

retrieval which comes very close to the actual bandwidth of the information system. To make

this experimental model simpler and more flexible, we will accept real performance that is a

significant portion of best-performance and set this as our working best-path. This is the

adjustment gamma () and say that:  = 1/x where x is in R and is a number greater than or

equal to 1. Or, gamma will never be less than 0 or greater than 1. By multiplying gamma by best

performance, we end up with a best-performance adjusted that can be modified as a reasonable

admissibility constraint.

Best Path Adjusted (BPA) equals (bandwidth * time * ), where 0 <  <= 1, this should

never yield a value better than the perfect performance. This “path” which is being discussed is

more like an acceptable performance value, since even if a machine is performing well within

our acceptable guidelines, this still does not provide us with a trigger for halting the search and

finding a specific “goal”.

Consider another assumption, that the user limits the search with the use of a time limit.

This time limit may be 10 minutes, it may be 10 hours. In this case, we can use the formula

above to calculate the best performance. BPA = (bandwidth * max-time *). Adjust the factor 

by setting it to ¾ or 75% and set the max time value at 30 minutes. Therefore, for this example,

the optimal amount of relevant data would be: BPA = (50000 * 1800 * 0.75) which is BPA =

67.5 megabytes of relevant information. It is important to assume, for the moment, that an SA

33 [Dennis, Taylor, 2002 pg. 5]

11

may outperform this value of 67.5 mb based upon values substituted for  and therefore we are

assuming that the calculation for BPA may not be correct and would not be admissible.34

3.2 – A Hybrid A* Implementation of Heuristic Search for Documents

As stated previously, A* works on the basis of adding current and heuristically predicted

costs in order to determine which next step will be most optimal. The search agent wants to

follow paths which will have the lowest overall cost. The following are components of this

calculation:

1. G(N) is a function which gives you the cost of the search up to the node N.

2. H(N) is a evaluation function which gives you an estimated cost to complete the search to
the goal state (in our application we are looking for the best next step which will yield the
most relevant information). For H(N) to be admissible, it cannot overestimate the cost of
reaching the goal state along a maximum path.

3. F(N) = G(N) + H(N), where F(N) provides the SA with the estimated cost of the cheapest
path from N (the current node or web-page) to the goal state.

In order to develop an applicable G(N), we need to review some of the domain specific

costs involved. What are the costs associated with searching the internet? Some of these could

be; total elapsed time at work, processor time used, file space used and total available bandwidth

monopolized.

Earlier it was assumed that time is the principal measure of costs for this problem,

because all of the resources listed above can be accounted for in terms of time (and later in terms

of dollars) we will simplify and assume that time itself is an adequate measure of G(N). This

assumption depends on the fact that all of the other costs are a function of time and would be

consistently managed resources. So, G(N) is S, where S represents total seconds elapsed during

the search.

H(N), for this problem domain, is more difficult to construct.35 H(N) is obviously a

function which relates the current document to a maximum amount of relevant information

gained. There is a function for determining how relevant a document is to a search, let’s call this

R(N,X), where N is the current document (node) being visited and X is the start sample which

we are comparing against (X is also the means of beginning the search and can be viewed as a

single document of interest). Each document contains links to other related materials; we want to

34 For the algorithm to be admissible, it should not under-estimate the best case so the actual cost is less than the best
cost. For example, if we were to attempt to find the best path between two cities, and we used straight-line distance
as our best-case we would not expect to do better. However, what if we found a way around the straight-line
distance (this requires an extreme interpretation of what might be physically possible) then the straight-line distance
would no longer be admissible.
35 [Barr and Feigenbaum, 1981, pgs. 67-69]

12

decide whether or not to include these links in the search. We can see these links as doors and the

document as a room (a room containing good or bad information). These doors can be opened or

may remain closed, and the value of the current room (document) will determine the value of all

of the doors associated with it. We would expect to leave a no-information room and backtrack

to other rooms, with better doors, if needed.

If R(N,X) gives us the value of a document (and its associated file links), can we infer

that documents linked to N are more likely to lead to the retrieval of the most relevant

information for the time constraint? For now, this work assumes this is a true statement.36 If

G(N) = S, where S is the total amount of time elapsed, then (TL – S) will give us the estimated

time left, we can call this AT (available time). TL is the time limit set by the user. DS (Document

Size) gives the current amount of relevant information retrieved in bytes and DV (Document

Value) = R(N,X) * DS.

This example requires some adjustment in our notion of what valuable information is. It

may be content, it may be links, it may be a combination of both and therefore a designer of an

SA may need to revisit this issue.37 67.5 megabytes of relevant material in 30 minutes is the BP

(Best Path or Case), if we set gamma = 0.75 and our bandwidth averages to 50k for retrieving

information.

If we visit a page which contains 100 kilobytes of information, and has a relevance value

of 0.89, then this implies that 89 kilobytes of data retrieved were related to the sample document.

CRI (Current Relevant Information) retrieved is 37.5 megabytes for this example. CRI can be a

running evaluation of the size of the SA’s relevant information cache in bytes.38

BP – CRI gives us the amount of work in bytes left to be performed. Or BL (Bytes Left).

Which for our example would be 67.5 – 37.5, or 30 megabytes. If we set BL = DV * S, then we

can come up with a value in seconds to assign to each link embedded in the web page. This is an

estimate of the total number of seconds it would take to reach the best-case defined by BP. If BL

= 30,000,000 bytes, and DV = 89,000 bytes, then S = BL/DV. Or, H(N) = (BP – CRI)/DV = S =

337 seconds or 5.6 minutes. If we assume the SA has already used 28 minutes or a total of 30

36 It is very important to be clear about how big an assumption this is. The WWW contains commercial advertising
and embedded links that are often not related to the content of the core material. It is beyond the scope of this work,
but it would be interesting to come up with additional filters to remove these links from a ‘good’ link list based upon
further heuristics. Possibly, more complex lexical pattern matching could be used to eliminate obviously non-
relevant links, no matter how good the document score was for the page in which they were embedded.
37 It is beyond the scope of this work to discuss optimal lexical analysis and content analysis. It is within the scope of
this work to explore some basic (and primitive) methods for doing this. Relevancy is very complex, and I think it
would be interesting to explore the application of ANN (Artificial Neural Networks) to relevancy evaluation in any
future work related to this.
38 This is a file containing all information, or a variable containing a measure in Bytes of relevant information
gained. This value helps the SA calculate the necessary amount of work left to be performed given the amount of
material retrieved thus far.

13

minutes allotted for the search, then this node would fail to yield the expected benefit to achieve

the goal in best time. But, if these links have a better score than other nodes they will still be

selected. F(N) for this node will be, 1800 + 337, or 2137 seconds.

As should be clear, there are a number of assumptions built into my application of the A*

heuristic function. Some of these assumptions are reasonable, some are simply expedient (like

assuming a link on a page is related to the material on the page). While researching this problem,

it has become clear that A* may not be the best strategy. It may be that this is a really good

problem domain for Hill Climbing. In its simplest form, hill-climbing says choose the next best

path simply based on its heuristic evaluation and not on previous costs. Whether hill-climbing is

better is not in the scope of this work, but it is worth noting that it may in fact be a better and

more direct strategy.39

3.3 – Document Relevance Criteria for Heuristic Search

Determining the relevance of a document can be based upon several factors (or document

features). Many of these can be broken down into 3 principal feature classes:

1. Lexical/Statistical: This is simply the statistical analysis of the document. It is more
complicated than simply word frequency and there are many sophisticated techniques for
doing this. I have adopted the simplest example for purposes of this work.

2. Syntactic: This is an analysis of the grammar or rules of the language being employed in
the document. This is a very interesting problem, but also extraordinarily complex.
Natural languages, like English, are context sensitive languages and require a great deal
of additional information to interpret them – information which is not necessarily
available through the text by itself.

3. Semantic: This is not so much a third category as it is a higher level of analysis. This
level requires that lexical or syntactic analysis (or both) have been performed (in some
fashion). At this level we gain access to the meaning of a document. This is the most
complex form of analysis of the document, but it is potentially the most fruitful. By
gaining an understanding of the meaning of a document, the SA has the ability to perform
deeper comparisons and possibly to learn from deeper patterns of information to perform
better as an SA. The algorithm addressed in this work is not a learning algorithm, but
there is a lot of potential for extension by looking at the supervised and unsupervised
learning aspects of this problem. It is possible to get at semantic information via lexical
and statistical analysis, but there is room for debate as to what the meaning of this would
be (since this would be treating natural language as regular for this context).40

Of the above kinds of comparisons, the proof of concept employed in this thesis is

primarily applying the lexical and statistical analysis strategy, with some variation on this. This

39 Hill-Climbing can sometimes get stuck at local maxima and plateaus, without being able to move away from
these. I don’t think that the WWW would present this problem for the information retrieval domain, but it is possible
that a Hill-Climbing solution by itself would not be able to break free of a local document cluster to find more
relevant information somewhere else.
40 [Chomsky, 1957, 1968, pgs. 18-19]

14

approach is a simplified method of interpretation and does not succeed in a deep interpretation of

the text. It is important to describe the general assumptions related to relevance in this work and

the approach used.41 To simplify the analysis, words used in a document can be broken down

into two basic sets; the set of words which are related to the content of the material and the set of

words which act primarily as tools of syntax. We can call these sets C and O. Where C is the set

of content indicators and O is the set of syntax operators. Since these sets are context sensitive,

they will necessarily overlap. This work deals with documents within the Universe of Discourse

or U which is defined by the set of all legal tokens in the English language. In this context a

sentence can be viewed as an ordered set of tokens and this set is produced from the union of O

and C mapping to the set of ordered sets (or n-tuples) which are pragmatically acceptable (even

if not grammatical) sentences.42 Finally, from the ordered set of tokens in a given document there

are many mappings to another set M. M is a set of all such mappings.

Given the description of the problem up to this point, very little can really be said about a

document, especially if we intend to avoid the thornier issues of syntax and semantics. That a

document is an ordered set of legal tokens is clear, and certainly this can indicate something

about the placement of a document. This relationship between similar documents is something

that can be defined, and given definitions of varying resolution. This work contends that there

exists a set of mappings from any one document (ordered set of tokens) to another set and these

mappings can have differing discriminatory power. The sets themselves vary in the strength of

their relationship to any document, and therefore should vary in the weight or value assigned for

classifying a document.

Listed below are some of these mappings:

1. 1 : S → WL, where S is the sample document and WL is the set of ordered pairs (a,b),
such that a is a word in S and b is its relative frequency. This is the most basic lexical
comparison between documents.

2. 2 : S → WC, where S is the sample document and WC is a set of ordered pairs (a,b),
such that a is a content related token (a  C) from S and b is the relative frequency of this
token.

3. 3 : S → TC, where S is same as above and TC is a set of ordered pairs (a,b), such that a
is a  O and b is the relative frequency of a.

41 [Burnard, 1989, (internet document)] **This source is weak but I think it stresses some key points related to
relevancy and textual analysis. Most important is that even though the very basic and naïve approaches (as with the
approach I have taken) are easier to implement, we should not limit ourselves to variations on statistical analysis.
42 Pragmatics is a field of language theory which is concerned with the actual use of language versus the ideal use of
language. In reality, most native users apply rules to the daily use of language which do not fit neatly into a standard
grammar.

15

4. 4 : S → OP, where S is same as above and OP is a set of 3-tuples (a,b,c), such that a is is
S, b is in S, b is 1 place ahead in the ordering than a or b = a + 1. And c is the relative
frequency of this pair of words.

5. 5 : S → MXST, where S is same as above and MXST represents a set of 3-tuples, which
is a subset of OP and represents the maximum spanning tree connecting all words in the
document based upon their ordering.

Of the comparisons listed above, 2 seems to be the most promising for narrowing a

search at the most basic level and focusing solely on what are apparently content words. The

problem with this approach is that it may not be sufficiently absorptive to include all of the

ambiguous lexical relationships which can indicate similarity. The key word here is ‘similarity’,

not sameness. The function which will compare two documents needs to return a value

indicating similarity for placement in a corpus. However, one of the contentions of this work is

that the number of mappings used and the weight given to each is related to the accuracy of the

relevance evaluation.43

Additionally, how do we know which mapping is the best? Some are more resource

intensive than others.44 And, some will indicate similarity much better than others. Of the

mappings identified above, clearly 3 will be weakest at showing similarity between documents.

Certainly, we will want to weight mappings differently based upon their presumed power of

showing similarity between documents. (See Figure 2 below)

43 A corpus is a set of documents, and usually similar documents.
44 I am speaking primarily of the order of magnitude for the function algorithmically.

16

Document 1: This is the original sample document. The user wants to find a maximum of related materials – related to this sample.

Document 2: This is the document downloaded from the WWW. This document may contain related information.

Figure 2: Sets which show similarity (some more strongly than others)

This is the set produced by F3 above and should show similarity for most documents, even those which are not really relevant. But are there small distinctions? Which can be used to judge similarity? The diagonal region is meant to indicate intersection between sets.

For this case, lets assume this is a comparison using the F2 mapping. The intersection is small, but clearly not of the same magnitude as testing whether these documents use a similar frequency of operators. In this case, it is obvious we would not want to weight these mappings the same.

R(X,Y) = (1(X,Y)*wv1) + (2(X,Y)*wv2) + (3(X,Y)*wv3) + … + (n(X,Y)*wvn)

5 is intriguing because it attempts to identify potentially syntactic and semantic related

aspects of the document but it does not require any grammar to be identified. It operates on the

extension of 4 and claims some meaningful value to knowing the most strongly related subset of

the ordered set OP. With respect to 5, there is an implementation in C++. This implementation is

for both a graph representation of a text document and a maximum spanning tree function (this is

based upon Kruskal’s algorithm).

Each one of these mappings can be generated, and with the exception of 4 and 5 these

mappings are not terribly resource intensive to implement in a computer program. But, as stated

above, we can say two things of them all; there is no way of knowing if a mapping is not relevant

absolutely, and some mappings are better at identification than others and should be weighted

differently.

Given this circumstance, it is not in the scope of this work to identify all useful mappings

but to propose the following for this relevance function. That relevance is a function of all

mappings from two documents X and Y multiplied by their individual weight value (wv) for

identification, and that the sum of these weights should be less than or equal to 1. This value

represents the relationship between X and Y where X is the original document and Y is the new

document for comparison. More formally:

17

As an example, if 1 = .25, wv1 = .5, 2 = .35, wv2 = .2, and 3 = .65, wv3 = .3, then

R(X,Y) would be 0.327 or roughly 33% relevancy. The complexity of this solution is not simply

in determining what and how many mappings of this type there are, but also there is a basic

requirement of knowing how relevant each mapping is to determining similarity between

documents.

Researchers, over the past few decades, have stepped away from ideal approaches to

natural language processing to adopt more pragmatic strategies. Although this relevance function

is fairly primitive, it was developed with the idea of solving a problem as simply as possible,

without having to develop or include more complex methods. Also, embedded in this conception

is a notion that there are probably an infinite number of mappings from a sample document to

some other congruent set – some of these may include syntax parsing. Basically, I have looked at

some fairly simple mappings.45

There is no claim to a basis in or an extension to linguistic theory. This is important to

stress, since the types of ordered sets being discussed are samples of natural language. This may

not be an insurmountable weakness, and it is beyond the scope of this work, but to ignore the

specialist knowledge when filtering information can introduce errors and misinterpretations.46

The relevance function discussed in this section is very basic. It would have been

interesting to spend more time researching just the problem of relevance in the field of

information retrieval. There is a lot of work to be done investigating the application of neural

networks to determining the similarity between documents and document sets. If a good

description of the feature set can be determined, then there may be much more effective ways of

doing relevancy using trained neural networks.

45 [Maedche, 2002, pg. 97]
46 [Navarro and Raffinot, 2002, pgs. 2-3]

18

4.0 – Results

The information included in this portion of the work is not conclusive. It represents one

run of the PERL implementation attached to this paper and a multiple run of the graph algorithm

with comparison data generated in MS Access. In section 5 this work will review the results and

propose interpretation.

4.1 – A* Run Data

These results are based upon one test of the PERL program over a period of 1 hour

approximately. To fully test, de-bug and improve this method could take much longer and is

beyond the time frame available. But is would be important, in order to draw any conclusions, to

extend this testing and to improve the method itself. To conduct a test of this program this thesis

paper was used as the primary test sample. Here are the summary results:

Criteria = 10000 seconds

Relevancy Constraint = 10%

Gamma = 0.5

Max Bandwidth = 10 kilobytes per second

19

BPA (Best Path Adjusted) = 18 megabytes of relevant data

Total Data Collected = 1.5 megabytes

Links Collected = 12413

Links Visited = 122

Different adjustments to the weightings of each of the 4 mappings were used. These

mappings are those discussed in section 3.3, with the exception of the maximum spanning tree

(see the next section for this). It is not clear if further experimentation with these weights will

change performance, but there was some experimentation with different weights and the ordered

pair mapping by itself did not perform well as a relevance measure in most of the tests. There is

reason to believe that reinforcement learning could be used to adjust these weights. This has not

been explored, but it certainly represents an interesting extension to the work.47

Below are detailed results of the A* Test performed:48

LINKS
URL
SIZE

DATA
SAVED A* REL 1 2 3 4 TIME

www.hut.fi/Misc/Electronics
/docs/audio/spdif.html 28676 28676 1496.4 0.42 95.51 25.66 91.72 5 0

www.nlta.nf.ca/publisher/h
elp/5search.htm 19857 48533 2002.3 0.45 94.74 33.33 88.76 5 9

help.yahoo.com/help/us/ys
earch/ysearch-03.html 907 49440 41272.3 0.48 77.36 50.00 65.01 5 15

www.syntest.com.tw/faq/tur
bofaultfaq.html 13672 63112 3178.6 0.42 96.10 24.63 90.68 5 19

www.isrl.uiuc.edu/dubinabs
.html 10766 73878 3682.0 0.46 96.34 32.71 89.47 5 25
 www.cs.uwaterloo.ca/cs-
archive/CS-2001/CS-
2001.shtml 8888 82766 4286.3 0.47 91.53 38.23 90.53 5 33

www.uiah.fi/projects/metodi
/140.htm 382 83148 269743.2 0.17 68.58 4.35 5.00 5 40

www.geocities.com/bayinn
aung/progexampweblog.ht
ml 1869 85017 21955.7 0.44 88.07 33.61 83.37 5 46

www.data-man.com/nwltr1
2.html 3688 88705 10549.4 0.46 93.19 35.98 86.53 5 50

www.dlib.vt.edu/Papers/SI
GIR96/SIGIR96.Env.html 34790 123495 1216.7 0.45 97.45 29.36 93.71 5 56

47 In section 4.1 there is a complete table of values for this experimental search.
48 I used my thesis as the seed document for this test. The averages are shown at the end of the table. For the value in
column F4, this function is not fully debugged and will return a value of 5 under conditions where the relevancy is
too low.

20

galeb.etf.bg.ac.yu/~vm/tuto
rial/internet/business/ebi2/e
bi4.html 28773 152268 1530.6 0.43 96.21 26.61 90.69 5 63

www.cs.usyd.edu.au/~bob/
um96-paper.html 7338 159606 5027.6 0.49 89.79 42.12 91.20 5 75

citeseer.nj.nec.com/chau03
design.html 6266 165872 6927.9 0.42 93.24 30.16 68.63 5 80

best.me.berkeley.edu/~ado
ng/cad-sys.html 9554 175426 4013.2 0.48 94.70 38.15 85.30 5 85
 dollar.biz.uiowa.edu/~fil/IS/
info-spiders.html

15221 190647 2614.8 0.46 95.37 34.45 91.19 5 89

wwwis.win.tue.nl/~debra/inf
wet99/aroyo.html 15219 205866 2606.9 0.47 95.22 36.57 88.22 5 122

www.sics.se/diglib/delos8w
s/abstracts.html 7030 212896 5792.5 0.45 94.55 32.42 85.80 5 127

www.cs.jhu.edu/~weiss/pa
pers.html 8915 221811 4481.7 0.46 93.94 35.19 85.14 5 132

vcolaso.port5.com/ai/vicdo
c/Genetic%20Algorithm
%20for%20Internet
%20Search.htm 8682 230493 4287.7 0.49 96.49 40.52 88.23 5 137

www.bradleyrhodes.com/P
apers/remembrance.html 19649 250142 2105.7 0.46 95.64 33.20 94.37 5 143

www.resna.org/taproject/lib
rary/conprov.html 4156 254298 9952.5 0.44 96.00 30.14 83.19 5 152

naweb.unb.ca/proceedings
/1997/tsinakos/tsinakos.ht
ml 14540 268838 2662.5 0.49 95.60 39.16 90.87 5 157
 www.searchtools.com/info/
intranets.html

15700 284538 2726.5 0.44 97.25 29.28 90.45 5 163

citeseer.nj.nec.com/craswe
ll01effective.html 4424 288962 9928.1 0.41 91.73 30.04 66.83 5 170

stanford.edu/group/partner
s/skillset.shtml 1454 290416 28619.6 0.43 82.39 37.76 64.77 5 176

www.stanford.edu/group/p
artners/skillset.shtml 1454 291870 28624.3 0.43 82.39 37.76 64.77 5 183

www.public.asu.edu/~ehor
an/ENG500F02.htm 4270 296140 10230.3 0.41 93.34 27.43 79.62 5 197

tools.com/info/intranets.ht
ml 73 296213 1940352.0 0.13 5.00 20.00 5.00 5 202
 www.ladseb.pd.cnr.it/infor/
ontology/Papers/Ontobiblio
/ComputerScienceP.html 12526 308739 3808.7 0.39 93.41 29.82 47.55 5 211

www.kcl.ac.uk/neuronet/ab
out/roadmap/imsystems.ht
ml 1371 310110 28235.8 0.46 85.36 41.24 73.78 5 219

21

www.parc.xerox.com/istl/gr
oups/did/didpublications.sh
tml 33774 343884 1516.3 0.41 96.87 23.29 91.96 5 227

www.cordis.lu/ist/ka3/iaf/iaf
_workshop.htm 11845 355729 3573.6 0.45 95.27 31.65 90.46 5 248

www.ntu.edu.sg/sce/Syllab
us99.htm 19874 375603 2444.1 0.41 98.02 25.58 74.71 5 258

www.cc.gatech.edu/gvu/nsf
-ws/report/Indexing.html 11446 387049 3517.2 0.48 95.11 36.84 91.35 5 274

sarasavi.cmb.ac.lk/academ
ic/Science/Computer/dscs/
courses/msc_units_details
_new.htm 14046 401095 3367.8 0.41 97.91 27.07 66.59 5 283

www.computer.org/procee
dings/HICS29/VOL2/TOC.
htm 4780 405875 10462.1 0.36 82.62 31.10 31.66 5 295

www.state.la.us/osp/Agenc
yCenter/FAQs-agcy.htm 6349 412224 6844.5 0.42 93.15 28.04 87.87 5 305

www.nsac.ns.ca/lib/instruct
/6internt.htm 13554 425778 3130.8 0.46 96.59 33.55 91.66 5 317

www.onlinemag.net/OL199
5/NovOL95/notess.html 11376 437154 3724.5 0.46 95.51 32.63 91.70 5 328

www.rlg.org/shares/arifax.h
tml 15398 452552 2976.5 0.43 94.18 30.17 84.84 5 338

library.bowdoin.edu/service
s/docdel.html 4616 457168 8474.9 0.47 96.37 36.32 84.21 5 353

www.nap.edu/books/03090
82749/html/407.html 17653 474821 2747.1 0.42 93.69 26.23 91.25 5 364

www.gov.sk.ca/bureau.stat
s/docs/costrec.htm 23590 498411 2139.5 0.43 97.45 25.45 93.37 5 382

www.dell.com/us/en/biz/top
ics/power_ps3q00-
beowulf.htm 12124 510535 3414.4 0.48 96.37 38.10 87.24 5 396

discovernd.com/itd/plannin
g/qa99.htm 6084 516619 6670.6 0.46 91.37 35.74 88.89 5 412
 depts.washington.edu/gcs/
gc1hint.html

1536 518155 27465.6 0.42 81.23 37.23 62.51 5 428

www.housing.act.gov.au/P
olicy/RentPayment.htm 4616 522771 9901.8 0.40 85.90 26.88 84.58 5 441
 www.infotoday.com/online/
OL1999/toth7.html

14484 537255 3017.3 0.47 94.16 36.42 92.88 5 456

ai.ijs.si/mezi/agents/agents
.html 9817 547072 4495.2 0.44 92.00 32.16 88.66 5 470

22

www.media.mit.edu/people
/lieber/Lieberary/Letizia/Let
izia-AAAI/Letizia.html 19182 566254 2445.9 0.47 94.63 35.16 93.45 5 486

www.cse.unsw.edu.au/sch
ool/publications/2000/SCS
E_publications.html 51 566305 1243576.2 0.28 5.00 50.00 5.00 5 506

www.lcr.thomson-csf.fr/proj
ects/planet/ws1_work.html 15786 582091 3050.5 0.44 94.13 30.44 90.79 5 532

www.cs.mu.oz.au/pgrad/se
minars/1998.html 10986 593077 4045.2 0.46 91.46 34.07 92.29 5 550
 rti7020.etf.bg.ac.yu/rti/ebi/
dipl/dragana/RAD1.htm

22117 615194 2263.0 0.47 96.08 34.82 92.74 5 567

www.geometry.net/detail/c
alculus/limits_and_continuit
y_page_no_4.html 4076 619270 10356.7 0.44 83.45 34.78 86.60 5 587

www.nap.edu/books/03090
51932/html/25.html 27388 646658 2117.0 0.43 94.83 26.58 93.25 5 608

www.at.vcu.edu/sas/viedito
r.html 16434 663092 2949.4 0.46 95.01 33.64 90.96 5 630

bi.snu.ac.kr/~scai/Publicati
ons/pub.html 93 663185 2938157.8 0.06 5.00 7.69 5.00 5 652

www.nal.usda.gov/afsic/AF
SIC_pubs/qb9709.htm

10604
2 769227 1270.5 0.32 96.68 9.42 73.57 5 672

algo.inria.fr/seminars/sem9
6-97/flajolet.html 11438 780665 4263.6 0.43 89.79 31.12 88.35 5 769
 www.cmis.csiro.au/Library/
Publications/pubs1997.htm

0 780665
###########

0.05 5.00 5.00 5.00 5 791
 www.cdam.lse.ac.uk/BCB/
partC2001.html

31148 811813 2420.7 0.35 92.74 17.13 67.99 5 816

www.cs.brown.edu/memex
/index.html 20551 832364 3169.0 0.36 96.82 15.21 83.84 5 840

www.di.unipi.it/~gulli/resear
ches/hp-grants/proposal97.
htm 19765 852129 2873.5 0.44 96.56 29.01 91.69 5 871
 ai.bpa.arizona.edu/papers/
cscw94/cscw94.html

44025 896154 1792.5 0.45 97.63 30.63 92.56 5 901

www.cs.dal.ca/~eem/res/T
hesisTopics.html 19324 915478 2827.0 0.47 96.62 35.65 92.31 5 931
 www.it.bton.ac.uk/staff/vl9/
paper/paper.html

19601 935079 2795.1 0.48 94.46 38.25 92.93 5 961
 www.dimi.uniud.it/~ift/aiia/
html/AI_IA.html

32887 967966 2161.4 0.46 97.76 32.36 89.65 5 993
 wwwis.win.tue.nl/infwet97/
proceedings/resource-
limited-full.htm 17538 985504 3060.4 0.49 95.10 38.28 94.12 5 1028

www.switch.ch/edu/researc
h_index.html 0 985504

###########
0.05 5.00 5.00 5.00 5 1064

23

www.research.ibm.com/jou
rnal/sj/413/perrone.html 3299 988803 11531.3 0.50 90.21 45.03 80.62 5 1098
 www.cs.utexas.edu/users/
dmg/seminar/abstracts.htm
l 18926 1007729 3176.8 0.45 97.01 30.77 91.09 5 1140

www.jrc.es/pages/iptsrepor
t/vol68/english/ICT2E686.h
tml 15640 1023369 3501.5 0.47 97.41 35.80 91.09 5 1177

www.cra.org/Activities/craw
/dmp/awards/lefevre_web/
applications.html 7730 1031099 5692.9 0.50 94.17 41.26 90.44 5 1219

www.bilaney.com/webpage
s/ris_pages/rmtech.htm 26210 1057309 2784.5 0.44 95.28 29.07 90.42 5 1259

www.weblogic.com/docs51
/admindocs/http.html 356 1057665 152955.1 0.31 66.13 33.33 5.00 5 1303

www.cisco.com/en/US/tech
/tk652/tk701/technologies_t
ech_note09186a00801006
c6.shtml 14615 1072280 3923.4 0.46 90.06 35.28 92.84 5 1353

www.duckware.com/bugfre
ec/chapter6.html 23163 1095443 3038.3 0.46 92.00 35.27 92.32 5 1402
 www.his.com/~z/ftirp.html

30927 1126370 2741.9 0.44 93.85 30.10 94.33 5 1461

www.loristech.com/FAQs.h
tml 22154 1148524 3302.0 0.44 95.57 28.48 93.09 5 1510
 www.w3.org/TR/REC-
html40/appendix/notes.htm
l 30767 1179291 2841.5 0.45 96.08 29.88 93.83 5 1560

members.nccw.net/fmacall/
readme.htm 31331 1210622 2931.4 0.42 95.94 25.88 92.88 5 1614

www.cs.unc.edu/Research/
ProjectIndex/AreaDescripti
ons.html 220 1210842 277707.7 0.28 47.42 33.33 5.00 5 1670

cs.anu.edu.au/honours/topi
cs.html 9629 1220471 5508.1 0.47 93.17 35.89 92.41 5 1723

www.ariatg.com/research.h
tm 220 1220691 260007.4 0.30 48.41 33.33 21.95 5 1786

wp.netscape.com/compass
/v3.0/evalguide/advantages
.html 0 1220691

###########
0.05 5.00 5.00 5.00 5 1841

www.thunderstone.com/tex
is/site/pages/texisdetail.ht
ml 44922 1265613 2847.0 0.43 94.03 27.24 92.01 5 1897

theory.stanford.edu/~amitp/
GameProgramming/Imple
mentationNotes.html 16461 1282074 4109.4 0.49 94.40 39.63 92.87 5 1973

marylaine.com/exlibris/xlib
18.html 748 1282822 57015.3 0.41 78.07 35.48 63.41 5 2036

24

dimacs.rutgers.edu/Worksh
ops/Codes/abstracts.html 15222 1298044 4636.8 0.44 96.94 29.60 92.18 5 2100

cobrands.smallbiz.findlaw.c
om/business_commercial/l
egal/source/library/
lg_environment/articles/
ph000013.html 23721 1321765 3853.3 0.44 96.37 27.84 93.60 5 2166

www.nap.edu/books/03090
44839/html/55.html 16510 1338275 4712.0 0.42 97.34 24.69 92.18 5 2239

www.as.wvu.edu/~tmiles/a
ssign2new.html 9564 1347839 6195.0 0.46 95.77 32.80 91.09 5 2311
 us/policies/p5310.html

483 1348322 96002.0 0.37 49.01 40.00 60.52 5 2383
 wvde.state.wv.us/policies/
p5310.html

33247 1381569 3732.1 0.42 95.17 26.62 86.95 5 2457

www.khsd.k12.ca.us/distric
t/technology_resource/level
1/Default.htm 3340 1384909 14618.6 0.41 82.88 32.86 74.79 5 2543

www.jamia.org/misc/ifora.s
html 40887 1425796 3662.1 0.43 96.61 26.14 93.15 5 2627
 www.acm.org/sigchi/chi95/
Electronic/documnts/paper
s/sm_bdy.htm 23200 1448996 4286.6 0.48 96.61 37.17 92.44 5 2719
 ing/debra/article.html

92 1449088 657081.2 0.28 5.00 50.00 5.00 5 2805

archive.ncsa.uiuc.edu/SDG
/IT94/Proceedings/Searchi
ng/debra/article.html 24455 1473543 4450.2 0.46 92.07 34.73 93.45 5 2896

www.cse.unsw.edu.au/~mb
arg/prdex.html 9109 1482652 6644.2 0.51 95.60 43.16 91.59 5 2985

nlp.shef.ac.uk/research/stu
dents/research.html 8029 1490681 7441.0 0.48 96.11 37.92 90.08 5 3079

www.geog.port.ac.uk/gbhgi
s/jtap_ehap/soc_cart_articl
e.htm 27668 1518349 4654.0 0.43 95.71 27.20 93.91 5 3174

www.doc.ic.ac.uk/~srueger
/pr-s.sewraz-1999/abstract.
html 15540 1533889 5665.6 0.46 95.50 33.50 94.10 5 3276

www.library.ucsb.edu/unta
ngle/lager.html 24022 1557911 4965.3 0.46 96.70 32.93 92.42 5 3375

www.nrc.gov/reading-rm/d
oc-collections/enforcement/
actions/materials/
ea02045.html 10802 1568713 7053.1 0.44 96.48 29.81 86.61 5 3479

icpr2002.gel.ulaval.ca/tutori
alsForWWWPage.htm 19593 1588306 5606.0 0.44 97.17 30.47 87.67 5 3612

Averages:
14843 727567

47675873460.
4 0.42 86.03 31.37 77.72 5 979.01

25

4.2 – Maximum Spanning Tree Mapping Data

A graph algorithm using an adjacency list implementation provides the basis for the

experimentation with the Maximum Spanning Tree Algorithm. For more detail on the purpose

and use of this, review sections 5 and 6. This is, however, an implementation of one of the

mapping discussed in section 3 in the context of document relevance criteria. The

implementation is in C++ and was run successfully using the GNU compiler on our Solaris

cluster here at IUPUI. The results of experimentation are interesting, and warrant use as an

additional feature for comparison. The experimental data below resulted from a single test with 3

documents; all of which were news articles downloaded from AP. 2 of these articles dealt with

the conflict in Iraq, one of these articles dealt with the flashpoint on the Korean peninsula:

1. For a document sample [A] with 513 3-tuples containing node, edge and weight, a
document [B] in the same subject area had 59 pairs which matched completely.

2. A document [C] outside of the subject area had a match of 9.

If a properly designed matching function were built, there would be a higher resolution

comparison and would show greater sensitivity to partial matches (matches where node and edge

are the same but relative frequencies vary). The current test is exact match of pairs and

frequency, but it would not be difficult to accept pair matches and apply scores based upon the

difference between the relative frequencies of the pairs (with respect to the original document).

In the table below is a comparison of perfect maximum spanning tree matches (matches

where node, edge and frequency are the same). The comparison operator would be more

effective, as stated, if this function processed the relative frequencies as degrees of difference

versus total equivalence.

Original: Iraq Content New 1: Iraq Content New 2: Korea Content

WAR 1 WITH WAR 1 WITH

WAR 1 REUTERS WAR 1 REUTERS

TORTURE 1 CENTER TORTURE 1 CENTER

TO 1 PROBE TO 1 PROBE

THE 2 CAPITAL THE 2 CAPITAL

THE 1 STRONGEST THE 1 STRONGEST

THE 1 STATEMENT THE 1 STATEMENT

THE 1 REPORT THE 1 REPORT THE 1 REPORT

THE 1 OFFICE THE 1 OFFICE

THE 1 COUNTRY THE 1 COUNTRY

THAT 1 SERVES THAT 1 SERVES

TERROR 1 PLOTS TERROR 1 PLOTS

STRONGEST 1 BLASTS STRONGEST 1 BLASTS

SPECIAL 1 COVERAGE SPECIAL 1 COVERAGE

26

SAID 1 PEOPLE SAID 1 PEOPLE

SAEED 1 ALSAHHAF SAEED 1 ALSAHHAF

SADDAMS 1 SON SADDAMS 1 SON

SADDAM 1 HUSSEIN SADDAM 1 HUSSEIN

RUMOR 1 CIRCULATED RUMOR 1 CIRCULATED

PRESS 1 WRITER PRESS 1 WRITER PRESS 1 WRITER

PALACE 1 PRESIDENTIAL PALACE 1 PRESIDENTIAL

ONLY 1 MINOR ONLY 1 MINOR

OLYMPIC 1 COMMITTEE OLYMPIC 1 COMMITTEE

OLD 1 PALACE OLD 1 PALACE

OF 1 DETERMINING OF 1 DETERMINING

NO 1 WAY NO 1 WAY

NEWS 3 WEB NEWS 3 WEB

NEWS 1 JORDAN NEWS 1 JORDAN

MOHAMMED 1 SAEED MOHAMMED 1 SAEED

MINUTES 4 AGO MINUTES 4 AGO

MINISTER 1 MOHAMMED MINISTER 1 MOHAMMED

JORDAN 1 FOILS JORDAN 1 FOILS

IS 1 LINKED IS 1 LINKED

IRAQI 2 TV IRAQI 2 TV

IRAQI 1 NATIONAL IRAQI 1 NATIONAL

INTERACTIVE 1 DOWNTOWN INTERACTIVE 1 DOWNTOWN

INFORMATION 1 MINISTER INFORMATION 1 MINISTER

HAVE 1 FOCUSED HAVE 1 FOCUSED

HAD 1 HOPED HAD 1 HOPED

FOILS 1 TWO FOILS 1 TWO

DEFENSE 1 DEPARTMENT DEFENSE 1 DEPARTMENT

BEGAN 1 MARCH BEGAN 1 MARCH

AT 1 LEAST AT 1 LEAST

ASSOCIATED 1 PRESS ASSOCIATED 1 PRESS ASSOCIATED 1 PRESS

ARAB 1 ANGER ARAB 1 ANGER

AND 1 QUSAI AND 1 QUSAI

AND 1 HIS AND 1 HIS

AGO 1 SPECIAL AGO 1 SPECIAL

A 1 TORTURE A 1 TORTURE

A 1 RUMOR A 1 RUMOR

A 1 COMPLEX A 1 COMPLEX

<START> 1 IRAQI <START> 1 IRAQI

<START> 1 INTERACTIVE <START> 1 INTERACTIVE

<START> 1 DEFENSE <START> 1 DEFENSE

<START> 1 COALITION <START> 1 COALITION

<START> 1 AP <START> 1 AP

<COMMA> 2 WHERE <COMMA> 2 WHERE

<COMMA> 1 WHICH <COMMA> 1 WHICH <COMMA> 1 WHICH

<COMMA> 1 ASSOCIATED <COMMA> 1 ASSOCIATED <COMMA> 1 ASSOCIATED

27

WEB 3 SITES WEB 3 SITES

IRAQ 1 NEWS IRAQ 1 NEWS

<START> 2 BUT <START> 2 BUT

<START> 1 OFFICIALS <START> 1 OFFICIALS

Total Total Total

513 59 9

5.0 – Discussion and Conclusions

The investigation of the problem domain, as described so far, reveals how complex a task

it is to filter, analyze and place documents in a particular category. The A* method used

functions correctly as a PERL application, but its performance indicates that further refinements

are necessary for any practical implementation. The techniques employed to build the SA in

PERL were traditional and some of the program elements are not optimal.49 Because of the

experience level of the designer/programmer and the complexity of the domain, it was important

to be as conservative as possible with respect to implementation of the method.50

5.1 – Observations

The initial task of this investigation was to be the exploration of topological ordering to

the domain of information filtering. This use of topology seems warranted, but there was not

enough time to effectively define and implement a coherent method using only topological

techniques. The example of the spanning tree algorithm given in this work is intended to portray

49 In one case the PERL Array, storing a links object, was used to imitate a priority queue. This is not the best way to
implement this data structure, but it was a quick way to complete the program with the time allowed. Basically,
PERL was still being learned as the program was being written.
50 [Russell and Norvig, 1995, pgs. 96-99]

28

some of the insights gained during the first few months of research – the use of the maximum

spanning tree algorithm demonstrates some interesting possibilities. The implementation of the

spanning tree method, in this work, is still very preliminary. It is important to note that any graph

implementation of text document ordering can have significant memory requirements.51

The mapping functions which were used to test the methodology worked with varying

degrees of success. The 4 mapping has particular problems, and will return a default value of

5% for certain error conditions. The problems demonstrated in the results section may be due, in

part, to the implementation. However, some of the issues relate back to the usefulness of some

mappings for determination of document relevance.

The design of the proof of concept for this A* method could have been more object

oriented and the use of PERL as the tool for implementation may not have been correct. The

program, as written, is modular and takes advantage of the PERL syntax for packages. The basic

descriptions of necessary components, as shown in the experimental section, are sufficient to

begin the process of developing an SA in PERL, but more design resolution is necessary. Also,

some of the file outputs of this program were not used effectively, because the time for further

development ran out. There is one file, labeled ontology, which contains a raw listing of ordered

pairs after the operator-token filter has been applied. This ontology file was intended to be the

basis for a topic map and could still be used as a topic map for the organization of links removed

from the HTML documents.

Finally, the sample set for the testing of this method is too small for valid statistical

inference. Therefore, the results are intended to provide only possible indications of the behavior

of this A* method and are not provided as proof (pro or con) for the effectiveness of the method.

5.2 – Lessons Learned

As with any adventure in learning, after the arrival at the destination there is time to

review the good and bad points of the journey. The following is a list of actions which could

have been taken and which seem to be better approaches in hindsight:

1. Further narrow the topic to one aspect of determining relevance. Instead of looking at
several different kinds of mappings, one specific mapping (feature) should have been
investigated thoroughly – like the spanning tree for the document – instead of trying to
deal with the wider issue of how these features interact.

2. Investigate what both fuzzy systems theory and neural networks have to say concerning
this topic. There would have been more work involved, but the relevancy function might

51 Although the use of adjacency lists, as in my implementation, may reduce memory costs it is still very expensive
to represent a topology in computer memory. The most common means of representation is an adjacency matrix, and
in this case the cost to memory is virtually guaranteed to be n2 – where n is the number of nodes in the graph.

29

be more effectively implemented as a neural network. Because of the complexity and
work involved, this would have had to become the principal focus of this senior thesis.

3. Determine early what tool would be best for experimenting with these problems. There
exist fully developed tools, components and classes for accomplishing many of the tasks
described in this work. Much time was spent investigating different tools for portions of
the problem, but this extra work did not necessarily result in any additional methods.52

4. One important weakness of this implementation is that the relevance function is not
complete and the ability to make better guesses about the significance of links contained
in a page is not developed at all. A better solution needs to include effective heuristics for
determining if a link on a web page is actually related to the subject matter, and to be able
to do this without visiting (downloading) the page. This would be very difficult, but
human search agents (as we all are) make these distinctions as part of their process and
the effectively avoid advertising links which are not related to the information being
sought. The program, as written, does not make this distinction.

The implementation of A* in this work does appear to perform adequately and does

retrieve genuinely relevant materials. This investigation looked at many problems, possibly too

many. Overall this project has led to a greater appreciation of why it is that companies, like

Google, require so much intellectual capital to perform their function and provide service to their

clients.

It is important that information scientists and workers deal with the issues of information

explosion effectively. Some of the solutions may be procedural in nature and may involve the

adoption of better standards for indexing and identifying materials proactively, although this is

not nearly the whole solution. There is general agreement that along with better methods for

markup and indexing, a need remains for more intelligent systems to assist humans with the

search for information.

5.3 – Future Work

Below is a listing of proposed future work, which is of interest, and provide a basis for

many other fruitful investigations:

1. Hill-Climbing and Simulated Annealing: I think a hill climbing solution would show
greater promise and be far simpler to implement. If I decide to explore this problem
domain further I think I will explore the use of the hill climbing algorithm for heuristic
evaluation.53

52 I spent about 3 months looking into PROLOG as an intermediate representation of the content of a document. I
thought that this semantic information could be produced – with low resolution – simply through parsing the natural
language and using a simplified grammar (and a lossy one) for doing this. I still think this would be interesting to
explore, especially with reference to machine learning, but I don’t think this was a reasonable problem to take on for
this thesis.
53 [Mock, 1994, pgs. 1-3]

30

2. Modeling User Profile: There is nothing in this work directly related to modeling user
profiles, but it would be important for an SA to gain an understanding of user interests in
a non-intrusive fashion. This is also where applying reinforcement learning models may
help.

3. Natural Language Processing: I would like to explore the development of semantic
mappings based upon the parsing and interpretation of natural language. There was not
enough time available to explore this, but I think it would have been another key factor
for testing similarity. I did experiment a little with the parsing of sentences, as a context
free grammar, and converting this information into a predicate form – this work became
too complex and infeasible given the time constraints.

4. Applying Neural Networks to Relevancy: This has been mentioned previously in the
paper, but it is clear to me that neural networks could be an effective means of dealing
with information relevancy. Clearly you could train a neural network to recognize
documents that belong in a corpus or are rejected.

5. Topological Ordering for Ontology Building: I did generate ordered pair listings from
content data. I think this information could be used to generate naïve ontology. This
could be used as an automated way of organizing materials gathered from a file space
which could assist in information management.54

6. Designing Information Structures which are Self-Organizing: I am very interested in
extending the object oriented paradigm to the modeling of independent and goal oriented
data-structures. Data structures which have a real sense of identity and are capable of
generating inheritance relationships at run time to produce new data-structures. I see this
as a generative approach to data management and exploration, and possibly as the basis
of a model for intelligent system memory. This was clearly beyond the scope of this
work. There may be some correlation between this and how memory is ordered in the
human mind.55

7. Benefits of the WWW as an AI Problem Space for Testing Concepts: I hope in any of
my future explorations I am able to leverage the WWW as a problem space. I think this
space is unique because of its nearly equalizing power. In all other arenas, human
perceptual modalities far surpass computers. However, sense the web is fundamentally a
data space; the principal token of perception in this space is binary and fully accessible to
machines. So, in this space I think the playing field is more even and it enables a more
interesting exploration of intelligent systems.

8. Improved Browser Technology: I think the future of information retrieval from the
WWW will be more dependent upon smarter technologies than upon better markup
languages. This is a conjecture, but I think systems like the one I have described
(certainly more advanced) could be the basis of browsers fully utilizing the resources of
the internet and computers without interfering with the interests and needs of the user.
Any use of interface agents should be collaborative in nature.56

5.4 – Conclusion
54 [Sowa, 2001, (internet document) and Woods, 1995, (internet document)]
55 [Hardy, 1998, pgs. 7,12,14]
56 [Lieberman, Fry and Weitzman, 2000 (internet document)]

31

This project began with ambitious goals from the frame of reference of the investigator.

However, as a senior thesis it was not intended to be the exploration of fundamental work and

was given explicit time restrictions. If this were a sample of a graduate project/thesis, then there

would clearly be much more work ahead and probably more narrowing of the topic. As an

undergraduate thesis, this work was indispensable in my development as a critical thinker and as

an information scientist.

What I would like most to do, if given the opportunity, is teach a class to undergraduate

students which deals solely with this topic. I believe many of the more interesting and

fundamental concepts of computer and information science can be covered in a course which

uses the search for information as its vehicle. Actually, one of the most basic forces behind our

interest (as humans) in information science is our need to learn more and to remember what we

have learned – searching and classification. Maybe, I search therefore I am?

32

6.0 - Experimental

The hybrid A* search could be embedded inside a web browser. As an SA, it could

monitor the information content of the user’s current search and then, when it appears the user is

idle, conduct its own parallel/related search. The actual implementation of this version of A* is

not as a component of a web browser, but this is one potential area of application.

The proof of concept has been programmed in PERL. I attempted an object oriented

design, but I think my solution is not object oriented. If I had more time, I would have more fully

identified each object which collaborates to make an SA possible and to program these as parts

of my SA. As it is, I have identified a few major components of the SA. I have modularized these

critical parts of the SA in my solution. After reviewing literature related to Agent-Oriented

Design, it became clear that a future extension of this work would profit from a further

decomposition of the solution into well defined roles and responsibilities for specific objects.57

6.1 - Program Design

For a layout of the principal objects used to construct this program, see Figure 3 on next

page. The proof of concept I am using to explore this problem has been constructed in the last 45

days. PERL was chosen as the language to test the A* implementation. This was done for 4

reasons:

1. PERL development environments include a variety of built-in functionality for
processing textual information.58

2. It is a scripting language available on many platforms and is a language accepted by

academics for academic research.

3. PERL is designed for the WWW and has basic modules and extended functionality for
doing many things associated with data-mining and search engines.

4. Most importantly, PERL supports a widely accepted and acknowledged standard for the
implementation of regular expressions.59 Since my strategy has been to deal primarily
with lexical and regular structures60, PERL makes it easy to model and filter for these
kinds of structures.

57 [Depke, Heckel and Kuster, 2001] **I think it is important to note that the underlying code could be implemented
in any number of ways. At this level of abstraction we are thinking about objects in terms of what they do and what
they are and not necessarily how they should be programmed – though this is very important.
58 [Ceglowski, 2003, (internet document)]
59 A regular expression has a more complex definition than the one I am about to give (and if you are interested you
can find this definition in [Navarro and Mathieu, 2002, pg. 99]), but I think you can describe a regular expression as
the following: a pattern filter which recognizes a sequence of characters but has restricted memory and cannot keep
track of frequency of a character. It is pretty much the simplest way to filter information, more complex grammars
make regular expressions unusable.

33

HEURISTICS: This part
of the program contains
all of the code which is
related to the main
investigation of this
thesis. It contains the A*
as implemented and the
relevancy function
described.

PRIORITY QUEUE:
This part of the program
ensures that only the links
with the lowest A* value
will be visited first.

CONNECTION
OBJECT: This part of
the program opens up a
connection with a web
site and downloads the
information, and this
information is returned as
a string value.

TEXT PROCESSOR:
This portion of the
program prepares
information for
processing, removes links
and initializes key data
points for comparison.

DATABASE: This
portion of the program
manages important data
which needs to be
persistent. This includes
critical data for
evaluating the
performance of the A*
function.

HEURISTICS: This part
of the program contains
all of the code which is
related to the main
investigation of this
thesis. It contains the A*
as implemented and the
relevancy function
described.

LINK OBJECT: This
object is the actual data
type managed by the
Priority Queue and
contains two values: a
hyperlink and an A*
score.

VISIT LIST: This object
is a hash table (I am
simply using a HASH as
implemented by PERL)
which ensures that there
are not duplicate visits to
the same web page.

Figure 3: Rough Description of Objects/Modules and their Responsibilities

It is important to point out that any SA solution should only be seen in the context of a

user and as part of system-user collaboration. It is believed that there may be some schism

between those who would apply intelligent systems solutions to problems and those who would

improve the design of user interfaces to enable people to solve problems more effectively.61 I

don’t see a real contradiction between these two positions and I would contend that their debate

is not taking place in the same universe of discourse. I think an SA needs to be developed with

the idea of a user in mind. Even though my proof of concept does not include this as of yet, it

would include this design parameter if there were the time to extend, improve and develop this

work. As an experiment it is still too primitive to place in this collaborative relationship.62

It would be my contention that the design of an effective SA would be based upon a

methodology similar to that proposed by Marvin Minsky in Society of Mind. If I had the

opportunity, more time, and a large group of people interested in this problem, I would

decompose the problem with a greater level of resolution – investigating all of the assumed sub-

parts of making an SA and trying to model these in terms of what we understand about human

cognition. The search process is very complex and there is a fair degree of synergy between the

search and machine learning. And finally, as has been mentioned, there is huge potential for both

60 I use the word regular here to refer to those abstract languages which can be generated through union,
concatenation and Kleene* operations. Regular languages are the easiest to deal with, and even Context Sensitive
languages like English have sub-structures which can be treated as regular even though the whole language is
obviously not regular. I also think it is important to point out that Noam Chomsky, in his famous 1957 essay,
Syntactic Structures, [page 22], spends the first section dispelling the notion that natural languages are regular. I
reiterate this point because I don’t think my position and this accepted idea are in conflict. In fact I think Chomsky
would accept the notion that for pragmatic reasons context sensitive languages can be treated as context free or even
regular depending upon the problem being solved.
61 [Lieberman, 1993 (internet document)]
62 [Maes and Schniederman, 1997, pg. 50]

34

PROCESS TEXT
SAMPLE AND

CREATE
COMPARISON

TABLES

SUBMIT
INITIALIZATION

QUERY TO
INTERNET

SEARCH ENGINE

PLACE LINKS IN
PRIORITY QUEUE

WITH AN
INITIALLY LOW

PRIORITY

REMOVE LOWEST
SCORE LINK FROM
PRIORITY QUEUE
AND DOWNLOAD

INFORMATION

Figure 4: Simplified High-Level Process Flow

APPLY A* FUNCTION
TO THE DATA

RETRIEVED AND
INSERT ALL LINKS IN
THE PRIORITY QUEUE

WITH THE SCORE

HAS TIME LIMIT
BEEN REACHED?

NO

HALT!

PROCESS RETRIEVED
DATA AS DIRECTED
BY THE USER AND

THE PURPOSE OF THE
SEARCH.

YES

the application of neural network architecture to this problem and the use of collaborative agents

– agents which are homogeneous and heterogeneous. This problem can best be solved in a

collaborative, cooperative and in some cases competitive space.63 If the reader wants to get a

simplified view of how the program as designed actually functions, see Figure 4 below.

6.2 - Maximum Spanning Tree Algorithm

This thesis explores the use of graphs as a representation for text documents, and

attempts to use their topological properties as a basis for comparison and analysis. This work

includes a minor detour into the use of maximum spanning trees for the construction of topic

maps which could order the information found. Also, the use of the maximum spanning tree

might be the basis for a kind of semantic marker for a document, which could be a strategy for

applying new markups based upon the current and predicted protocols for the semantic web.64 If

there were a reasonably efficient way to automate this process, then it might not be as difficult a

transition. These and other ideas surrounded the notion of using graphs for this project. The

63 [Minsky, 1985, pg. 74]
64 It is not necessary to cover this again; some of this is explained in the first part of this work. However, put simply
the semantic web is a way of marking/representing information on the WWW to make the knowledge or meaning
content of a document explicit.

35

literature search was not definitive for deterimining how much work has already been done using

the spanning tree algorithms.

The following is a summary of potential uses of a maximum spanning tree generated

from a text document:

1. Knowledge Engineering: I think there may be a way, with better pre-processing, to
develop rules and predicates for a knowledge engineer automatically – based solely on
the text sample. Of course this data would still need to be edited, but it might assist the
knowledge engineer.

2. Automated Ontology: As already stated, I think this algorithm could be extended to assist
in automatically building categorization trees. As currently designed it is not ready for
this, but with sufficient text preparation it may be.

3. Associative Memory: I would like to experiment with graphs and spanning trees to
explore a model for simplified associative memory. I think this could be used to build
more intelligent search agents.65

The implementation of this is in C++ and is included in Appendix B.

7.0 - Bibliography

Books

1. Joan M. Aldous and Robin J. Wilson Graphs and Applications: An Introductory Approach,

Springer-Verlag London Berlin Heidelberg, 2000

2. Avron Barr and Edward A. Feigenbaum The Handbook of Artificial Intelligence, Volume 1,

Addison Wesley Publishing, 1981

65 [Hardy, 1998, pg. 5]

36

3. Michael W. Berry and Murray Browne Understanding Search Engines: Mathematical

Modeling and Text Retrieval, Society for Industrial and Applied Mathematics, 1999

4. Belew, Richard K. Finding Out About, Cambridge University Press, 2000

5. Berners-Lee, Tim Weaving the Web, HarperCollins San Francisco, 1999

6. Carlton McDonald and Masoud Yazdani Prolog Programming: A Tutorial Introduction,

Blackwell Scientific Publications, 1990

7. Chomsky, Noam Syntactic Structures, Mouton at The Hague and Paris, 1957, 1968

8. Robert N. Moll, Michael A. Arbib and A. J. Kfoury An Introduction to Formal Language

Theory, Springer-Verlag London Berlin Heidelberg, 1988

9. Hardy, Christine Networks of Meaning: A Bridget Between Mind and Matter, Praeger,

Westport CN, 1998

10. Luger, George F. Artificial Intelligence: Structures and Strategies for Complex Problem

Solving, Essex England: Pearson Education Limited, 2002

11. Maedche, Alexander Ontology Learning For The Semantic Web, Kluwer Academic

Publishers, 2002

12. Minsky, Marvin The Society of Mind, Simon and Schuster, New York, 1985

13. Gonzalo Navarro and Mathieu Raffinot Flexible Pattern Matching in Strings: Practical on-

line Search Algorithms for Texts and Biological Sequences, Cambridge University Press,

2002

14. Stuart J. Russell and Peter Norvig Artificial Intelligence: A Modern Approach, Prentice Hall,

Saddle River New Jersey, 1995

15. Sowa, John F. Conceptual Structures: Information Processing in Mind and Machine,

Addison-Wesley Publishing Company, 1984

16. Wurman, Richard S. Information Anxiety 2, Indianapolis : Que, 2001

Articles

37

1. Burnard, Lou “On the Intelligent Handling of Free Text Retrieval”, Oxford University

Computing Service, Email Document from 29 April 1989:

http://www.tei-c.org/Vault/ED/edw01.htm

2. Ceglowski, Maciej “Building a Vector Space Search Engine in Perl”, perl.com, February 19,

2003: http://www.perl.com/pub/a/2003/02/19/engine.html

3. Raymond J. Curts and Douglas E. Campbell “Avoiding Information Overload Through The

Understanding Of OODA Loops: A Cognitive Hierarchy and Object Oriented Analysis and

Design”, http://www.oslerbooks.com/is/pdf/ooda.pdf

4. Alan R. Dennis and Nolan J. Taylor “Information Foraging on the Web: The Effects of

Internet Delays on Multi-page Information Search Behavior”, Kelley School of Business,

Indiana University, August 6, 2002

5. Ralph Depke, Reiko Heckel and Jochen M. Kuster “Improving the Agent-Oriented Modeling

Process by Roles”, Agents 2001, May 28 – June 1, 2001

6. Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth “The KDD Process for

Extracting Useful Knowledge from Volumes of Data”, Communications of the ACM,

November 1996

7. Henry Lieberman, Christopher Fry and Louis Weitzman “Why Surf Alone?: Exploring the

Web with Reconnaissance Agents”, MIT Media Lab, 2000: http://lieber.www.media.mit.edu/

people/lieber/Lieberary/Letizia/Why-Surf/Why-Surf.html

8. Lieberman, Henry “Attaching Interface Agent Software to Applications”, MIT Media Lab,

1993: http://lieber.www.media.mit.edu/people/lieber/lieberary/Attaching/Attaching.html

9. Imai, Mazooki “Kaizen, the Concept”, Total Quality Handbook, Lakewood Books, 1990

10. Maes, Pattie “Intelligent Software: Programs that can act independently will ease the burdens

that computers put on people”, MIT Media Lab, 1995:

http://pattie.www.media.mit.edu/people/pattie/SciAm-95.html

38

http://www.tei-c.org/Vault/ED/edw01.htm
http://pattie.www.media.mit.edu/people/pattie/SciAm-95.html
http://lieber.www.media.mit.edu/people/lieber/lieberary/Attaching/Attaching.html
http://lieber.www.media.mit.edu/people/lieber/Lieberary/Letizia/Why-Surf/Why-Surf.html
http://lieber.www.media.mit.edu/people/lieber/Lieberary/Letizia/Why-Surf/Why-Surf.html
http://www.oslerbooks.com/is/pdf/ooda.pdf
http://www.perl.com/pub/a/2003/02/19/engine.html

11. Maes, Pattie “Agents that Reduce Work and Information Overload”, CACM 1994, 1994:

http://pattie.www.media.mit.edu/people/pattie/CACM-94/CACM-94.p1.html

12. Pattie Maes and Ben Schniederman, “Direct Manipulation vs. Interface Agents”, Interactions,

December 1997

13. Mock, Kenrick J. “Hybrid Hill-Climbing and Knowledge-Based Techniques for Intelligent

News Filtering”, Intel Corporation: Intel Architecture Lab, JF2-76, Hillsboro, OR 1994:

mock@cs.ucdavis.edu

14. Mathew Palakal, Snehasis Mukhopadhyay, and Javed Mostafa “An Intelligent Biological

Information Management System”, Proceedings of ACM Symposium on Applied

Computing, 2002

15. Rhodes and Starner “Remembrance Agent: A Continuously Running Automated Information

Retrieval System”, The Proceedings of the First International Conference on the Practical

Application Of Intelligent Agents and Multi Agent Technology (PAMM), 1996: 487-495

16. Sowa, John F. Automating Ontology Development,

http://www.jfsowa.com/pubs/autotalk.htm, 2001

17. Sowa, John F. “Semantic Networks”, http://www.jfsowa.com/pubs/semnet.htm, 2002

18. Woods, W. A. “Finding Information on the Web: A Knowledge Representation Approach”,

MIT AI Lab, 1995: http://www.ai.mit.edu/projects/iiip/conferences/www95/woods.html

19. Ora Lassila and Ralph R. Swick, editors “Resource Description Framework (RDF) Model

and Syntax”, W3C Recommendation, 22 February 1999: http://www.w3.org/TR/1999/REC-

rdf-syntax-19990222/

39

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
http://www.ai.mit.edu/projects/iiip/conferences/www95/woods.html
http://www.jfsowa.com/pubs/semnet.htm
http://www.jfsowa.com/pubs/autotalk.htm
mailto:mock@cs.ucdavis.edu
http://pattie.www.media.mit.edu/people/pattie/CACM-94/CACM-94.p1.html

Appendix A – PERL Crawler Source Code

#!/usr/bin/perl -w

###
Daniel J. Sullivan, Senior Thesis Project
I460/I461
Applying the A* Heuristic Function to
Document Retrieval
###
#1. This program needs the correct modules to run
#2. This program is not fully debugged
#3. There is some question as to admissibility

open(INFI, "sample.txt"); #test sample
while(<INFI>)
{
 $big_string .= $_;
}
chomp $big_string;
&Main::heuristic_search(10000,3600,0.5, $big_string, "a_star", 10000, 0.1); #10000 seems like a good

#the admissibility value and the max # combination
#time value should probably be very similar # a good value for this
##
Data Base Package
##
#this package is intended to manage the file i/o
#and long term storage of data generated through
#the search process.
#There is a need to ensure that the same
#links are not visited more than once.

package Data_Base;
local $file_name = '';
sub initialize
{
 $file_name = $_[0];
 mkdir "C:\\senior_thesis\\perl_thesis_work\\crawler\\database\\" . $file_name, 0777;
 open(OUTFILE1, ">C:\\senior_thesis\\perl_thesis_work\\crawler\\database\\" . $file_name . "\\" . $file_name . "_content.txt");
 print OUTFILE1 "CONTENT\n";
 close OUTFILE1;
 open(OUTFILE2, ">C:\\senior_thesis\\perl_thesis_work\\crawler\\database\\" . $file_name . "\\" . $file_name . "_links.txt");
 print OUTFILE2 "LINKS\n";
 close OUTFILE2;
 open(OUTFILE3, ">C:\\senior_thesis\\perl_thesis_work\\crawler\\database\\" . $file_name . "\\" . $file_name . "_ontology.txt");
 print OUTFILE3 "ONTOLOGY\n";
 close OUTFILE3;

40

 open(OUTFILE4, ">C:\\senior_thesis\\perl_thesis_work\\crawler\\database\\" . $file_name . "\\" . $file_name .
"_search_performance.txt");
 print OUTFILE4 "SEARCH PERFORMANCE\n";
 print OUTFILE4 "CRITERIA|RELEVANCY_THREASHOLD|BPA|TIME_LIMIT|GAMMA|SEARCH_NAME|MAX_BANDWIDTH|
URL_ADDRESS|URL_DOC_SIZE|DATA_SAVED|A_STAR_EVAL|RELEVANCY|ORDERED_PAIR_REL|ALL_TERM_REL|
TOKEN_REL|CONTEN_WORD_REL|ELAPSED_TIME\n";
 close OUTFILE4;
}

sub write_to_search_performance
{
 my $temp = $_[0];
 open(OUTFILE4, ">>C:\\senior_thesis\\perl_thesis_work\\crawler\\database\\" . $file_name . "\\" . $file_name .
"_search_performance.txt");
 print OUTFILE4 $temp . "\n";
 close OUTFILE4;
}

sub write_to_content_file #write link with content
{
 my $str1 = '';
 my $str2 = '';
 $str1 = $_[0];
 $str2 = $_[1];
 if(length($str2) < 20)
 {
 return;
 }
 open(OUTFILE1, ">>C:\\senior_thesis\\perl_thesis_work\\crawler\\database\\" . $file_name . "\\" . $file_name . "_content.txt");
 $str2 =~ s/\s+/ /g;
 my $strlen = length($str2);
 print OUTFILE1 "\[" . $str1 . "\]" . "\n";
 if($strlen < 3000)
 {
 print OUTFILE1 substr($str2,0,$strlen) . "\n";
 }
 else
 {
 print OUTFILE1 substr($str2,0,3000) . "\n";
 }

 print OUTFILE1 "\n\n\n";
 close(OUTFILE1);
}

sub write_to_links_file
{
 my $str1 = $_[0];
 my $str2 = $_[1];
 open(OUTFILE2, ">>C:\\senior_thesis\\perl_thesis_work\\crawler\\database\\" . $file_name . "\\" . $file_name . "_links.txt");
 print OUTFILE2 $str1 . " " . $str2 . "\n";
 close(OUTFILE2);
}
sub write_to_ontology_file
{
 my @val = @_;
 open(OUTFILE3, ">>C:\\senior_thesis\\perl_thesis_work\\crawler\\database\\" . $file_name . "\\" . $file_name . "_ontology.txt");
 foreach $key (@val)
 {
 print OUTFILE3 $key . "\n";
 }
 close(OUTFILE3);
}
###
Link Object for Holding link data in queue
###
package Link_Object;
sub new
{
 my ($classname, $lnk, $val) = @_;
 my $self = {};
 $self->{HYPER_LINK} = $lnk;
 $self->{VALUE} = $val;

41

 return bless $self, $classname;
}
package Priority_Queue;
 local @queue = ();
sub get_queue_size
{
 my $temp = @queue;
 return $temp;
}
sub insert_hyperlink
{
 my $temp1 = $_[0];
 my $temp2 = $_[1];
 my $temp3 = undef;
 my $temp4 = 0;

 $temp3 = new Link_Object($temp1,$temp2);
 &enqueue($temp3);
 $temp4 = @queue;
}
sub get_next_best_link #returns link
{
 my $temp = dequeue();
 return $temp->{HYPER_LINK};
}
sub enqueue
{
 my $temp = $_[0];
 push @queue, $temp;
}
sub sort_queue
{
 my @temp_array = ();
 @temp_array = sort { $a->{VALUE} <=> $b->{VALUE} } @queue;
 @queue = @temp_array;
}
sub dequeue
{
 my $temp = $queue[0];
 shift @queue;
 return $temp;
}
sub print_queue
{
 foreach $val (@queue)
 {
 print $val->{HYPER_LINK} . ' - ' . $val->{VALUE} . "\n"
 }
}
package Scheduler; #to include priority queue functionality
 local $start_time = 0;
 local $max_time = 0;
#time is in seconds
sub set_start_time
{
 $start_time = time;
}
sub get_elapsed_time
{
 return time - $start_time;
}
sub set_max_time
{
 $max_time = $_[0];
}
sub get_max_time
{
 return $max_time;
}

package Heuristics;

#package heuristic description
 #sub r_x_y

42

 #sub h_x
 #sub g_x
 #sub A_x

 #Assume network bandwidth of 50k/s
 #A perfect agent would only retrieve relevant material
 #Information retrieved might equal (bandwidth * time)

 #adjusting for a factor of less than optimal performance
 #we would multiply perfect performance by this factor GAMMA.

 #Best Path Adjusted (BPA) = Bandwidth * Time * Gamma,
 #where GAMMA = 1/x and x > 1.

 #G(n) = S, where S represents time elapsed since the search
 #has begun.

 #DV = Document Value = Relevance * Document_Size

 #Available Time(AT) = Max_Time - Time_Elapsed

 #Optimistic_Future_Retrieval = CR * x, x is required time to reach best outcome

 #(CR) Current_Relevant_Material = material on hand from search
 #which is relevant to search in bytes or kilobytes (as long as unit
 #of measure stays the same. This information can be maintained in a file.

 #So, the whole formula for H(n) is:

 #H(n) = ([Bandwidth*Max_Time*GAMMA]-Current_Relevant_Material)/(Relevance*Current_Doc_Size)

 #since every thing will be measured in a common measure of kilobytes, the
 #main unit of measure will be seconds.

 # A*(n) = H(n) + G(n) will give a total in seconds, and the priority
 # queue will extract the minimum.

 local $op_rel = 0;
 local $wc_rel = 0;
 local $tc_rel = 0;
 local $aw_rel = 0;
 local $total_bytes_saved = 0;
 local $gamma = 1; #gamma value, this value must be less than or equal to 1
 local $max_bandwidth = 0; #this value is critical to the computation
 #the user is estimating what the perfect
 #information download speed is for his/her
 #computer.

#this function sums and averages multiple
#mappings.

sub get_wcr
{
 return $wc_rel;
}

sub get_opr
{
 return $op_rel;
}

sub get_tcr
{
 return $tc_rel;
}

sub get_awr
{
 return $aw_rel;
}

sub r_x_y
{
 my($z1, $z2, $z3, $z4, $x) = 0;

43

 #we are using weighting to adjust
 #the relative importance of each
 #mapping, this adjustment might be
 #performed by a learning algorithm.

 $z1 = &r_x_y_word_count(); #1 50%
 $z2 = &r_x_y_token_count(); #4 10%
 $z3 = &r_x_y_ordered_pairs(); #3 20%
 $z4 = &r_x_y_word_list(); #2 20%

 $x = (($z1 * 0.5) + ($z2 * 0.1) + ($z3 * 0.2) + ($z4 * 0.2))/100;

 #$x = ($z1 + $z2 + $z3 + $z4)/400;

 $wc_rel = $z1;
 $op_rel = $z3;
 $tc_rel = $z2;
 $aw_rel = $z4;

 return $x;
}

sub set_max_bandwidth
{
 $max_bandwidth = $_[0];
}

sub set_gamma
{
 $gamma = $_[0];
}

sub get_bytes_saved
{
 return $total_bytes_saved;
}

sub A_STAR_N
{
 my $f = 0;
 my $h = 0;
 my $g = 0;
 my $str1 = '';

 $str1 = $_[0];

 $h = &H_N($str1);
 $g = &G_N();

 $f = $g + $h;

 return $f;
}

sub H_N
{
 my($result, $bpa,$cr,$dv) = 0;
 my $str1 = '';

 $str1 = $_[0];

 $dv = &DV($str1);
 $bpa = &BPA();
 $cr = $total_bytes_saved;

 if($dv <= 0)
 {

44

 $dv = 0.00001;
 }

 $result = ($bpa - $cr)/$dv;

 return $result;
}

sub G_N
{
 my $temp = 0;

 $temp = &Scheduler::get_elapsed_time();

 print "Elapsed Time: " . $temp . "\n";

 return $temp;
}

sub BPA
{
 my($x,$y,$z) = 0;

 $x = &Scheduler::get_max_time();
 $y = $gamma;
 $z = $max_bandwidth; #max bandwidth

 return $x * $y * $z;
}

sub DV
{
 #dv = rel * size

 my $str1 = '';
 my $relevance = 0;
 my $x = 0;
 my $length = 0;

 $str1 = $_[0];

 &Text_Processor::generate_current_data($str1);

 $total_bytes_saved += length($str1);

 $length = length($str1);

 $x = &r_x_y();

 return $x * $length;
}

#returns difference between original
#and current document as a difference
#value between average relative
#frequencies for the ordered pair.

sub r_x_y_ordered_pairs
{
 my @y_keys = ();
 my %x_op_count = ();
 my %y_op_count = ();
 my $x_total = 0;
 my $y_total = 0;
 my ($i, $j, $h, $k);

 $i = 0;

45

 $j = 0;
 $h = 0;
 $k = 0;

 %y_op_count = &Text_Processor::get_current_ordered_pairs_count();
 %x_op_count = &Text_Processor::get_sample_ordered_pairs_count();
 $x_total = &Text_Processor::get_sample_ordered_pairs_total();
 $y_total = &Text_Processor::get_current_ordered_pairs_total();

 @y_keys = keys %y_op_count;

 foreach $key (@y_keys)
 {
 if(exists $x_op_count{$key})
 {
 $k++;

 $i = $y_op_count{$key}/$y_total;
 $j = $x_op_count{$key}/$x_total;

 $h += 1-(abs($i-$j)*100);
 }
 }

 if($k == 0)
 {
 return 5;
 }

 return ($h/$k)*100;
}

sub r_x_y_word_count
{
 my @y_keys = ();
 my %x_word_count = ();
 my %y_word_count = ();
 my $x_total = 0;
 my ($k, $n);

 $k = 0;
 $n = 0;

 %y_word_count = &Text_Processor::get_current_word_count();
 @y_keys = keys %y_word_count;
 %x_word_count = &Text_Processor::get_sample_word_count();
 $x_total = &Text_Processor::get_sample_word_total();

 if(@y_keys)
 {

 foreach $val (@y_keys)
 {
 $n++;

 if(exists $x_word_count{$val})
 {
 $k++;
 }
 }

 if($k > 0 && $n > 0)
 {
 return ($k/$n)*100;
 }
 else
 {
 return 5;
 }

 }

46

 else
 {
 return 5;
 }
}

sub r_x_y_token_count
{
 my %x_token_count = ();
 my %y_token_count = ();
 my $x_total = 0;
 my $y_total = 0;
 my ($i, $j, $h, $k);

 $i = 0;
 $j = 0;
 $h = 0;
 $k = 0;

 %y_token_count = &Text_Processor::get_current_token_count();
 $y_total = &Text_Processor::get_current_token_total();

 %x_token_count = &Text_Processor::get_sample_token_count();
 $x_total = &Text_Processor::get_sample_token_total();

 foreach $key (sort keys %y_token_count)
 {
 if(exists $x_token_count{$key})
 {
 $k++;

 $i = $y_token_count{$key}/$y_total;
 $j = $x_token_count{$key}/$x_total;

 $h += 1-(abs($i-$j)*20);
 }
 }

 if($h > 0 && $k > 0)
 {
 return ($h/$k)*100;
 }
 else
 {
 return 5;
 }
}

sub r_x_y_word_list
{
 my %x_count = ();
 my %y_count = ();
 my $x_total = 0;
 my $y_total = 0;
 my ($i, $j, $h, $k);

 $i = 0;
 $j = 0;
 $h = 0;
 $k = 0;

 %y_count = &Text_Processor::get_current_word_list();
 $y_total = &Text_Processor::get_current_word_list_total();

 %x_count = &Text_Processor::get_sample_word_list();
 $x_total = &Text_Processor::get_sample_word_list_total();

 foreach $key (sort keys %y_count)
 {
 if(exists $x_count{$key})
 {
 $k++;

 $i = $y_count{$key}/$y_total;

47

 $j = $x_count{$key}/$x_total;

 $h += 1-(abs($i-$j)*20);
 }
 }

 if($h > 0 && $k > 0)
 {
 return ($h/$k)*100;
 }
 else
 {
 return 5;
 }
}

package Text_Processor;

 use HTML::FormatText;
 use HTML::Parse;
 use HTML::LinkExtor;

 local $original_sample_document_string = ''; #original text w/o html
 local %sample_token_count = (); #set of tokens with frequency
 local $sample_token_total = 0;
 local %sample_word_count = (); #set of words with frequency
 local $sample_word_total = 0; #relative frequency
 local %sample_ordered_pairs_count = ();
 local $sample_ordered_pairs_total = 0;
 local $translated_sample_total_words = 0;
 local %sample_unfiltered_wordlist = ();
 local $sample_unfiltered_wordlist_total = 0;

 local $original_current_document_string = ''; #current text w/o html
 local %current_token_count = (); #set of tokens with frequency
 local $current_token_total = 0;
 local %current_word_count = (); #set of words with frequency
 local $current_word_total = 0; #relative frequency
 local %current_ordered_pairs_count = ();
 local $current_ordered_pairs_total = 0;
 local $translated_current_total_words = 0;
 local %current_unfiltered_wordlist = ();
 local $current_unfiltered_wordlist_total = 0;

#functions for accessing and processing original document characteristics

sub get_sample_ordered_pairs_total
{
 my $temp = $sample_ordered_pairs_total;

 return $temp;
}

sub get_sample_ordered_pairs_count
{
 my %temp = %sample_ordered_pairs_count;

 return %temp;
}

sub get_sample_token_count
{
 my %temp = %sample_token_count;

 return %temp;
}

sub get_sample_token_total
{
 my $temp = $sample_token_total;

 return $temp;

48

}

sub get_sample_total_words
{
 my $temp = $translated_sample_total_words;
 return $temp;
}

sub get_sample_word_count
{
 my %temp = %sample_word_count;

 return %temp;
}

sub get_sample_word_total
{
 my $temp = $sample_word_total;

 return $temp;
}

sub get_original_sample_document_string
{
 my $temp = $original_sample_document_string;

 return $temp;
}

sub get_sample_word_list
{
 return %sample_unfiltered_wordlist;
}

sub get_sample_word_list_total
{
 return $sample_unfiltered_wordlist_total;
}

sub generate_sample_wordlist
{
 my $str1 = $_[0];
 my @temp = ();

 $str1 =~ s/(\'|\`)//g; #removing apostrophes

 $str1 =~ s/\W+/ /g;

 @temp = split(/\s+/,$str1);

 foreach $val (@temp)
 {
 $sample_unfiltered_wordlist_total++;

 if(exists $sample_unfiltered_wordlist{$val})
 {
 $sample_unfiltered_wordlist{$val}++;
 }
 else
 {
 $sample_unfiltered_wordlist{$val} = 1;
 }
 }
}

sub generate_sample_data
{
 my $str1 = '';
 my $str2 = '';
 my $str3 = '';
 my $str4 = '';

49

 my @temp_array = ();
 my @temp_array2 = ();
 my $size = 0;

 $str1 = $_[0];

 $original_sample_document_string = $str1;

 &generate_sample_wordlist($str1);

 @temp_array = &text_substitution($str1);

 $translated_sample_total_words = @temp_array;

 foreach $val (@temp_array)
 {
 if($val =~ m/\[\d+\]/)
 {
 $sample_token_total++;

 if(exists $sample_token_count{$val})
 {
 $sample_token_count{$val}++;
 }
 else
 {
 $sample_token_count{$val} = 1;
 }
 }
 else
 {
 $sample_word_total++;

 if(exists $sample_word_count{$val})
 {
 $sample_word_count{$val}++;
 }
 else
 {
 $sample_word_count{$val} = 1;

 push @temp_array2, $val;
 }
 }
 }

 #generate ordered pairs

 $size = @temp_array2;

 my %sample_ordered_pairs_count = ();

 my @temp_arr3 = ();

 for($i = 0; $i < $size - 1; $i++)
 {
 $j = $i;

 $str3 = $temp_array2[$j];
 $str4 = $temp_array2[$j+1];

 if($str3 ne $str4)
 {
 $str2 = $str3 . "-" . $str4;

 if((length($str3) > 3) && (length($str4) > 3))
 {
 push @temp_arr3, $str3 . "--" . $str4;

50

 }

 $sample_ordered_pairs_total++;

 if(exists $sample_ordered_pairs_count{$str2})
 {
 $sample_ordered_pairs_count{$str2}++;
 }
 else
 {
 $sample_ordered_pairs_count{$str2} = 1;
 }
 }
 }

 &Data_Base::write_to_ontology_file(@temp_arr3);
}

#end of functions for accessing and processing original document

#functions for accessing and processing current document

sub get_current_ordered_pairs_total
{
 my $temp = $current_ordered_pairs_total;

 return $temp;
}

sub get_current_ordered_pairs_count
{
 my %temp = %current_ordered_pairs_count;

 return %temp;
}

sub get_current_token_count
{
 my %temp = %current_token_count;

 return %temp;
}

sub get_current_token_total
{
 my $temp = $current_token_total;

 return $temp;
}

sub get_current_total_words
{
 my $temp = $translated_current_total_words;

 return $temp;
}

sub get_current_word_count
{
 my %temp = %current_word_count;

 return %temp;
}

sub get_current_word_total
{
 my $temp = $current_word_total;

 return $temp;
}

sub get_original_current_document_string

51

{
 my $temp = $original_current_document_string;

 return $temp;
}

sub get_current_word_list
{
 return %current_unfiltered_wordlist;
}

sub get_current_word_list_total
{
 return $current_unfiltered_wordlist_total;
}

sub generate_current_wordlist
{
 my $str1 = $_[0];
 my @temp = ();

 $str1 =~ s/(\'|\`)//g; #removing apostrophes

 $str1 =~ s/\W+/ /g;

 @temp = split(/\s+/,$str1);

 foreach $val (@temp)
 {
 $current_unfiltered_wordlist_total++;

 if(exists $current_unfiltered_wordlist{$val})
 {
 $current_unfiltered_wordlist{$val}++;
 }
 else
 {
 $current_unfiltered_wordlist{$val} = 1;
 }
 }
}

sub reset_current
{
 $original_current_document_string = ''; #current text w/o html
 %current_token_count = (); #set of tokens with frequency
 $current_token_total = 0;
 %current_word_count = (); #set of words with frequency
 $current_word_total = 0; #relative frequency
 %current_ordered_pairs_count = ();
 $current_ordered_pairs_total = 0;
 $translated_current_total_words = 0;
 %current_unfiltered_wordlist = ();
 $current_unfiltered_wordlist_total = 0;
}

sub generate_current_data
{
 my $str1 = '';
 my $str2 = '';
 my $str3 = '';
 my $str4 = '';
 my @temp_array = ();
 my @temp_array2 = ();
 my $size = 0;

 $str1 = $_[0];

 $original_current_document_string = $str1;

 &generate_current_wordlist($str1);

 @temp_array = &text_substitution($str1);

52

 $translated_current_total_words = @temp_array;

 foreach $val (@temp_array)
 {
 if($val =~ m/\[\d+\]/)
 {
 $current_token_total++;

 if(exists $current_token_count{$val})
 {
 $current_token_count{$val}++;
 }
 else
 {
 $current_token_count{$val} = 1;
 }
 }
 else
 {
 $current_word_total++;

 if(exists $current_word_count{$val})
 {
 $current_word_count{$val}++;
 }
 else
 {
 $current_word_count{$val} = 1;
 push @temp_array2, $val;
 }
 }
 }

 my @temp_arr3 = ();

 $size = @temp_array2;

 my %current_ordered_pairs_count = ();

 for($i = 0; $i < $size - 1; $i++)
 {
 $j = $i;

 $str3 = $temp_array2[$j];
 $str4 = $temp_array2[$j+1];

 if($str3 ne $str4)
 {
 $str2 = $str3 . "-" . $str4;

 if((length($str3) > 3) && (length($str4) > 3))
 {
 push @temp_arr3, $str3 . "--" . $str4;
 }

 $current_ordered_pairs_total++;

 if(exists $current_ordered_pairs_count{$str2})
 {
 $current_ordered_pairs_count{$str2}++;
 }
 else
 {
 $current_ordered_pairs_count{$str2} = 1;
 }
 }
 }

 &Data_Base::write_to_ontology_file(@temp_arr3);
}

#end of functions for accessing and processing current document

53

sub text_substitution
{
 #SENTENCE FRAGMENT TRANSLATION: tokenizing
 #into content versus non-content language

 my $i = 0;
 my $j = 0;
 my $str1 = '';
 my @ret_array = ();

 $str1 = $_[0];

 my %parse_table = (
 'IMMEDIATELY' => '[1]', 'APPROPIATE' => '[2]', 'CONCERNING' => '[3]',
 'QUESTIONED' => '[4]', 'THEMSELVES' => '[5]', 'WEAKNESSES' => '[6]',
 'ANNOUNCED' => '[7]', 'BEGINNING' => '[8]', 'CONCERNED' => '[9]',
 'COUNTRIES' => '[10]', 'DENOUNCED' => '[11]', 'FOLLOWING' => '[12]',
 'IMMEDIATE' => '[13]', 'INDICATES' => '[14]', 'MEANWHILE' => '[15]',
 'NECESSARY' => '[16]', 'OURSELVES' => '[17]', 'PERSONNEL' => '[18]',
 'PROVIDING' => '[19]', 'QUESTIONS' => '[20]', 'SERIOUSLY' => '[21]',
 'SOMETHING' => '[22]', 'SOMETIMES' => '[23]', 'SOMEWHERE' => '[24]',
 'STATEMENT' => '[25]', 'THEREFORE' => '[26]', 'WHICHEVER' => '[27]',
 'ADDITION' => '[28]', 'BECOMING' => '[29]', 'CONCERNS' => '[30]',
 'DENOUNCE' => '[31]', 'FURTHEST' => '[32]', 'INCLUDED' => '[33]',
 'INCLUDES' => '[34]', 'INDICATE' => '[35]','INVOLVES' => '[36]',
 'LIKEWISE' => '[37]', 'MIDPOINT' => '[38]', 'ORDERING' => '[39]',
 'PREVIOUS' => '[40]', 'PROVIDED' => '[41]', 'QUESTION' => '[42]',
 'STARTING' => '[43]', 'STRONGER' => '[44]', 'STRONGLY' => '[45]',
 'UNLIKELY' => '[46]', 'WEAKENED' => '[47]', 'WEAKNESS' => '[48]',
 'WHATEVER' => '[49]', 'WHENEVER' => '[50]', 'YOURSELF' => '[51]',
 'AGAINST' => '[52]', 'BECAUSE' => '[53]', 'BETWEEN' => '[54]',
 'CALLING' => '[55]', 'CLEARLY' => '[56]', 'COUNTRY' => '[57]',
 'EARLIER' => '[58]', 'FURTHER' => '[59]', 'HOWEVER' => '[60]',
 'INCLUDE' => '[61]', 'INVOLVE' => '[62]', 'LARGELY' => '[63]',
 'LARGEST' => '[64]', 'NORTERN' => '[65]', 'NOTHING' => '[66]',
 'ORDERED' => '[67]', 'OVERALL' => '[68]', 'PATTERN' => '[69]',
 'PERCENT' => '[70]', 'PROVIDE' => '[71]', 'SEEMING' => '[72]',
 'STARTED' => '[73]', 'THROUGH' => '[1001]','WEAKEST' => '[74]',
 'WHEREAS' => '[75]', 'OWN' => '[1002]', 'WHETHER' => '[76]',
 'WISHING' => '[77]', 'START' => '[1003]', 'AMONG' => '[1004]',
 'KEEN' => '[1005]', 'EVERYTHING' => '[1006]', 'FACE' => '[1007]',
 'OTHERS' => '[1008]', 'GET' => '[1009]', 'WITHOUT' => '[78]',
 'WORKING' => '[79]', 'WORKING' => '[80]', 'YIELDED' => '[81]',
 'ALMOST' => '[82]', 'PM' => '[1010]', 'ET' => '[1011]',
 'ALWAYS' => '[83]', 'AROUND' => '[84]', 'BECOME' => '[85]',
 'BEFORE' => '[86]', 'CANNOT' => '[87]', 'DURING' => '[88]',
 'EITHER' => '[89]', 'FUTURE' => '[90]', 'ITSELF' => '[91]',
 'LATEST' => '[92]', 'LENGTH' => '[93]', 'LIKELY' => '[94]',
 'LITTLE' => '[95]', 'MEMBER' => '[96]', 'MERELY' => '[97]',
 'METERS' => '[98]', 'MIDDLE' => '[99]', 'MONTHS' => '[100]',
 'MOVING' => '[101]', 'NEARBY' => '[102]', 'NEARLY' => '[103]',
 'NOBODY' => '[104]', 'NORMAL' => '[105]', 'OLDEST' => '[106]',
 'ORDERS' => '[107]', 'PEOPLE' => '[108]', 'PUSHED' => '[109]',
 'RECENT' => '[110]', 'SAYING' => '[111]', 'SECOND' => '[112]',
 'SEEMED' => '[113]', 'SELVES' => '[114]', 'SHOULD' => '[115]',
 'SOUGHT' => '[116]', 'STATED' => '[117]', 'STRONG' => '[118]',
 'THEIRS' => '[119]', 'THOUGH' => '[120]', 'TRYING' => '[121]',
 'WEAKEN' => '[122]', 'WEAKER' => '[123]', 'WISHED' => '[124]',
 'WISHES' => '[125]', 'WITHIN' => '[126]', 'WORKED' => '[127]',
 'ABOUT' => '[128]', 'ABOVE' => '[129]', 'AFTER' => '[130]',
 'AHEAD' => '[131]', 'ALONG' => '[132]', 'BEGIN' => '[133]',
 'BEING' => '[134]', 'BEING' => '[135]', 'CLEAR' => '[136]',
 'COULD' => '[137]', 'DOING' => '[138]', 'EARLY' => '[139]',
 'ENDED' => '[140]', 'EVERY' => '[141]', 'GOING' => '[142]',
 'LARGE' => '[143]', 'LATER' => '[144]', 'LEAST' => '[145]',
 'MAYBE' => '[146]', 'MIGHT' => '[147]', 'MILES' => '[148]',
 'MONTH' => '[149]', 'MOVED' => '[150]', 'MOVES' => '[151]',
 'OFTEN' => '[152]', 'OLDER' => '[153]', 'ORDER' => '[154]',
 'OTHER' => '[155]', 'PRIOR' => '[156]', 'RIGHT' => '[157]',
 'SEEKS' => '[158]', 'SEEMS' => '[159]', 'SENSE' => '[160]',
 'SINCE' => '[161]', 'SMALL' => '[162]', 'STATE' => '[163]',
 'STILL' => '[164]', 'THEIR' => '[165]', 'THERE' => '[166]',
 'THESE' => '[167]', 'TRIED' => '[168]', 'UNDER' => '[169]',

54

 'UNTIL' => '[170]', 'WEEKS' => '[171]', 'WHERE' => '[172]',
 'WHICH' => '[173]', 'WHILE' => '[174]', 'WHOLE' => '[175]',
 'WHOSE' => '[176]', 'WORKS' => '[177]', 'WORLD' => '[178]',
 'WOULD' => '[179]', 'WRONG' => '[180]', 'YARDS' => '[181]',
 'YEARS' => '[182]', 'YIELD' => '[183]', 'YOURS' => '[184]',
 'ABLE' => '[185]', 'ADDS' => '[186]', 'ALSO' => '[187]',
 'ANTI' => '[188]', 'AWAY' => '[189]', 'BACK' => '[190]',
 'BEEN' => '[191]', 'BLOW' => '[192]', 'DATE' => '[193]',
 'DAYS' => '[194]', 'DOES' => '[195]', 'DONE' => '[196]',
 'FROM' => '[197]', 'GONE' => '[198]', 'HAVE' => '[199]',
 'HERE' => '[200]', 'INTO' => '[201]', 'LAST' => '[202]',
 'LATE' => '[203]', 'LEFT' => '[204]', 'LESS' => '[205]',
 'LIKE' => '[206]', 'LONG' => '[207]', 'LOSS' => '[208]',
 'LOTS' => '[209]', 'MAIN' => '[210]', 'MAKE' => '[211]',
 'MANY' => '[212]', 'MINI' => '[213]', 'MORE' => '[214]',
 'MOST' => '[215]', 'MOVE' => '[216]', 'MUCH' => '[217]',
 'MUST' => '[218]', 'NEAR' => '[219]', 'NEED' => '[220]',
 'NEXT' => '[221]', 'NONE' => '[223]', 'ONCE' => '[224]',
 'ONLY' => '[225]', 'ONTO' => '[226]', 'OURS' => '[227]',
 'OVER' => '[228]', 'PAST' => '[229]', 'SAID' => '[230]',
 'SAYS' => '[231]', 'SEEK' => '[232]', 'SEEN' => '[233]',
 'SELF' => '[234]', 'SENT' => '[235]', 'SOME' => '[236]',
 'STOP' => '[237]', 'THAN' => '[238]', 'THAT' => '[239]',
 'THEM' => '[240]', 'THEN' => '[241]', 'THEY' => '[242]',
 'THIS' => '[243]', 'TIME' => '[244]', 'TOLD' => '[245]',
 'TURN' => '[246]', 'USED' => '[247]', 'VERY' => '[248]',
 'WAYS' => '[249]', 'WEAK' => '[250]', 'WEEK' => '[251]',
 'WELL' => '[252]', 'WERE' => '[253]', 'WHAT' => '[254]',
 'WHEN' => '[255]', 'WHOM' => '[256]', 'WILL' => '[257]',
 'WISH' => '[258]', 'WITH' => '[259]', 'WONT' => '[260]',
 'WORK' => '[261]', 'YEAR' => '[262]', 'YOUR' => '[263]',
 'AGO' => '[264]', 'ALL' => '[265]', 'AND' => '[266]',
 'ANY' => '[267]', 'ARE' => '[268]', 'BUT' => '[269]',
 'CAN' => '[270]', 'DAY' => '[271]', 'DID' => '[272]',
 'DUE' => '[273]', 'END' => '[274]', 'FAR' => '[275]',
 'FOR' => '[276]', 'HAD' => '[277]', 'HAS' => '[278]',
 'HER' => '[279]', 'HIM' => '[280]', 'HIS' => '[281]',
 'HOW' => '[282]', 'ITS' => '[283]', 'LOW' => '[284]',
 'MAN' => '[285]', 'MAY' => '[286]', 'MEN' => '[287]',
 'MID' => '[288]', 'NEW' => '[289]', 'NON' => '[290]',
 'NOT' => '[291]', 'NOW' => '[292]', 'OLD' => '[293]',
 'ONE' => '[294]', 'OUR' => '[295]', 'OUT' => '[296]',
 'PRO' => '[297]', 'SAW' => '[298]', 'SAY' => '[299]',
 'SEE' => '[300]', 'SHE' => '[301]', 'THE' => '[302]',
 'TRY' => '[303]', 'USE' => '[305]', 'WAS' => '[306]',
 'WAY' => '[307]', 'WHO' => '[308]', 'WHY' => '[309]',
 'WON' => '[310]', 'YES' => '[311]', 'YET' => '[312]',
 'YOU' => '[313]', 'AM' => '[314]', 'AN' => '[315]',
 'AS' => '[316]', 'AT' => '[317]', 'BE' => '[318]',
 'BY' => '[319]', 'DO' => '[320]', 'GO' => '[321]',
 'HE' => '[322]', 'IF' => '[323]', 'IN' => '[324]',
 'IS' => '[325]', 'IT' => '[326]', 'ME' => '[327]',
 'NO' => '[328]', 'OF' => '[329]', 'ON' => '[330]',
 'OR' => '[331]', 'SO' => '[332]', 'TO' => '[333]',
 'UP' => '[334]', 'US' => '[335]', 'WE' => '[336]',
 'A' => '[357]', 'I' => '[358]', 'GRAPHICS' => '[2233]',
 'DOWNLOAD' => '[2234]', 'REUTERS' => '[2235]',
 'WEB' => '[2236]');

 for($i = 0; $i <= 9; $i++)
 {
 for($j = 0; $j <= 9; $j++)
 {

 $temp_string1 = $i.','.$j;
 $temp_string2 = $i . $j;

 $str1 =~ s/$temp_string1/$temp_string2/g;

 }
 }

$str1 =~ s/\s+/ /g; #removing extra whitespace

55

 $str1 =~ s/(\'|\`)//g; #removing apostrophes

 $str1 =~ s/\W+/ /g; #remove all characters

 $str1 =~ s/\W(united states|american|americans)\W/ USA /ig;

 $str1 =~ s/\W+U\W+S\W+/ USA /ig; #fixing U.S. problem

 $str1 =~ s/\W(\W*U\W+N\W*|united nations)\W/ UN /ig; #fixing U.N. problem

 $str1 =~ s/\d+/ [999] /g; #replace numeric quantities

 foreach $tempstr (keys %parse_table)
 {
 $str1 =~ s/\s$tempstr\s/ $parse_table{$tempstr} /ig;
 }

 $str1 = uc($str1);

 $str1 =~ s/\s+/\n/g;

 @ret_array = split("\n",$str1);

 return @ret_array

}

sub link_remover
{
 my $base_url = $_[0];
 my $source = $_[1];
 my @element = ();
 my $elt_type = '';
 my @links = ();
 my @links2 = ();

 $parser = HTML::LinkExtor->new(undef, $base_url) or die "connect error";

 $parser->parse($source) or die "connect error";

 @links = $parser->links;

 foreach $linkarray (@links)
 {
 @element = @$linkarray;
 $elt_type = shift @element;

 while(@element)
 {
 my ($attr_name, $attr_value) = splice(@element, 0,2);
 $seen{$attr_value}++;
 }
 }

 for(sort keys %seen)
 {
 $str1 .= " " . $_;
 }

 $str1 =~ s/\:\/\// /g;
 $str1 =~ s/\:/ /g;
 $str1 =~ s/\+/ /g;
 $str1 =~ s/\?/ /g;
 $str1 =~ s/\&/ /g;
 $str1 =~ s/\#/ /g;
 $str1 =~ s/\=/ /g;
 $str1 =~ s/http/ /ig;
 $str1 =~ s/newstrove\.com/ /ig;
 $str1 =~ s/\.gif/ /ig;

56

 $str1 =~ s/\.asp/ /ig;
 $str1 =~ s/\.pdf/ /ig;
 $str1 =~ s/\.cgi/ /ig;
 $str1 =~ s/\.php/ /ig;
 $str1 =~ s/\.jpg/ /ig;
 $str1 =~ s/\.tif/ /ig;

 $str1 =~ s/\s\/((\w|\d)+)+\/*\s/ /ig;

 @links2 = split(/\s+/, $str1);
 @links = ();

 foreach $val (@links2)
 {
 if(length($val) > 10)
 {
 push @links, $val;
 }
 }

 %cleaning = ();

 foreach $key (@links)
 {

 if(exists $cleaning{$key})
 {
 $cleaning{$key}++;
 }
 else
 {
 if($key =~ m/\w+(\w*|\W*)(\.html|\.htm|\.shtml|\.jhtml|\.stm|\.cfm|\.doc|\.txt)/i)
 {

 $cleaning{$key} = 1;
 }
 }

 }

 @links = ();

 @links = keys %cleaning;

 return @links;
}

sub filter_links
{

my $big_string = $_[0];
my @links = ();
my @temp = ();
my %cleaning = ();

 my $current_link = $_[1];

 $big_string =~ s/newstrove\.com/ /ig;

@temp = split(' ',$big_string);

$big_string = join('',@temp);

@temp = split('><',$big_string);

$big_string = join("> <",@temp);

@temp = split('>',$big_string);

$big_string = join("> ",@temp);

@temp = split('<',$big_string);

$big_string = join(" <",@temp);

@temp = split('//',$big_string);

57

$big_string = join("// ",@temp);

@temp = split('www',$big_string);

$big_string = join(" www",@temp);

@temp = split(':',$big_string);

$big_string = join(" : ",@temp);

@temp = split('=/',$big_string);

$big_string = join("= /",@temp);

@intermediate = split(' ',$big_string);

@links = grep m/(\.html|\.htm|\.shtml|\.jhtml)/i, @intermediate;

$big_string = join(' ',@links);

$big_string =~ s/\.html\W*/.html /ig;
$big_string =~ s/\.shtml\W*/.shtml /ig;
$big_string =~ s/\.jhtml\W*/.jhtml /ig;
$big_string =~ s/\.htm(\W+|\s+)/.htm /ig;

@links = split(' ',$big_string);

foreach $key (@links)
{

if(exists $cleaning{$key})
{
$cleaning{$key}++;
}
else
{
if($key =~ m/\w+(\w*|\W*)(\.html|\.htm|\.shtml|\.jhtml|\.stm|\.cfm|\.doc|\.txt)/i)
{

$cleaning{$key} = 1;
}
}

}

@links = keys %cleaning;

return @links;

}

sub html_filter
{

 my $html = &parse_htmlfile("C:\\senior_thesis\\perl_thesis_work\\crawler\\database\\dump_page.txt");
 my $formatter = HTML::FormatText->new(leftmargin => 0, rightmargin => 50);
 my $ascii = $formatter->format($html);

 $ascii =~ s/\|/ /ig;
 $ascii =~ s/_/ /ig;
 $ascii =~ s/\-/ /ig;
 $ascii =~ s/\su\.s\.\s+/ US /ig;
 $ascii =~ s/\sp\.m\.\s+/ PM /ig;
 $ascii =~ s/\sa\.m\.\s+/ PM /ig;

 $ascii =~ s/\sjan\.\s/ january /ig;
 $ascii =~ s/\sfeb\.\s/ february /ig;
 $ascii =~ s/\smar\.\s/ march /ig;
 $ascii =~ s/\sapr\.\s/ april /ig;
 $ascii =~ s/\smay\.\s/ may /ig;
 $ascii =~ s/\sjun\.\s/ june /ig;
 $ascii =~ s/\sjul\.\s/ july /ig;
 $ascii =~ s/\saug\.\s/ august /ig;
 $ascii =~ s/\ssep\.\s/ september /ig;
 $ascii =~ s/\soct\.\s/ october /ig;

58

 $ascii =~ s/\snov\.\s/ november /ig;
 $ascii =~ s/\sdec\.\s/ december /ig;

 $ascii =~ s/\sh\.j\.r\.\s+/ PM /ig;
 $ascii =~ s/\.gov/ gov /ig;
 $ascii =~ s/\.mil/ mil /ig;
 $ascii =~ s/\su\.n\.\s/ UN /ig;
 $ascii =~ s/\sdr\.\s*/ doctor /ig;
 $ascii =~ s/\ssecy\.\s*/ secretary /ig;
 $ascii =~ s/\sdoc\.\s*/ document /ig;
 $ascii =~ s/\se\.g\.\s/ for example /ig;
 $ascii =~ s/(\(|\))+/ - /ig;
 $ascii =~ s/\[[^\]]*\]/ /gs;
 $ascii =~ s/<[^>]*>/ /gs;
 $ascii =~ s/\W**\s+/\. /ig;
 $ascii =~ s/\s+/ /ig;
 $ascii =~ s/\./\.\n/ig;

 return $ascii;
}

sub html_filter2
{
 my $ascii = $_[0];

 $ascii =~ s/<[^>]*>//gs;

 $ascii =~ s/"//igs;
 $ascii =~ s/ //igs;
 $ascii =~ s/\|/ /ig;
 $ascii =~ s/_/ /ig;
 $ascii =~ s/\-/ /ig;
 $ascii =~ s/\su\.s\.\s+/ US /ig;
 $ascii =~ s/\sp\.m\.\s+/ PM /ig;
 $ascii =~ s/\sa\.m\.\s+/ PM /ig;
 $ascii =~ s/\sjan\.\s/ january /ig;
 $ascii =~ s/\sfeb\.\s/ february /ig;
 $ascii =~ s/\smar\.\s/ march /ig;
 $ascii =~ s/\sapr\.\s/ april /ig;
 $ascii =~ s/\smay\.\s/ may /ig;
 $ascii =~ s/\sjun\.\s/ june /ig;
 $ascii =~ s/\sjul\.\s/ july /ig;
 $ascii =~ s/\saug\.\s/ august /ig;
 $ascii =~ s/\ssep\.\s/ september /ig;
 $ascii =~ s/\soct\.\s/ october /ig;
 $ascii =~ s/\snov\.\s/ november /ig;
 $ascii =~ s/\sdec\.\s/ december /ig;
 $ascii =~ s/\sh\.j\.r\.\s+/ PM /ig;
 $ascii =~ s/\.gov/ gov /ig;
 $ascii =~ s/\.mil/ mil /ig;
 $ascii =~ s/\su\.n\.\s/ UN /ig;
 $ascii =~ s/\sdr\.\s*/ doctor /ig;
 $ascii =~ s/\ssecy\.\s*/ secretary /ig;
 $ascii =~ s/\sdoc\.\s*/ document /ig;
 $ascii =~ s/\se\.g\.\s/ for example /ig;
 $ascii =~ s/(\(|\))+/ - /ig;
 $ascii =~ s/\[[^\]]*\]/ /gs;
 $ascii =~ s/<[^>]*>/ /gs;
 $ascii =~ s/\W**\s+/\. /ig;
 $ascii =~ s/\s+/ /ig;
 $ascii =~ s/\.+/\./ig;

 return $ascii;
}

sub html_filter3
{
 my $ascii = $_[0];
 my @arr = ();
 my @arr2 = ();

 $ascii =~ s/\n+/ /gs;
 $ascii =~ s/\s+/ /gs;

59

 $ascii =~ s/>\s*</>\n</gs;

 $ascii =~ s/<[^>]*>//gs;

 @arr = split(/\n/,$ascii);

 foreach $val (@arr)
 {
 if($val =~ m/\.$/)
 {
 push @arr2, $val;
 }
 }

 $ascii = join(' ',@arr2);

 $ascii =~ s/&NBSP;//igs;

 return $ascii;
}

package Connection_Object;

 use LWP::UserAgent;
 use HTTP::Request;
 use HTTP::Response;
 use URI::Heuristic;
for seeding the search use : 'search.yahoo.com/bin/search?p=north+korea'

sub connect_to_link
{

my $raw_url = $_[0];
 my $content = '';
 my $bytes = 0;
 my $count = 0;

my $url = URI::Heuristic::uf_urlstr($raw_url);

$| = 1;

printf "%s =>\n\t", $url;

my $ua = LWP::UserAgent->new();

$ua->agent("Schmozilla/v9.14 Platinum");

my $req = HTTP::Request->new(GET => $url);

$req->referer("http://cooldude.tv");

my $response = $ua->request($req);

if($response->is_error())
{
printf " %s\n", $response->status_line;
}
else
{

 $content = $response->content();
 $bytes = length $content;
 $count = ($content =~ tr/\n/\n/);
 printf "%s (%d lines, %d bytes)\n", $response->title(), $count, $bytes;

}

 return $content;
}

package Main;

sub heuristic_search
{

 my @start_queries = ();

60

 my @temp_arr = ();
 my $str1 = '';
 my @visit_list = ();
 my %return_word_hash = ();

 my $criteria = $_[0]; #what is immediately not-admissible
 my $time_limit = $_[1]; #total seconds for search
 my $gamma_setting = $_[2]; #value less than or equal to 1
 my $sample_text = $_[3]; #sample text used for comparison
 my $file_name = $_[4]; #special prefix name for search
 my $max_bandwidth = $_[5]; #setting an estimate of maximum bandwidth
 my $set_relevancy = $_[6]; #relevancy threashold

 my $search_data = '';

 &Heuristics::set_max_bandwidth($max_bandwidth);
 &Heuristics::set_gamma($gamma_setting);
 &Data_Base::initialize($file_name);

 push @visit_list, 'XXXX';

 &Text_Processor::generate_sample_data($sample_text);

 ##
 #### Generate query strings
 ##
 ### this is an attempt to cast a wide net for nodes
 ### to seed the search process.

 %return_word_hash = &Text_Processor::get_sample_word_count();

 foreach $key (sort {$return_word_hash{$a} <=> $return_word_hash{$b}} keys %return_word_hash)
 {
 push @temp_arr, $key;
 }

 $m = 0;

 my $s1 = pop @temp_arr;
 my $s2 = pop @temp_arr;
 my $s3 = pop @temp_arr;
 my $s4 = pop @temp_arr;
 my $s5 = $s1 . "+" . $s2 . "+" . $s3 . "+" . $s4 . "+";

 while(@temp_arr && $m < 20)
 {
 my $k = 0;
 $str1 = '';
 $str1 = pop @temp_arr;

 while(@temp_arr && $k < 4)
 {
 $str1 .= "+";
 $str1 .= pop @temp_arr;
 $k++;
 }

 $m++;

 my $str6 = "search.yahoo.com\/bin\/search?p=" . $s5 . $str1;

 &Priority_Queue::insert_hyperlink($str6,50000);

 }

 my $w = 0;

 while($url_load = &Priority_Queue::get_next_best_link())
 {
 if($w == 15)
 {
 last;

61

 }

 $str7 = &Connection_Object::connect_to_link($url_load);

 @links2 = &Text_Processor::filter_links($str7);

 foreach $val (@links2)
 {
 &Priority_Queue::insert_hyperlink($val, 10000);
 }

 $w++;
 }

 &Priority_Queue::sort_queue();

 &Scheduler::set_max_time($time_limit);

 &Scheduler::set_start_time();

 my $page_val = 0;
 my $str2 = '';
 my $str3 = '';
 my @links = ();
 my $url = '';

 system('cls');

 $search_data = $criteria . ", " .
 $set_relevancy . ", " .
 &Heuristics::BPA() . ", " .
 $time_limit . ", " .
 $gamma_setting . ", " .
 $file_name . ", " .
 $max_bandwidth;

 my $ret_search_data = '';

 my $e_time = 0;

 while($e_time < &Scheduler::get_max_time())
 {

 $e_time = &Scheduler::get_elapsed_time();

 $ret_search_data = '';

 open(OTEMP, ">C:\\senior_thesis\\perl_thesis_work\\crawler\\database\\dump_page.txt");

 print "\n\n";

 print "___\n";

 my $q_size = &Priority_Queue::get_queue_size();

 print "Size of Queue= " . $q_size . "\n";

 $url = &Priority_Queue::get_next_best_link();

 my $flag1 = 0;

 foreach $val (@visit_list)
 {
 if($url eq $val)
 {
 $flag1 = 1;
 last;
 }
 }

62

 if($flag1)
 {
 close OTEMP;
 next;
 }

 push @visit_list, $url;

 $str2 = &Connection_Object::connect_to_link($url);

 if(length($str2) < 100)
 {
 $flag1 = 1;
 }

 if($flag1)
 {
 $ret_search_data = $search_data . ", " . $url . "*****BAD URL*****";

 &Data_Base::write_to_search_performance($ret_search_data);

 close OTEMP;

 next;
 }

 @links = &Text_Processor::link_remover($url, $str2);

 if($str2)
 {
 print OTEMP $str2;
 }

 my $str4 = &Text_Processor::html_filter();

 if(length($str4) < 1000)
 {
 $str3 = uc(&Text_Processor::html_filter3($str2));
 }
 else
 {
 $str3 = uc($str4);
 }

 if($str3)
 {

 print '************************' . "\n";
 print " CONTENT \n";
 print '************************' . "\n";

 my $strlen = length($str3);

 if($strlen < 1000)
 {
 print substr($str3,0,$strlen) . "\n";
 }
 else
 {
 print substr($str3,0,1000) . "\n";
 }
 }

 print "\n\n";

 if($url && $str3)
 {

63

 &Data_Base::write_to_content_file($url, $str3);
 }

 $page_val = &Heuristics::A_STAR_N($str3);

 print "A* Evaluation for this page= " . $page_val . "\n";

 my $rel = &Heuristics::r_x_y();

 print "Relevancy for this page= " . $rel . "\n";

 print "___\n\n";

 my %ret_hash = &Text_Processor::get_current_word_count();
 my @temp_arr2 = ();

 foreach $key (sort {$ret_hash{$a} <=> $ret_hash{$b}} keys %ret_hash)
 {
 push @temp_arr2, $key;
 }

 $m = 0;
 my $str11 = '';

 $str11 = pop @temp_arr2;

 while(@temp_arr2 && $m < 20)
 {

 $str11 .= "--";
 $str11 .= pop @temp_arr2;
 $m++;

 }

 $ret_search_data = $search_data . ", " . $url .
 ", " . length($str3) .
 ", " . &Heuristics::get_bytes_saved() .
 ", " . $page_val .
 ", " . $rel .
 ", " . &Heuristics::get_opr() .
 ", " . &Heuristics::get_awr() .
 ", " . &Heuristics::get_tcr() .
 ", " . &Heuristics::get_wcr() .
 ", " . $e_time;

 &Data_Base::write_to_search_performance($ret_search_data);

 if($str11)
 {
 &Data_Base::write_to_links_file($url,$str11);
 }
 else
 {
 my $ii = $s5;

 $ii =~ s/\+/\-\-/g;

 &Data_Base::write_to_links_file($url,$ii);
 }

 if($page_val < $criteria || $rel < $set_relevancy)
 {
 close OTEMP;
 &Text_Processor::reset_current();
 }
 else
 {

64

 foreach $val (@links)
 {
 &Priority_Queue::insert_hyperlink($val,$page_val);
 }

 &Priority_Queue::sort_queue();

 &Text_Processor::reset_current();

 close OTEMP;
 }
 }

 #clear out link queue so all links go to file

 my $uu = $s5;

 $uu =~ s/\+/\-\-/g;

 while(&Priority_Queue::get_queue_size() > 0)
 {
 my $hhh = &Priority_Queue::get_next_best_link();

 &Data_Base::write_to_links_file($hhh,$uu);
 }
}

Appendix B – C++ Graph Algorithm Source Code

#include <iostream>
#include <string.h>
#include <string>
#include <vector>
#include <queue>
#include <cstdio>
#include <cstdlib>
#include <fstream>

#define FILENAME 100

using namespace std;

class DataItem
{

friend bool operator<(const DataItem &di1, const DataItem &di2)
{

return (di1.wordCount < di2.wordCount);

65

}
public:
string word;
float wordCount;

DataItem(string str1) : word(str1)
{
}
DataItem()
{
}
DataItem(string str1, float wc) : word(str1), wordCount(wc)
{
}
~DataItem()
{
}

};

class StringPQ
{

private:
priority_queue<DataItem> strings;
int maxSize;
int currentSize;
public:
StringPQ(int ms) : maxSize(ms), currentSize(0)
{
}
void enqueue(string str, float wc)
{

if(currentSize >= maxSize)
{

cout << "The queue is full!!!" << endl;
return;

}
DataItem da(str,wc);
strings.push(da);
currentSize++;

}
DataItem dequeue()
{

DataItem da = strings.top();
strings.pop();
return da;

}
string getString()
{

DataItem da = dequeue();
return da.word;

}
void unloadAndPrintPQ()
{

while(!strings.empty())
{

DataItem da = strings.top();
strings.pop();
cout << da.word << " " << da.wordCount << endl;

}
}
void testPQ()
{

ofstream out("testPQ.txt");
while(!strings.empty())
{

DataItem da = strings.top();
strings.pop();
out << da.word << " " << da.wordCount << endl;

}
out.close();

}
void unloadPQ()
{

while(!strings.empty())

66

{
DataItem da = strings.top();
strings.pop();

}
}
bool isEmpty()
{

return strings.empty();
}
~StringPQ()
{

unloadPQ();
}

};

class StringFilter
{

private:
vector<DataItem*> hashArray;
int arraySize;
DataItem* pNonItem;
int totInTable;
public:
StringFilter() : arraySize(10000)
{

hashArray.resize(arraySize);
for(int j = 0; j < arraySize; j++)
{

hashArray[j] = NULL;
}

 pNonItem = new DataItem("EOF");
totInTable = 0;
ifstream in("tokens.txt");
while(in)
{

string temp;
in >> temp;
insert(temp);

}
in.close();

}
int getSize()
{

return arraySize;
}
void show()
{

cout << "Table: " << endl;
for(int j = 0; j < arraySize; j++)
{

if(hashArray[j] != NULL) cout << hashArray[j]->word << endl;
else
cout << "*** END OF LIST ***" << endl;

}
}
int getTot()
{

return totInTable;
}
int hashFunc2(int key)
{

return 5 - key % 5;
}
int hashFunc1(int key)
{

return key % arraySize;
}
void insert(string kkey)
{

DataItem* pItem;
pItem = new DataItem(kkey);
int key = getKey(kkey);

67

int hashVal = hashFunc1(key);
int stepSize = hashFunc2(key);
while(hashArray[hashVal] != NULL && hashArray[hashVal]->word != "EOF")
{

hashVal += stepSize;
hashVal %= arraySize;

}
hashArray[hashVal] = pItem;
totInTable++;

}
void insert(DataItem *aItem)
{

if(isInList(aItem->word)) return;
int key = getKey(aItem->word);
int hashVal = hashFunc1(key);
int stepSize = hashFunc2(key);
while(hashArray[hashVal] != NULL && hashArray[hashVal]->word != "EOF")
{

hashVal += stepSize;
hashVal %= arraySize;

}
hashArray[hashVal] = aItem;
totInTable++;

}
DataItem* remove(string kkey)
{

int key = getKey(kkey);
int hashVal = hashFunc1(key);
int stepSize = hashFunc2(key);
while(hashArray[hashVal] != NULL)
{

if(hashArray[hashVal]->word == kkey)
{
DataItem* pTemp = hashArray[hashVal];
hashArray[hashVal] = pNonItem;
return pTemp;
}

hashVal += stepSize;
hashVal %= arraySize;
}

return NULL;
}
DataItem* find(string kkey)
{

int key = getKey(kkey);
int hashVal = hashFunc1(key);
int stepSize = hashFunc2(key);
while(hashArray[hashVal] != NULL)
{

if(hashArray[hashVal]->word == kkey) return hashArray[hashVal];
hashVal += stepSize;
hashVal %= arraySize;

}

return NULL;
}
bool isInList(string value)
{

DataItem* x;
x = find(value);
if(x != NULL) return true;
else return false;

}
int getKey(string input)
{

int hashKEY = 0;
for(int j = 0; j < input.length(); j++)
{

int letter = input[j] - 96;
hashKEY = hashKEY * 27 + letter;

}
int x = abs(hashKEY);
return x;

68

}
string getAt(int x)
{

return hashArray[x]->word;
}
bool isAt(int x)
{

if(hashArray[x] != NULL) return true;
return false;

}
void print()
{

for(int j = 0; j < arraySize; j++)
{

if(hashArray[j]) cout << hashArray[j]->word << endl;
}

}
}; // end of class definition for StringFilter
class EdgePairs
{

public:
string start;
string end;

};
class Edge
{

public:
int srcVert;
int destVert;
int distance;
Edge(int sv, int dv, int d)
{

srcVert = sv;
destVert = dv;
distance = d;

}
}; // end of class edge
class PriorityQ
{

private:
int SIZE;
vector<Edge*> queArray;
int ssize;
public:
PriorityQ(int theSize)
{

SIZE = theSize;
queArray.resize(SIZE);
ssize = 0;

}
void insert(Edge *item)
{

int j;
for(j = 0; j < ssize; j++)
{

if(item->distance >= queArray[j]->distance) break;
}
for(int k = ssize-1; k >= j; k--) queArray[k+1] = queArray[k];
queArray[j] = item;
ssize++;

}
Edge * removeMin()
{

return queArray[--ssize];
}
Edge * removeMax()
{

Edge *temp = queArray[0];
for(int j = 0; j < ssize; j++) queArray[j] = queArray[j+1];
ssize--;
return temp;

}
void removeN(int n)
{

69

for(int j = n; j < ssize-1; j++) queArray[j] = queArray[j+1];
ssize--;

}
Edge * peekMin()
{

return queArray[ssize-1];
}
int size()
{

return ssize;
}
bool isEmpty()
{

return (ssize == 0);
}
Edge * peekN(int n)
{

return queArray[n];
}
int find(int findDex)
{

for(int j = 0; j < ssize; j++)
{

if(queArray[j]->destVert == findDex) return j;
}
return -1;

}
}; // end of class priority queue
class GraphNode
{
public:

bool isEdge;
bool visited;
bool isInTree;
string nodeName;
int nodeID;
int wordCount;
int outDegree;
int edgeValue; // only applies if this is an edge
GraphNode *nextNode;
GraphNode *nextEdge;
void displayNode()
{

cout << nodeName << "(" << nodeID << ")";
}
void displayEdge()
{

cout << "[" << edgeValue << "]" << "=" << nodeName;
}
GraphNode(string theName, int nid)
{

nodeName = theName;
nextNode = NULL;
nextEdge = NULL;
edgeValue = 0;
outDegree = 1;
wordCount = 1;
isEdge = false;
visited = false;
nodeID = nid;

}
GraphNode(string theName)
{

nodeName = theName;
nextNode = NULL;
nextEdge = NULL;
edgeValue = 0;
wordCount = 1;
isEdge = false;
visited = false;
nodeID = 999999999;

}
~GraphNode()

70

{ }
}; //
class Graph
{
friend float compareGraphs(Graph &g1, Graph &g2)
{

// code goes here
}
private:

GraphNode *first;
int curID;
int currentVert;
int nTree;
int nVerts;
int INFINITY;
const char *graphName;
PriorityQ *thePQ;
vector<EdgePairs> pairs;
vector<string> thisString;
char *inputFile;
string stNode;
StringPQ maxsp;
StringPQ nodes;
StringPQ wordList;
queue<DataItem> topos;
queue<string> queries;
bool isConceptGraph;
StringFilter sf;
string front;

public:
Graph(int theSize, char *name, char *infile, int QSize, bool cg) : maxsp(QSize), nodes(QSize), graphName(name),

isConceptGraph(cg), wordList(QSize)
{

char cmd[FILENAME];
strcpy(cmd, "mkdir ");
strcat(cmd, graphName);
system(cmd);
stNode = "<START>";
INFINITY = 999999999;
first = NULL;
curID = 0;
currentVert = 0;
nTree = 0;
nVerts = 0;
thePQ = new PriorityQ(theSize);
thisString.resize(theSize * 2);
char *temp;
temp = new char[20];
strcpy(temp,name);
graphName = temp;
inputFile = infile;
if(isConceptGraph)
{

buildEdges2();
}
else buildEdges();
printNodes();
for(int i = 0; i < 3; i++)
{

string temp;

temp = wordList.getString();

front.append(temp);

front.append("+");

}
topologicalSort();
maxSpanningTree();
buildQueries();
printGraph();

}

71

~Graph()
{

}
bool isEmpty()
{

return (first == NULL);
}
void insertNode(string key)
{

GraphNode *newNode;
GraphNode *previous;
GraphNode *current;
if(inGraph(key))
{

current = first;

while(current != NULL)
{

if(current->nodeName == key)
{

current->wordCount += 1;
return;

}
}
return;

}
newNode = new GraphNode(key, curID);
nVerts++;
curID++;
previous = NULL;
current = first;
while(current != NULL && key == current->nodeName)
{

previous = current;
current = current->nextNode;

}
if(previous == NULL) first = newNode;
else
{

previous->nextNode = newNode;
}
newNode->nextNode = current;

}
GraphNode * getNode(string key)
{

GraphNode *current;

current = first;

while(current != NULL)
{

if(current->nodeName == key) return current;
current = current->nextNode;

}

return NULL;
}
void insertStringEdge(string key, string edge)
{

if(!getNode(key)) insertNode(key);
if(!getNode(edge)) insertNode(edge);

insertEdge(key,edge);
}
void insertEdge(string key, string edge)
{

if(!inGraph(key)) return;

GraphNode *currentNode;

72

GraphNode *currentEdge;
GraphNode *previousEdge;
GraphNode *newEdge;
newEdge = new GraphNode(edge);
newEdge->isEdge = true;
newEdge->edgeValue = 1;
currentNode = getNode(key);
currentNode->wordCount = currentNode->wordCount + 1;
if(currentNode->nextEdge == NULL)
{

currentNode->nextEdge = newEdge;
newEdge->nextEdge = NULL;
return;

}
currentEdge = currentNode->nextEdge;
while(currentEdge != NULL)
{

if(currentEdge->nodeName == edge)
{

currentEdge->edgeValue += 1;
return;

}

if(currentEdge->nextEdge == NULL)
{

currentEdge->nextEdge = newEdge;
GraphNode *temp;
temp = getNode(key);
temp->outDegree = temp->outDegree + 1;
return;

}

currentEdge = currentEdge->nextEdge;
}

}
GraphNode * removeNode()
{

GraphNode *temp;
temp = first;
first = first->nextNode;
return temp;

}

GraphNode * getNodeRef(int id)
{

GraphNode *temp;
temp = first;
while(temp)
{

if(id == temp->nodeID) return temp;
temp = temp->nextNode;

}
return NULL;

}

bool inGraph(string key)
{

GraphNode *temp;
temp = first;
while(temp != NULL)
{

if(temp->nodeName == key) return true;
temp = temp->nextNode;

}
return false;

}

int getDistance(int theNode, int theEdge)
{

GraphNode *ref1, *ref2;
GraphNode *edge;
ref1 = getNodeRef(theNode);
ref2 = getNodeRef(theEdge);

73

edge = ref1->nextEdge;
while(edge)
{

if(edge->nodeName == ref2->nodeName) return edge->edgeValue;
edge = edge->nextEdge;

}
// return INFINITY;
return 0;

}

void displayNodes()
{

GraphNode *temp;
temp = first;
while(temp != NULL)
{

cout << temp->nodeName << "{" << temp->wordCount << "}" << endl;
temp = temp->nextNode;

}
}

void printNodes()
{

char fileName1[FILENAME];
strcpy(fileName1, graphName);
strcat(fileName1, "/");
strcat(fileName1, "NODELIST.txt");
ofstream outFile1(fileName1);
GraphNode *temp;
temp = first;
while(temp != NULL)
{

outFile1 << temp->nodeName
<< " "
<< temp->wordCount
<< endl;

if(temp->nodeName != "<START>" &&
temp->nodeName != "<END>" &&
temp->nodeName != "<COMMA>" &&
temp->nodeName != "<QUESTION>" &&
temp->nodeName != "<EXCLAMATION>" &&
temp->nodeName != "<PERIOD>" &&
temp->nodeName != "<SEMICOLON>")

{
wordList.enqueue(temp->nodeName, temp->wordCount);
nodes.enqueue(temp->nodeName, temp->wordCount);

}

temp = temp->nextNode;
}

outFile1.close();
}

void printGraph()
{

char fileName[FILENAME];
strcpy(fileName, graphName);
strcat(fileName, "/");
strcat(fileName, "GRAPH.txt");
ofstream outFile(fileName);
outFile << "THIS IS THE GRAPH, NODES TO EDGES" << endl;
GraphNode *currentNode;
GraphNode *currentEdge;
currentNode = first;
while(currentNode != NULL)
{

outFile << currentNode->nodeName;
outFile << " ";
if(currentNode->nextEdge != NULL)
{

outFile << "---";

74

currentEdge = currentNode->nextEdge;
while(currentEdge != NULL)
{

outFile << currentEdge->nodeName;
outFile << "[" << currentEdge->edgeValue << "] ";
currentEdge = currentEdge->nextEdge;

}
}
outFile << endl;
outFile << "**************************" << endl;
outFile << "**************************" << endl;
outFile << endl;
currentNode = currentNode->nextNode;

}

outFile << endl;
outFile.close();

}

void displayGraph()
{

cout << "This is the list of nodes in the graph with edges listed" << endl;
GraphNode *currentNode;
GraphNode *currentEdge;
currentNode = first;
while(currentNode != NULL)
{

currentNode->displayNode();
if(currentNode->nextEdge != NULL)
{

cout << "---";
currentEdge = currentNode->nextEdge;
while(currentEdge != NULL)
{

currentEdge->displayEdge();
cout << " ";
currentEdge = currentEdge->nextEdge;

}

}

cout << endl;
cout << "**************************" << endl;
cout << "**************************" << endl;
cout << endl;
currentNode = currentNode->nextNode;

}
cout << endl;

}

void topologicalSort()
{

char fileName[FILENAME];
strcpy(fileName, graphName);
strcat(fileName, "/");
strcat(fileName, "TOPOLOGICAL.txt");
ofstream outFile(fileName);
queue<string> theQ;
queue<string> output;
GraphNode *ref1, *ref2;
theQ.push(stNode);
while(!theQ.empty())
{

ref1 = getNode(theQ.front());
if(ref1->visited == false)
{

output.push(theQ.front());
ref1->visited = true;
ref2 = ref1->nextEdge;
while(ref2)
{

theQ.push(ref2->nodeName);

75

ref2 = ref2->nextEdge;
}

}
theQ.pop();

}
while(!output.empty())
{

GraphNode *g;
g = getNode(output.front());
outFile << output.front();
outFile << " ";
outFile << g->wordCount;
outFile << endl;
if(output.front() != "<START>" &&

output.front() != "<END>" &&
output.front() != "<SEMICOLON>" &&
output.front() != "<QUESTION>" &&
output.front() != "<EXCLAMATION>" &&
output.front() != "<PERIOD>" &&
output.front() != "<COMMA>")

{
DataItem da(output.front());
topos.push(da);

}
output.pop();

}

setFalse();
outFile.close();

}
void maxSpanningTree()
{

char fileName[FILENAME];
strcpy(fileName, graphName);
strcat(fileName, "/");
strcat(fileName, "MAXTREE.txt");
ofstream outFile(fileName);
currentVert = 0;
while(nTree < nVerts - 1)
{

GraphNode *ref;
ref = getNodeRef(currentVert);
ref->isInTree = true;
nTree++;
for(int j = 0; j < nVerts; j++)
{

if(j == currentVert) continue;
ref = getNodeRef(j);
if(ref->isInTree) continue;
int distance = getDistance(currentVert,j);
if(distance == 0) continue;
putInPQ(j, distance);

}

if(thePQ->size() == 0)
{

outFile << "THIS GRAPH IS NOT CONNECTED" << endl;
return;

}

Edge *theEdge;
theEdge = thePQ->removeMax();
int sourceVert = theEdge->srcVert;
currentVert = theEdge->destVert;
GraphNode *ref2, *ref3;
ref2 = getNodeRef(sourceVert);
ref3 = getNodeRef(currentVert);
int w = getDistance(sourceVert,currentVert);
outFile << ref2->nodeName;
outFile << " " << w << " ";
outFile << ref3->nodeName;
outFile << endl;
string tmp1 = ref2->nodeName;
string tmp2 = ref3->nodeName;

76

if(!(tmp1 == "<START>" ||
tmp1 == "<END>" ||
tmp1 == "<QUESTION>" ||
tmp1 == "<EXCLAMATION>" ||
tmp1 == "<PERIOD>" ||
tmp1 == "<COMMA>" ||
tmp1 == "<SEMICOLON>" ||
tmp2 == "<START>" ||
tmp2 == "<QUESTION>" ||
tmp2 == "<EXCLAMATION>" ||
tmp2 == "<PERIOD>" ||
tmp2 == "<COMMA>" ||
tmp2 == "<SEMICOLON>" ||
tmp2 == "<END>"))
{

string tmp3 = ref2->nodeName + "+" + ref3->nodeName;
maxsp.enqueue(tmp3,w);

}
}
setFalse();
outFile.close();

}
void setFalse()
{

GraphNode *temp;
temp = first;
while(temp != NULL)
{

temp->isInTree = false;
temp->visited = false;
temp = temp->nextNode;

}
}
void putInPQ(int newVert, int newDist)
{

int queueIndex = thePQ->find(newVert);
if(queueIndex != -1)
{

Edge *tempEdge;
tempEdge = thePQ->peekN(queueIndex);
int oldDist = tempEdge->distance;
if(oldDist > newDist)
{

thePQ->removeN(queueIndex);
Edge *theEdge;
theEdge = new Edge(currentVert, newVert, newDist);
thePQ->insert(theEdge);

}
}
else
{

Edge *theEdge;
theEdge = new Edge(currentVert, newVert, newDist);
thePQ->insert(theEdge);

}
}

void buildEdges()
{

string myTok1, myTok2, myTok3;
FILE *fpr1;
FILE *fpw1;
int x = 0;
char ch;
fpr1 = fopen(inputFile, "r");
char fileName1[FILENAME];
strcpy(fileName1, graphName);
strcat(fileName1, "/");
strcat(fileName1, "INTERMEDIATE.txt");
fpw1 = fopen(fileName1, "w");
fputs("<START>",fpw1);
putc('\n',fpw1);

77

while(ch != EOF)
{

ch = getc(fpr1);
if(ch == -1) break;
if(ispunct(ch))
{

switch(ch)
{

case '.':
{

putc('\n',fpw1);
fputs("<PERIOD>",fpw1);
putc('\n',fpw1);
fputs("<START>",fpw1);
putc('\n',fpw1);
break;

}
case ',':
{

putc('\n',fpw1);
fputs("<COMMA>",fpw1);
putc('\n',fpw1);
break;

}
case ';':
{

putc('\n',fpw1);
fputs("<SEMICOLON>",fpw1);
putc('\n',fpw1);
break;

}
case '!':
{

putc('\n',fpw1);
fputs("<EXCLAMATION>",fpw1);
putc('\n',fpw1);
fputs("<START>",fpw1);
putc('\n',fpw1);
break;

}
case '?':
{

putc('\n',fpw1);
fputs("<QUESTION>",fpw1);
putc('\n',fpw1);
fputs("<START>",fpw1);
putc('\n',fpw1);
break;

}
}

}
if(isalpha(ch))putc(toupper(ch), fpw1);
if(ch == ' ') putc('\n', fpw1);

}
fclose(fpr1);
fclose(fpw1);
char fileName2[FILENAME];
strcpy(fileName2, graphName);
strcat(fileName2, "/");
strcat(fileName2, "EDGES.txt");
ifstream in(fileName1);
ofstream outFile(fileName2);
while(in)
{

in >> myTok1;
if(myTok1 != " " || myTok1 != "")
{

thisString[x] = myTok1;
x++;

}
}
in.close();
pairs.resize(x * 2);

78

for(int i = 0; i < x; i++)
{

pairs[i].start = "XXXX9999";
pairs[i].end = "XXXX9999";

}

for(int i = 0; i < x; i++)
{

pairs[i].start = thisString[i];
if(i < x) pairs[i].end = thisString[i+1];
if(i > 0)
{

pairs[i+1].start = thisString[i];
pairs[i+1].end = thisString[i-1];

}
}

for(int i = 0; i < x; i++)
{

if (
pairs[i].start != "<PERIOD>" &&
pairs[i].start != "<EXCLAMATION>" &&
pairs[i].start != "<QUESTION>" &&
pairs[i].end != "XXXX9999" &&
pairs[i].end != "" &&
pairs[i].end != " " &&
!(pairs[i].start == "<START>" && pairs[i].end == "<START>")
)
{

insertStringEdge(pairs[i].start,pairs[i].end);
outFile << pairs[i].start;
outFile << " ";
outFile << pairs[i].end;
outFile << endl;

}
}
outFile.close();

}

void buildEdges2()
{

string myTok1, myTok2, myTok3;
FILE *fpr1;
FILE *fpw1;
int x = 0;
char ch;
fpr1 = fopen(inputFile, "r");
char fileName1[FILENAME];
strcpy(fileName1, graphName);
strcat(fileName1, "/");
strcat(fileName1, "INTERMEDIATE.txt");
fpw1 = fopen(fileName1, "w");
fputs("<START>",fpw1);
putc('\n',fpw1);
while(ch != EOF)
{

ch = getc(fpr1);
if(ch == -1) break;
if(ispunct(ch))
{

switch(ch)
{

case '.':
{

putc('\n',fpw1);
fputs("<END>",fpw1);
putc('\n',fpw1);
fputs("<START>",fpw1);
putc('\n',fpw1);
break;

}
case '!':
{

79

putc('\n',fpw1);
fputs("<END>",fpw1);
putc('\n',fpw1);
fputs("<START>",fpw1);
putc('\n',fpw1);
break;

}
case '?':
{

putc('\n',fpw1);
fputs("<END>",fpw1);
putc('\n',fpw1);
fputs("<START>",fpw1);
putc('\n',fpw1);
break;

}
}

}

if(isalpha(ch))putc(toupper(ch), fpw1);
if(ch == ' ') putc('\n', fpw1);

}
fclose(fpr1);
fclose(fpw1);
// ******************************
// Filter out grammar terms
// ******************************
ifstream in1(fileName1);
ofstream out1("temp.txt");
string myGTOK;
while(in1)
{

in1 >> myGTOK;
if(!sf.isInList(myGTOK)) out1 << myGTOK << endl;

}
out1.close();
in1.close();
char fileName2[FILENAME];
strcpy(fileName2, graphName);
strcat(fileName2, "/");
strcat(fileName2, "EDGES.txt");
ifstream in("temp.txt");
ofstream outFile(fileName2);
while(in)
{

in >> myTok1;
if(myTok1 != " " || myTok1 != "")
{

thisString[x] = myTok1;
x++;

}
}
in.close();
system("rm temp.txt");
pairs.resize(x * 2);
for(int i = 0; i < x; i++)
{

pairs[i].start = "XXXX9999";
pairs[i].end = "XXXX9999";

}
for(int i = 0; i < x; i++)
{

pairs[i].start = thisString[i];
if(i < x) pairs[i].end = thisString[i+1];

if(i > 0)
{

pairs[i+1].start = thisString[i];
pairs[i+1].end = thisString[i-1];

}

}
for(int i = 0; i < x; i++)

80

{
if (

pairs[i].start != "<END>" &&
pairs[i].end != "XXXX9999" &&
pairs[i].end != "" &&
pairs[i].end != " " &&
!(pairs[i].start == "<START>" && pairs[i].end == "<START>")
)
{

insertStringEdge(pairs[i].start,pairs[i].end);
outFile << pairs[i].start;
outFile << " ";
outFile << pairs[i].end;
outFile << endl;

}
}
outFile.close();

}
void buildQueries()
{

char fileName[FILENAME];
strcpy(fileName, graphName);
strcat(fileName, "/");
strcat(fileName, "QUERIES.txt");
ofstream outFile(fileName);
while(!(maxsp.isEmpty() || nodes.isEmpty() || topos.empty()))
{

string str1 = maxsp.getString();
string str2 = nodes.getString();
DataItem da = topos.front();
topos.pop();

string str3 = da.word;

string str4 = front + str1 + "+" + str2 + "+" + str3;

queries.push(str4);
}
while(!queries.empty())
{

string temp = queries.front();

outFile << temp << endl;

queries.pop();
}
outFile.close();

}

}; // end of class graph definition
int main()
{

Graph *A;
Graph *B;
Graph *C;
A = new Graph(20000, "A", "iraq_1.txt", 10000, false);
B = new Graph(20000, "B", "iraq_2.txt", 10000, false);
C = new Graph(20000, "C", "korea_1.txt", 10000, false);
//delete A;
//delete B;
//delete C;
return 0;

}

81

82

